File size: 9,535 Bytes
4b44664 86a3ba6 4b44664 b5c08e3 4b44664 b5c08e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
---
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
tags:
- Sentence Similarity
- Embedding
- zero-shot-image-classification
- video-text-to-text
---
# UME-R1-7B
## Model Summary
The model has undergone a cold-start SFT stage and an RL stage of training, and is capable of embedding text, images, multiple images, and videos. In particular, UME-R1 can generate either discriminative or generative embeddings as needed, and the generative embeddings possess the potential for test-time scaling.
- **Repository:** [UME-R1](https://github.com/XMUDeepLIT/UME-R1)
- **Paper:** [UME-R1](https://arxiv.org/abs/2511.00405)
## Train/Eval Data
- Train data: https://huggingface.co/datasets/zhibinlan/UME-sft-train
- Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-V2
## Model Performance
UME-R1 significantly outperforms discriminative embeddings and can provide discriminative or generative representations as needed. Its oracle performance—selecting the best between discriminative and generative—far exceeds using either mode alone.
<img src="./figures/main_result.png" alt="MMEB-V2" width="1200" height="auto">
<!--  -->
In addition, UME-R1 can produce improved embedding representations through repeated sampling, indicating that generative embeddings also hold strong promise for inference-time scaling.
<img src="./figures/scaling.png" alt="pass@k" width="1200" height="auto">
### Quick Start
First clone our github
```bash
git clone https://github.com/DeepLearnXMU/UME-R1
cd UME-R1
bash setup.sh
```
Below, we provide simple examples to show how to use UME-R1 with 🤗 Transformers.
Example of obtaining generative embeddings:
```python
from transformers import Qwen2VLForConditionalGeneration,AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
model = Qwen2VLForConditionalGeneration.from_pretrained(
"zhibinlan/UME-R1-7B",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="cuda:0",
)
processor = AutoProcessor.from_pretrained("zhibinlan/UME-R1-7B")
prompt = '''Represent the above input text, images, videos, or any combination of the three as embeddings.
First output the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
Finally, use the <gen_emb> tag to represent the entire input.'''
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "assets/example.jpg",
},
{"type": "text", "text": "Represent the given image with the following question: What is in the image?\n<disc_emb>\n" + prompt},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_output = model.generate(**inputs, max_new_tokens=8192, output_hidden_states=True, return_dict_in_generate=True, use_cache=True)
# Post-process the output
generated_ids = generated_output.sequences
hidden_states = generated_output.hidden_states
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
def get_embedding_idx(generated_ids_trimmed, EMBEDDING_TOKEN_ID):
embedding_idx = []
for i, out_ids in enumerate(generated_ids_trimmed):
embed_exist = False
for j in range(len(out_ids) - 1, -1, -1):
if out_ids[j] == EMBEDDING_TOKEN_ID:
embedding_idx.append(j + 1)
embed_exist = True
break
if not embed_exist:
embedding_idx.append(-1)
return embedding_idx
def normalize_reps(reps):
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
# Get the last hidden state of the <gen_emb> token
embedding_idx = get_embedding_idx(generated_ids_trimmed, processor.tokenizer.get_vocab()["<gen_emb>"])
embedding_reps = hidden_states[embedding_idx[0]][-1].squeeze(1)
# Normalize the representations
embedding_reps = normalize_reps(embedding_reps)
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
```
<details>
<summary>Example of obtaining discriminative embeddings</summary>
```python
from transformers import Qwen2VLForConditionalGeneration,AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
pretrained_path = "zhibinlan/UME-R1-7B"
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
model = Qwen2VLForConditionalGeneration.from_pretrained(
pretrained_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="cuda:0",
)
# default processor
processor = AutoProcessor.from_pretrained(pretrained_path)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "UME-R1/assets/example.jpg",
},
{"type": "text", "text": "Represent the given image with the following question: What is in the image?\n<disc_emb>\n"},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
def get_embedding_idx(generated_ids_trimmed, EMBEDDING_TOKEN_ID):
embedding_idx = []
# Search from the last token forward
for i, out_ids in enumerate(generated_ids_trimmed):
embed_exist = False
for j in range(len(out_ids) - 1, -1, -1):
if out_ids[j] == EMBEDDING_TOKEN_ID:
embedding_idx.append(j)
embed_exist = True
break
if not embed_exist:
embedding_idx.append(-1)
return embedding_idx
def normalize_reps(reps):
# Normalize the representations
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
output = model(**inputs, output_hidden_states=True, return_dict=True)
hidden_states = output.hidden_states[-1][0]
# print("output.hidden_states shape: ", hidden_states.shape)
embedding_idx = get_embedding_idx(inputs['input_ids'], processor.tokenizer.get_vocab()["<disc_emb>"])
# Get the last hidden state of the <gen_emb> token
embedding_reps = hidden_states[embedding_idx[0]]
# Normalize the representations
embedding_reps = normalize_reps(embedding_reps)
```
</details>
<details>
<summary>Multi image inference</summary>
```python
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "Represent the given images."},
],
}
]
```
</details>
<details>
<summary>Video inference</summary>
```python
# Messages containing a images list as a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": [
"file:///path/to/frame1.jpg",
"file:///path/to/frame2.jpg",
"file:///path/to/frame3.jpg",
"file:///path/to/frame4.jpg",
],
},
{"type": "text", "text": "Represent this video."},
],
}
]
# Messages containing a local video path and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file:///path/to/video1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "Represent this video."},
],
}
]
# Messages containing a video url and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "https://path/to/video.mp4",
"min_pixels": 4 * 28 * 28,
"max_pixels": 256 * 28 * 28,
"total_pixels": 20480 * 28 * 28,
},
{"type": "text", "text": "Represent this video."},
],
}
]
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
fps=fps,
padding=True,
return_tensors="pt",
**video_kwargs,
)
```
</details>
For more usage tips, please refer to our [Github page](https://github.com/DeepLearnXMU/UME-R1).
## Citation
If you find our work useful, please consider citing it.
```
@article{lan2025ume,
title={UME-R1: Exploring Reasoning-Driven Generative Multimodal Embeddings},
author={Lan, Zhibin and Niu, Liqiang and Meng, Fandong and Zhou, Jie and Su, Jinsong},
journal={arXiv preprint arXiv:2511.00405},
year={2025}
}
``` |