Delete transformer_minimax_remover.py
Browse files- transformer_minimax_remover.py +0 -281
 
    	
        transformer_minimax_remover.py
    DELETED
    
    | 
         @@ -1,281 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import math
         
     | 
| 2 | 
         
            -
            from typing import Dict, Optional, Tuple, Union
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            import torch
         
     | 
| 5 | 
         
            -
            import torch.nn as nn
         
     | 
| 6 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 9 | 
         
            -
            from diffusers.utils import logging
         
     | 
| 10 | 
         
            -
            from diffusers.models.attention import FeedForward
         
     | 
| 11 | 
         
            -
            from diffusers.models.attention_processor import Attention
         
     | 
| 12 | 
         
            -
            from diffusers.models.embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
         
     | 
| 13 | 
         
            -
            from diffusers.models.modeling_outputs import Transformer2DModelOutput
         
     | 
| 14 | 
         
            -
            from diffusers.models.modeling_utils import ModelMixin
         
     | 
| 15 | 
         
            -
            from diffusers.models.normalization import FP32LayerNorm
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            class AttnProcessor2_0:
         
     | 
| 18 | 
         
            -
                def __init__(self):
         
     | 
| 19 | 
         
            -
                    if not hasattr(F, "scaled_dot_product_attention"):
         
     | 
| 20 | 
         
            -
                        raise ImportError("AttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
                def __call__(
         
     | 
| 23 | 
         
            -
                    self,
         
     | 
| 24 | 
         
            -
                    attn: Attention,
         
     | 
| 25 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 26 | 
         
            -
                    rotary_emb: Optional[torch.Tensor] = None,
         
     | 
| 27 | 
         
            -
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 28 | 
         
            -
                    encoder_hidden_states: Optional[torch.Tensor] = None
         
     | 
| 29 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
                    encoder_hidden_states = hidden_states
         
     | 
| 32 | 
         
            -
                    query = attn.to_q(hidden_states)
         
     | 
| 33 | 
         
            -
                    key = attn.to_k(encoder_hidden_states)
         
     | 
| 34 | 
         
            -
                    value = attn.to_v(encoder_hidden_states)
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
                    if attn.norm_q is not None:
         
     | 
| 37 | 
         
            -
                        query = attn.norm_q(query)
         
     | 
| 38 | 
         
            -
                    if attn.norm_k is not None:
         
     | 
| 39 | 
         
            -
                        key = attn.norm_k(key)
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                    query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
         
     | 
| 42 | 
         
            -
                    key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
         
     | 
| 43 | 
         
            -
                    value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
         
     | 
| 44 | 
         
            -
                    
         
     | 
| 45 | 
         
            -
                    if rotary_emb is not None:
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
                        def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor):
         
     | 
| 48 | 
         
            -
                            x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2)))
         
     | 
| 49 | 
         
            -
                            x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4)
         
     | 
| 50 | 
         
            -
                            return x_out.type_as(hidden_states)
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                        query = apply_rotary_emb(query, rotary_emb)
         
     | 
| 53 | 
         
            -
                        key = apply_rotary_emb(key, rotary_emb)
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                    hidden_states = F.scaled_dot_product_attention(
         
     | 
| 56 | 
         
            -
                        query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
         
     | 
| 57 | 
         
            -
                    )
         
     | 
| 58 | 
         
            -
                    hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
         
     | 
| 59 | 
         
            -
                    hidden_states = hidden_states.type_as(query)
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
                    hidden_states = attn.to_out[0](hidden_states)
         
     | 
| 62 | 
         
            -
                    hidden_states = attn.to_out[1](hidden_states)
         
     | 
| 63 | 
         
            -
                    return hidden_states
         
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
            class TimeEmbedding(nn.Module):
         
     | 
| 66 | 
         
            -
                def __init__(
         
     | 
| 67 | 
         
            -
                    self,
         
     | 
| 68 | 
         
            -
                    dim: int,
         
     | 
| 69 | 
         
            -
                    time_freq_dim: int,
         
     | 
| 70 | 
         
            -
                    time_proj_dim: int
         
     | 
| 71 | 
         
            -
                ):
         
     | 
| 72 | 
         
            -
                    super().__init__()
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
                    self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
         
