zibojia commited on
Commit
0841861
·
verified ·
1 Parent(s): 51248e5

Upload 3 files

Browse files
pipeline_minimax_remover.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, Dict, List, Optional, Union
2
+
3
+ import torch
4
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
5
+ from diffusers.models import AutoencoderKLWan
6
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
7
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
8
+ from diffusers.utils.torch_utils import randn_tensor
9
+ from diffusers.video_processor import VideoProcessor
10
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
11
+ from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
12
+
13
+ import scipy
14
+ import numpy as np
15
+ import torch.nn.functional as F
16
+ from transformer_minimax_remover import Transformer3DModel
17
+ from einops import rearrange
18
+
19
+ if is_torch_xla_available():
20
+ import torch_xla.core.xla_model as xm
21
+
22
+ XLA_AVAILABLE = True
23
+ else:
24
+ XLA_AVAILABLE = False
25
+
26
+ class Minimax_Remover_Pipeline(DiffusionPipeline):
27
+
28
+ model_cpu_offload_seq = "transformer->vae"
29
+ _callback_tensor_inputs = ["latents"]
30
+
31
+ def __init__(
32
+ self,
33
+ transformer: Transformer3DModel,
34
+ vae: AutoencoderKLWan,
35
+ scheduler: FlowMatchEulerDiscreteScheduler
36
+ ):
37
+ super().__init__()
38
+
39
+ self.register_modules(
40
+ vae=vae,
41
+ transformer=transformer,
42
+ scheduler=scheduler,
43
+ )
44
+
45
+ self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
46
+ self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
47
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
48
+
49
+ def prepare_latents(
50
+ self,
51
+ batch_size: int,
52
+ num_channels_latents: 16,
53
+ height: int = 720,
54
+ width: int = 1280,
55
+ num_latent_frames: int = 21,
56
+ dtype: Optional[torch.dtype] = None,
57
+ device: Optional[torch.device] = None,
58
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
59
+ latents: Optional[torch.Tensor] = None,
60
+ ) -> torch.Tensor:
61
+ if latents is not None:
62
+ return latents.to(device=device, dtype=dtype)
63
+
64
+ shape = (
65
+ batch_size,
66
+ num_channels_latents,
67
+ num_latent_frames,
68
+ int(height) // self.vae_scale_factor_spatial,
69
+ int(width) // self.vae_scale_factor_spatial,
70
+ )
71
+
72
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
73
+ return latents
74
+
75
+ def expand_masks(self, masks, iterations):
76
+ masks = masks.cpu().detach().numpy()
77
+ # numpy array, masks [0,1], f h w c
78
+ masks2 = []
79
+ for i in range(len(masks)):
80
+ mask = masks[i]
81
+ mask = mask > 0
82
+ mask = scipy.ndimage.binary_dilation(mask, iterations=iterations)
83
+ masks2.append(mask)
84
+ masks = np.array(masks2).astype(np.float32)
85
+ masks = torch.from_numpy(masks)
86
+ masks = masks.repeat(1,1,1,3)
87
+ masks = rearrange(masks, "f h w c -> c f h w")
88
+ masks = masks[None,...]
89
+ return masks
90
+
91
+ def resize(self, images, w, h):
92
+ bsz,_,_,_,_ = images.shape
93
+ images = rearrange(images, "b c f w h -> (b f) c w h")
94
+ images = F.interpolate(images, (w,h), mode='bilinear')
95
+ images = rearrange(images, "(b f) c w h -> b c f w h", b=bsz)
96
+ return images
97
+
98
+ @property
99
+ def num_timesteps(self):
100
+ return self._num_timesteps
101
+
102
+ @property
103
+ def current_timestep(self):
104
+ return self._current_timestep
105
+
106
+ @property
107
+ def interrupt(self):
108
+ return self._interrupt
109
+
110
+ @torch.no_grad()
111
+ def __call__(
112
+ self,
113
+ height: int = 720,
114
+ width: int = 1280,
115
+ num_frames: int = 81,
116
+ num_inference_steps: int = 50,
117
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
118
+ images: Optional[torch.Tensor] = None,
119
+ masks: Optional[torch.Tensor] = None,
120
+ latents: Optional[torch.Tensor] = None,
121
+ output_type: Optional[str] = "np",
122
+ iterations: int = 16
123
+ ):
124
+
125
+ self._current_timestep = None
126
+ self._interrupt = False
127
+ device = self._execution_device
128
+ batch_size = 1
129
+ transformer_dtype = torch.float16
130
+
131
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
132
+ timesteps = self.scheduler.timesteps
133
+
134
+ num_channels_latents = 16
135
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
136
+
137
+ latents = self.prepare_latents(
138
+ batch_size,
139
+ num_channels_latents,
140
+ height,
141
+ width,
142
+ num_latent_frames,
143
+ torch.float16,
144
+ device,
145
+ generator,
146
+ latents,
147
+ )
148
+
149
