🧘 Zen Training Space

Unified Training Platform for All Zen Models

Train any Zen model with any dataset combination from HuggingFace. Everything runs directly from HF datasets - no local storage needed!

🎯 Features

Supported Models

Language Models:

  • zen-nano (0.6B) - Edge deployment
  • zen-eco (4B) - Balanced performance
  • zen-omni (7B) - Multi-task
  • zen-coder (14B) - Code generation
  • zen-next (32B) - Frontier performance

Vision-Language Models:

  • zen-vl-4b - Efficient VL with function calling
  • zen-vl-8b - Enhanced VL capabilities
  • zen-vl-30b - Maximum VL performance

Supported Datasets

Agent Training (ADP):

  • AgentTuning OS/KG/DB (~15k samples)
  • Synatra (99k agent trajectories)
  • Code Feedback (66k samples)
  • Go Browse (27k web interactions)

Function Calling:

  • xLAM 60k (Salesforce high-quality function calling)

Instruction Tuning:

  • Alpaca (52k instruction samples)

πŸš€ How to Use

  1. Select Model: Choose from language or vision-language models
  2. Select Datasets: Check multiple datasets to combine them
  3. Configure Training: Set epochs, batch size, learning rate, max samples
  4. Set Output Repo: Specify HuggingFace repo for trained model
  5. Start Training: Click the button and monitor logs

βš™οΈ Training Configuration

Recommended Settings

4B Models (A10G - 24GB):

  • Batch Size: 1-2
  • Max Samples: 10,000-30,000
  • Time: 4-8 hours
  • Cost: ~$3-5

8B Models (A100 - 40GB):

  • Batch Size: 2-4
  • Max Samples: 30,000-50,000
  • Time: 8-12 hours
  • Cost: ~$15-20

32B Models (A100 - 80GB):

  • Batch Size: 1-2
  • Max Samples: 50,000-100,000
  • Time: 20-30 hours
  • Cost: ~$50-80

πŸ“Š Dataset Combinations

For Agent Training:

ADP Synatra (80%) + xLAM (20%)
= Strong agent + quality function calling

For Code Models:

Code Feedback (70%) + Alpaca (30%)
= Code expertise + general instruction following

For VL Models:

ADP (all configs) + xLAM
= Complete vision-language agent training

πŸ”’ Requirements

  • HuggingFace Pro account (for GPU access)
  • Write access to output repository
  • HF_TOKEN secret set in Space settings

πŸ’‘ Tips

  1. Start Small: Test with 1,000 samples first
  2. Mix Datasets: Combine complementary datasets for best results
  3. Monitor Logs: Watch for OOM errors and adjust batch size
  4. Save Often: Lower save_steps for longer training runs

πŸ“š Resources

πŸ“„ License

Apache 2.0

πŸ™ Citations

@software{zen-training-2025,
  title={Zen Training: Unified Training Platform for Zen Models},
  author={Zen AI Team},
  year={2025},
  url={https://huggingface.co/spaces/zenlm/zen-training}
}

@article{adp2024,
  title={Agent Data Protocol},
  author={NeuLab},
  journal={arXiv preprint arXiv:2510.24702},
  year={2024}
}

@dataset{xlam2024,
  title={xLAM Function Calling Dataset},
  author={Salesforce Research},
  year={2024}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support