     | 
| 75 | 
         
            -
                    self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
                    self.act_fn = nn.SiLU()
         
     | 
| 78 | 
         
            -
                    self.time_proj = nn.Linear(dim, time_proj_dim)
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
                def forward(
         
     | 
| 81 | 
         
            -
                    self,
         
     | 
| 82 | 
         
            -
                    timestep: torch.Tensor,
         
     | 
| 83 | 
         
            -
                ):
         
     | 
| 84 | 
         
            -
                    timestep = self.timesteps_proj(timestep)
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
                    time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
         
     | 
| 87 | 
         
            -
                    if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
         
     | 
| 88 | 
         
            -
                        timestep = timestep.to(time_embedder_dtype)
         
     | 
| 89 | 
         
            -
                    temb = self.time_embedder(timestep).type_as(self.time_proj.weight.data)
         
     | 
| 90 | 
         
            -
                    timestep_proj = self.time_proj(self.act_fn(temb))
         
     | 
| 91 | 
         
            -
                    
         
     | 
| 92 | 
         
            -
                    return temb, timestep_proj
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
            class RotaryPosEmbed(nn.Module):
         
     | 
| 96 | 
         
            -
                def __init__(
         
     | 
| 97 | 
         
            -
                    self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0
         
     | 
| 98 | 
         
            -
                ):
         
     | 
| 99 | 
         
            -
                    super().__init__()
         
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
                    self.attention_head_dim = attention_head_dim
         
     | 
| 102 | 
         
            -
                    self.patch_size = patch_size
         
     | 
| 103 | 
         
            -
                    self.max_seq_len = max_seq_len
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                    h_dim = w_dim = 2 * (attention_head_dim // 6)
         
     | 
| 106 | 
         
            -
                    t_dim = attention_head_dim - h_dim - w_dim
         
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
                    freqs = []
         
     | 
| 109 | 
         
            -
                    for dim in [t_dim, h_dim, w_dim]:
         
     | 
| 110 | 
         
            -
                        freq = get_1d_rotary_pos_embed(
         
     | 
| 111 | 
         
            -
                            dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64
         
     | 
| 112 | 
         
            -
                        )
         
     | 
| 113 | 
         
            -
                        freqs.append(freq)
         
     | 
| 114 | 
         
            -
                    self.freqs = torch.cat(freqs, dim=1)
         
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         
     | 
| 117 | 
         
            -
                    batch_size, num_channels, num_frames, height, width = hidden_states.shape
         
     | 
| 118 | 
         
            -
                    p_t, p_h, p_w = self.patch_size
         
     | 
| 119 | 
         
            -
                    ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
         
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
                    self.freqs = self.freqs.to(hidden_states.device)
         
     | 
| 122 | 
         
            -
                    freqs = self.freqs.split_with_sizes(
         
     | 
| 123 | 
         
            -
                        [
         
     | 
| 124 | 
         
            -
                            self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6),
         
     | 
| 125 | 
         
            -
                            self.attention_head_dim // 6,
         
     | 
| 126 | 
         
            -
                            self.attention_head_dim // 6,
         
     | 
| 127 | 
         
            -
                        ],
         
     | 
| 128 | 
         
            -
                        dim=1,
         
     | 
| 129 | 
         
            -
                    )
         
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
                    freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
         
     | 
| 132 | 
         
            -
                    freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
         
     | 
| 133 | 
         
            -
                    freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
         
     | 
| 134 | 
         
            -
                    freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1)
         
     | 
| 135 | 
         
            -
                    return freqs
         
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
            class TransformerBlock(nn.Module):
         
     | 
| 139 | 
         
            -
                def __init__(
         
     | 
| 140 | 
         
            -
                    self,
         
     | 
| 141 | 
         
            -
                    dim: int,
         
     | 
| 142 | 
         
            -
                    ffn_dim: int,
         
     | 
| 143 | 
         
            -
                    num_heads: int,
         
     | 
| 144 | 
         
            -
                    qk_norm: str = "rms_norm_across_heads",
         
     | 
| 145 | 
         
            -
                    cross_attn_norm: bool = False,
         
     | 
| 146 | 
         
            -
                    eps: float = 1e-6,
         
     | 
| 147 | 
         
            -
                    added_kv_proj_dim: Optional[int] = None,
         
     | 
| 148 | 
         
            -
                ):
         