+ masks = self.expand_masks(masks, iterations)
150
+ masks = self.resize(masks, height, width).to("cuda:0").half()
151
+ masks[masks>0] = 1
152
+ images = rearrange(images, "f h w c -> c f h w")
153
+ images = self.resize(images[None,...], height, width).to("cuda:0").half()
154
+
155
+ masked_images = images * (1-masks)
156
+
157
+ latents_mean = (
158
+ torch.tensor(self.vae.config.latents_mean)
159
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
160
+ .to(self.vae.device, torch.float16)
161
+ )
162
+
163
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
164
+ self.vae.device, torch.float16
165
+ )
166
+
167
+ with torch.no_grad():
168
+ masked_latents = self.vae.encode(masked_images.half()).latent_dist.mode()
169
+ masks_latents = self.vae.encode(2*masks.half()-1.0).latent_dist.mode()
170
+
171
+ masked_latents = (masked_latents - latents_mean) * latents_std
172
+ masks_latents = (masks_latents - latents_mean) * latents_std
173
+
174
+ self._num_timesteps = len(timesteps)
175
+
176
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
177
+ for i, t in enumerate(timesteps):
178
+
179
+ latent_model_input = latents.to(transformer_dtype)
180
+
181
+ latent_model_input = torch.cat([latent_model_input, masked_latents, masks_latents], dim=1)
182
+ timestep = t.expand(latents.shape[0])
183
+
184
+ noise_pred = self.transformer(
185
+ hidden_states=latent_model_input.half(),
186
+ timestep=timestep
187
+ )[0]
188
+
189
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
190
+
191
+ progress_bar.update()
192
+
193
+ latents = latents.half() / latents_std + latents_mean
194
+ video = self.vae.decode(latents, return_dict=False)[0]
195
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
196
+
197
+ return WanPipelineOutput(frames=video)
test_minimax_remover.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import argparse
3
+ import numpy as np
4
+ import random
5
+
6
+ import torch.nn.functional as F
7
+ from PIL import Image
8
+ import torch.distributed as dist
9
+ from diffusers.utils import export_to_video
10
+ from omegaconf import OmegaConf
11
+ from einops import rearrange
12
+ from decord import VideoReader
13
+ from diffusers.models import AutoencoderKLWan
14
+ import scipy
15
+ from transformer_minimax_remover import Transformer3DModel
16
+ from einops import rearrange
17
+ from diffusers.schedulers import UniPCMultistepScheduler
18
+ from pipeline_minimax_remover import Minimax_Remover_Pipeline
19
+
20
+ random_seed = 42
21
+ video_length = 81
22
+ device = torch.device("cuda:0")
23
+
24
+ vae = AutoencoderKLWan.from_pretrained("./vae", torch_dtype=torch.float16)
25
+ transformer = Transformer3DModel.from_pretrained("./transformer", torch_dtype=torch.float16)
26
+ scheduler = UniPCMultistepScheduler.from_pretrained("./scheduler")
27
+
28
+ pipe = Minimax_Remover_Pipeline(transformer=transformer, vae=vae, scheduler=scheduler)
29
+ pipe.to("cuda:0")
30
+
31
+ def inference(pixel_values, masks, iterations=6):
32
+ video = pipe(
33
+ images=pixel_values,
34
+ masks=masks,
35
+ num_frames=video_length,
36
+ height=480,
37
+ width=832,
38
+ num_inference_steps=12,
39
+ generator=torch.Generator(device="cuda").manual_seed(random_seed),
40
+ iterations=iterations
41
+ ).frames[0]
42
+
43
+ export_to_video(video, f"./output.mp4")
44
+
45
+
46
+ def load_video(video_path):
47
+ vr = VideoReader(video_path)
48
+ images = vr.get_batch(list(range(video_length))).asnumpy()
49
+ images = torch.from_numpy(images)/127.5 - 1.0
50
+ return images
51
+
52
+ def load_mask(mask_path):
53
+ vr = VideoReader(mask_path)
54
+ masks = vr.get_batch(list(range(video_length))).asnumpy()
55
+ masks = torch.from_numpy(masks)
56
+ masks = masks[:,:,:,:1]
57
+ masks[masks>20] = 255
58
+ masks[masks<255] = 0
59
+ masks = masks/255.0
60
+ return masks
61
+
62
+ #video_path = "../pexels_export/height/5720258-hd_1080_1920_24fps.mp4"
63
+ video_path = "../pexels_export/fast/3352673-hd_1280_720_30fps.mp4"
64
+ #mask_path = "../pexels_export/height/5720258-hd_1080_1920_24fps_mask.mp4"
65
+ mask_path = "../pexels_export/fast/3352673-hd_1280_720_30fps_mask.mp4"
66
+
67
+ images = load_video(video_path)
68
+ masks = load_mask(mask_path)
69
+
70
+ inference(images, masks)
transformer_minimax_remover.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Dict, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.utils import logging
10
+ from diffusers.models.attention import FeedForward
11
+ from diffusers.models.attention_processor import Attention
12
+ from diffusers.models.embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
13
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
14
+ from diffusers.models.modeling_utils import ModelMixin
15
+ from diffusers.models.normalization import FP32LayerNorm
16
+
17
+ class AttnProcessor2_0:
18
+ def __init__(self):
19
+ if not hasattr(F, "scaled_dot_product_attention"):
20
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
21
+
22
+ def __call__(
23
+ self,
24
+ attn: Attention,
25
+ hidden_states: torch.Tensor,
26
+ rotary_emb: Optional[torch.Tensor] = None,
27
+ attention_mask: Optional[torch.Tensor] = None,
28
+ encoder_hidden_states: Optional[torch.Tensor] = None
29
+ ) -> torch.Tensor:
30
+
31
+ encoder_hidden_states = hidden_states
32
+ query = attn.to_q(hidden_states)
33
+ key = attn.to_k(encoder_hidden_states)
34
+ value = attn.to_v(encoder_hidden_states)
35
+
36
+ if attn.norm_q is not None:
37
+ query = attn.norm_q(query)
38
+ if attn.norm_k is not None:
39
+ key = attn.norm_k(key)
40
+
41
+ query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
42
+ key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
43
+ value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
44
+
45
+ if rotary_emb is not None:
46
+
47
+ def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor):
48
+ x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2)))
49
+ x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4)
50
+ return x_out.type_as(hidden_states)
51
+
52
+ query = apply_rotary_emb(query, rotary_emb)
53
+ key = apply_rotary_emb(key, rotary_emb)
54
+
55
+ hidden_states = F.scaled_dot_product_attention(
56
+ query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
57
+ )
58
+ hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
59
+ hidden_states = hidden_states.type_as(query)
60
+
61
+ hidden_states = attn.to_out[0](hidden_states)
62
+ hidden_states = attn.to_out[1](hidden_states)
63
+ return hidden_states
64
+
65
+ class TimeEmbedding(nn.Module):
66
+ def __init__(
67
+ self,
68
+ dim: int,
69
+ time_freq_dim: int,
70
+ time_proj_dim: int
71
+ ):
72
+ super().__init__()
73
+
74
+ self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
75
+ self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
76
+
77
+ self.act_fn = nn.SiLU()
78
+ self.time_proj = nn.Linear(dim, time_proj_dim)
79
+
80
+ def forward(
81
+ self,
82
+ timestep: torch.Tensor,
83
+ ):
84
+ timestep = self.timesteps_proj(timestep)
85
+
86
+ time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
87
+ if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
88
+ timestep = timestep.to(time_embedder_dtype)
89
+ temb = self.time_embedder(timestep).type_as(self.time_proj.weight.data)
90
+ timestep_proj = self.time_proj(self.act_fn(temb))
91
+
92
+ return temb, timestep_proj
93
+
94
+
95
+ class RotaryPosEmbed(nn.Module):
96
+ def __init__(
97
+ self, attention_head_dim: int, patch_size: Tuple[int, int, int], max_seq_len: int, theta: float = 10000.0
98
+ ):
99
+ super().__init__()
100
+
101
+ self.attention_head_dim = attention_head_dim
102
+ self.patch_size = patch_size
103
+ self.max_seq_len = max_seq_len
104
+
105
+ h_dim = w_dim = 2 * (attention_head_dim // 6)
106
+ t_dim = attention_head_dim - h_dim - w_dim
107
+
108
+ freqs = []
109
+ for dim in [t_dim, h_dim, w_dim]:
110
+ freq = get_1d_rotary_pos_embed(
111
+ dim, max_seq_len, theta, use_real=False, repeat_interleave_real=False, freqs_dtype=torch.float64
112
+ )
113
+ freqs.append(freq)
114
+ self.freqs = torch.cat(freqs, dim=1)
115
+
116
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
117
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
118
+ p_t, p_h, p_w = self.patch_size
119
+ ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
120
+
121
+ self.freqs = self.freqs.to(hidden_states.device)
122
+ freqs = self.freqs.split_with_sizes(
123
+ [
124
+ self.attention_head_dim // 2 - 2 * (self.attention_head_dim // 6),
125
+ self.attention_head_dim // 6,
126
+ self.attention_head_dim // 6,
127
+ ],
128
+ dim=1,
129
+ )
130
+
131
+ freqs_f = freqs[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
132
+ freqs_h = freqs[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
133
+ freqs_w = freqs[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
134
+ freqs = torch.cat([freqs_f, freqs_h, freqs_w], dim=-1).reshape(1, 1, ppf * pph * ppw, -1)
135
+ return freqs
136
+
137
+
138
+ class TransformerBlock(nn.Module):
139
+ def __init__(
140
+ self,
141
+ dim: int,
142
+ ffn_dim: int,
143
+ num_heads: int,
144
+ qk_norm: str = "rms_norm_across_heads",