     | 
| 149 | 
         
            -
                    super().__init__()
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                    self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
         
     | 
| 152 | 
         
            -
                    self.attn1 = Attention(
         
     | 
| 153 | 
         
            -
                        query_dim=dim,
         
     | 
| 154 | 
         
            -
                        heads=num_heads,
         
     | 
| 155 | 
         
            -
                        kv_heads=num_heads,
         
     | 
| 156 | 
         
            -
                        dim_head=dim // num_heads,
         
     | 
| 157 | 
         
            -
                        qk_norm=qk_norm,
         
     | 
| 158 | 
         
            -
                        eps=eps,
         
     | 
| 159 | 
         
            -
                        bias=True,
         
     | 
| 160 | 
         
            -
                        cross_attention_dim=None,
         
     | 
| 161 | 
         
            -
                        out_bias=True,
         
     | 
| 162 | 
         
            -
                        processor=AttnProcessor2_0(),
         
     | 
| 163 | 
         
            -
                    )
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
                    self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
         
     | 
| 166 | 
         
            -
                    self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=False)
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                    self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
         
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
                def forward(
         
     | 
| 171 | 
         
            -
                    self,
         
     | 
| 172 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 173 | 
         
            -
                    temb: torch.Tensor,
         
     | 
| 174 | 
         
            -
                    rotary_emb: torch.Tensor,
         
     | 
| 175 | 
         
            -
                ) -> torch.Tensor:
         
     | 
| 176 | 
         
            -
                    shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
         
     | 
| 177 | 
         
            -
                        self.scale_shift_table + temb.float()
         
     | 
| 178 | 
         
            -
                    ).chunk(6, dim=1)
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                    norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
         
     | 
| 181 | 
         
            -
                    attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb)
         
     | 
| 182 | 
         
            -
                    hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
                    norm_hidden_states = (self.norm2(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
         
     | 
| 185 | 
         
            -
                        hidden_states
         
     | 
| 186 | 
         
            -
                    )
         
     | 
| 187 | 
         
            -
                    ff_output = self.ffn(norm_hidden_states)
         
     | 
| 188 | 
         
            -
                    hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
         
     | 
| 189 | 
         
            -
             
     | 
| 190 | 
         
            -
                    return hidden_states
         
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
            class Transformer3DModel(ModelMixin, ConfigMixin):
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
                _skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
         
     | 
| 196 | 
         
            -
                _no_split_modules = ["TransformerBlock"]
         
     | 
| 197 | 
         
            -
                _keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2"]
         
     | 
| 198 | 
         
            -
             
     | 
| 199 | 
         
            -
                @register_to_config
         
     | 
| 200 | 
         
            -
                def __init__(
         
     | 
| 201 | 
         
            -
                    self,
         
     | 
| 202 | 
         
            -
                    patch_size: Tuple[int] = (1, 2, 2),
         
     | 
| 203 | 
         
            -
                    num_attention_heads: int = 40,
         
     | 
| 204 | 
         
            -
                    attention_head_dim: int = 128,
         
     | 
| 205 | 
         
            -
                    in_channels: int = 16,
         
     | 
| 206 | 
         
            -
                    out_channels: int = 16,
         
     | 
| 207 | 
         
            -
                    freq_dim: int = 256,
         
     | 
| 208 | 
         
            -
                    ffn_dim: int = 13824,
         
     | 
| 209 | 
         
            -
                    num_layers: int = 40,
         
     | 
| 210 | 
         
            -
                    cross_attn_norm: bool = True,
         
     | 
| 211 | 
         
            -
                    qk_norm: Optional[str] = "rms_norm_across_heads",
         
     | 
| 212 | 
         
            -
                    eps: float = 1e-6,
         
     | 
| 213 | 
         
            -
                    added_kv_proj_dim: Optional[int] = None,
         
     | 
| 214 | 
         
            -
                    rope_max_seq_len: int = 1024
         
     | 
| 215 | 
         
            -
                ) -> None:
         
     | 
| 216 | 
         
            -
                    super().__init__()
         