145
+ cross_attn_norm: bool = False,
146
+ eps: float = 1e-6,
147
+ added_kv_proj_dim: Optional[int] = None,
148
+ ):
149
+ super().__init__()
150
+
151
+ self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
152
+ self.attn1 = Attention(
153
+ query_dim=dim,
154
+ heads=num_heads,
155
+ kv_heads=num_heads,
156
+ dim_head=dim // num_heads,
157
+ qk_norm=qk_norm,
158
+ eps=eps,
159
+ bias=True,
160
+ cross_attention_dim=None,
161
+ out_bias=True,
162
+ processor=AttnProcessor2_0(),
163
+ )
164
+
165
+ self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
166
+ self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=False)
167
+
168
+ self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
169
+
170
+ def forward(
171
+ self,
172
+ hidden_states: torch.Tensor,
173
+ temb: torch.Tensor,
174
+ rotary_emb: torch.Tensor,
175
+ ) -> torch.Tensor:
176
+ shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
177
+ self.scale_shift_table + temb.float()
178
+ ).chunk(6, dim=1)
179
+
180
+ norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
181
+ attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb)
182
+ hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
183
+
184
+ norm_hidden_states = (self.norm2(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
185
+ hidden_states
186
+ )
187
+ ff_output = self.ffn(norm_hidden_states)
188
+ hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
189
+
190
+ return hidden_states
191
+
192
+
193
+ class Transformer3DModel(ModelMixin, ConfigMixin):
194
+
195
+ _skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
196
+ _no_split_modules = ["TransformerBlock"]
197
+ _keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2"]
198
+
199
+ @register_to_config
200
+ def __init__(
201
+ self,
202
+ patch_size: Tuple[int] = (1, 2, 2),
203
+ num_attention_heads: int = 40,
204
+ attention_head_dim: int = 128,
205
+ in_channels: int = 16,
206
+ out_channels: int = 16,
207
+ freq_dim: int = 256,
208
+ ffn_dim: int = 13824,
209
+ num_layers: int = 40,
210
+ cross_attn_norm: bool = True,
211
+ qk_norm: Optional[str] = "rms_norm_across_heads",
212
+ eps: float = 1e-6,
213
+ added_kv_proj_dim: Optional[int] = None,
214
+ rope_max_seq_len: int = 1024
215
+ ) -> None:
216
+ super().__init__()
217
+
218
+ inner_dim = num_attention_heads * attention_head_dim
219
+ out_channels = out_channels or in_channels
220
+
221
+ # 1. Patch & position embedding
222
+ self.rope = RotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len)
223
+ self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
224
+
225
+ # 2. Condition embeddings
226
+ self.condition_embedder = TimeEmbedding(
227
+ dim=inner_dim,
228
+ time_freq_dim=freq_dim,
229
+ time_proj_dim=inner_dim * 6,
230
+ )
231
+
232
+ # 3. Transformer blocks
233
+ self.blocks = nn.ModuleList(
234
+ [
235
+ TransformerBlock(
236
+ inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
237
+ )
238
+ for _ in range(num_layers)
239
+ ]
240
+ )
241
+
242
+ # 4. Output norm & projection
243
+ self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
244
+ self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
245
+ self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
246
+
247
+ def forward(
248
+ self,
249
+ hidden_states: torch.Tensor,
250
+ timestep: torch.LongTensor
251
+ ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
252
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
253
+ p_t, p_h, p_w = self.config.patch_size
254
+ post_patch_num_frames = num_frames // p_t
255
+ post_patch_height = height // p_h
256
+ post_patch_width = width // p_w
257
+
258
+ rotary_emb = self.rope(hidden_states)
259
+
260
+ hidden_states = self.patch_embedding(hidden_states)
261
+ hidden_states = hidden_states.flatten(2).transpose(1, 2)
262
+
263
+ temb, timestep_proj = self.condition_embedder(
264
+ timestep
265
+ )
266
+ timestep_proj = timestep_proj.unflatten(1, (6, -1))
267
+
268
+ for block in self.blocks:
269
+ hidden_states = block(hidden_states, timestep_proj, rotary_emb)
270
+
271
+ shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
272
+ hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
273
+ hidden_states = self.proj_out(hidden_states)
274
+
275
+ hidden_states = hidden_states.reshape(
276
+ batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
277
+ )
278
+ hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
279
+ output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
280
+
281
+ return Transformer2DModelOutput(sample=output)