     | 
| 217 | 
         
            -
             
     | 
| 218 | 
         
            -
                    inner_dim = num_attention_heads * attention_head_dim
         
     | 
| 219 | 
         
            -
                    out_channels = out_channels or in_channels
         
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
                    # 1. Patch & position embedding
         
     | 
| 222 | 
         
            -
                    self.rope = RotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len)
         
     | 
| 223 | 
         
            -
                    self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
         
     | 
| 224 | 
         
            -
             
     | 
| 225 | 
         
            -
                    # 2. Condition embeddings
         
     | 
| 226 | 
         
            -
                    self.condition_embedder = TimeEmbedding(
         
     | 
| 227 | 
         
            -
                        dim=inner_dim,
         
     | 
| 228 | 
         
            -
                        time_freq_dim=freq_dim,
         
     | 
| 229 | 
         
            -
                        time_proj_dim=inner_dim * 6,
         
     | 
| 230 | 
         
            -
                    )
         
     | 
| 231 | 
         
            -
             
     | 
| 232 | 
         
            -
                    # 3. Transformer blocks
         
     | 
| 233 | 
         
            -
                    self.blocks = nn.ModuleList(
         
     | 
| 234 | 
         
            -
                        [
         
     | 
| 235 | 
         
            -
                            TransformerBlock(
         
     | 
| 236 | 
         
            -
                                inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
         
     | 
| 237 | 
         
            -
                            )
         
     | 
| 238 | 
         
            -
                            for _ in range(num_layers)
         
     | 
| 239 | 
         
            -
                        ]
         
     | 
| 240 | 
         
            -
                    )
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
                    # 4. Output norm & projection
         
     | 
| 243 | 
         
            -
                    self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
         
     | 
| 244 | 
         
            -
                    self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
         
     | 
| 245 | 
         
            -
                    self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
         
     | 
| 246 | 
         
            -
             
     | 
| 247 | 
         
            -
                def forward(
         
     | 
| 248 | 
         
            -
                    self,
         
     | 
| 249 | 
         
            -
                    hidden_states: torch.Tensor,
         
     | 
| 250 | 
         
            -
                    timestep: torch.LongTensor
         
     | 
| 251 | 
         
            -
                ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
         
     | 
| 252 | 
         
            -
                    batch_size, num_channels, num_frames, height, width = hidden_states.shape
         
     | 
| 253 | 
         
            -
                    p_t, p_h, p_w = self.config.patch_size
         
     | 
| 254 | 
         
            -
                    post_patch_num_frames = num_frames // p_t
         
     | 
| 255 | 
         
            -
                    post_patch_height = height // p_h
         
     | 
| 256 | 
         
            -
                    post_patch_width = width // p_w
         
     | 
| 257 | 
         
            -
                    
         
     | 
| 258 | 
         
            -
                    rotary_emb = self.rope(hidden_states)
         
     | 
| 259 | 
         
            -
             
     | 
| 260 | 
         
            -
                    hidden_states = self.patch_embedding(hidden_states)
         
     | 
| 261 | 
         
            -
                    hidden_states = hidden_states.flatten(2).transpose(1, 2)
         
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
                    temb, timestep_proj = self.condition_embedder(
         
     | 
| 264 | 
         
            -
                        timestep
         
     | 
| 265 | 
         
            -
                    )
         
     | 
| 266 | 
         
            -
                    timestep_proj = timestep_proj.unflatten(1, (6, -1))
         
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
                    for block in self.blocks:
         
     | 
| 269 | 
         
            -
                        hidden_states = block(hidden_states, timestep_proj, rotary_emb)
         
     | 
| 270 | 
         
            -
             
     | 
| 271 | 
         
            -
                    shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
         
     | 
| 272 | 
         
            -
                    hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
         
     | 
| 273 | 
         
            -
                    hidden_states = self.proj_out(hidden_states)
         
     | 
| 274 | 
         
            -
             
     | 
| 275 | 
         
            -
                    hidden_states = hidden_states.reshape(
         
     | 
| 276 | 
         
            -
                        batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
         
     | 
| 277 | 
         
            -
                    )
         
     | 
| 278 | 
         
            -
                    hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
         
     | 
| 279 | 
         
            -
                    output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
         
     | 
| 280 | 
         
            -
             
     | 
| 281 | 
         
            -
                    return Transformer2DModelOutput(sample=output)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |