yjoonjang commited on
Commit
5740642
·
verified ·
1 Parent(s): 75760f0

Add new CrossEncoder model

Browse files
README.md ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - generated_from_trainer
8
+ - dataset_size:78704
9
+ - loss:ListMLELoss
10
+ base_model: microsoft/MiniLM-L12-H384-uncased
11
+ datasets:
12
+ - microsoft/ms_marco
13
+ pipeline_tag: text-ranking
14
+ library_name: sentence-transformers
15
+ metrics:
16
+ - map
17
+ - mrr@10
18
+ - ndcg@10
19
+ model-index:
20
+ - name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
21
+ results:
22
+ - task:
23
+ type: cross-encoder-reranking
24
+ name: Cross Encoder Reranking
25
+ dataset:
26
+ name: NanoMSMARCO R100
27
+ type: NanoMSMARCO_R100
28
+ metrics:
29
+ - type: map
30
+ value: 0.4793
31
+ name: Map
32
+ - type: mrr@10
33
+ value: 0.4667
34
+ name: Mrr@10
35
+ - type: ndcg@10
36
+ value: 0.5367
37
+ name: Ndcg@10
38
+ - task:
39
+ type: cross-encoder-reranking
40
+ name: Cross Encoder Reranking
41
+ dataset:
42
+ name: NanoNFCorpus R100
43
+ type: NanoNFCorpus_R100
44
+ metrics:
45
+ - type: map
46
+ value: 0.3262
47
+ name: Map
48
+ - type: mrr@10
49
+ value: 0.5391
50
+ name: Mrr@10
51
+ - type: ndcg@10
52
+ value: 0.3374
53
+ name: Ndcg@10
54
+ - task:
55
+ type: cross-encoder-reranking
56
+ name: Cross Encoder Reranking
57
+ dataset:
58
+ name: NanoNQ R100
59
+ type: NanoNQ_R100
60
+ metrics:
61
+ - type: map
62
+ value: 0.5706
63
+ name: Map
64
+ - type: mrr@10
65
+ value: 0.5727
66
+ name: Mrr@10
67
+ - type: ndcg@10
68
+ value: 0.6188
69
+ name: Ndcg@10
70
+ - task:
71
+ type: cross-encoder-nano-beir
72
+ name: Cross Encoder Nano BEIR
73
+ dataset:
74
+ name: NanoBEIR R100 mean
75
+ type: NanoBEIR_R100_mean
76
+ metrics:
77
+ - type: map
78
+ value: 0.4587
79
+ name: Map
80
+ - type: mrr@10
81
+ value: 0.5262
82
+ name: Mrr@10
83
+ - type: ndcg@10
84
+ value: 0.4976
85
+ name: Ndcg@10
86
+ ---
87
+
88
+ # CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
89
+
90
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
91
+
92
+ ## Model Details
93
+
94
+ ### Model Description
95
+ - **Model Type:** Cross Encoder
96
+ - **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
97
+ - **Maximum Sequence Length:** 512 tokens
98
+ - **Number of Output Labels:** 1 label
99
+ - **Training Dataset:**
100
+ - [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco)
101
+ - **Language:** en
102
+ <!-- - **License:** Unknown -->
103
+
104
+ ### Model Sources
105
+
106
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
107
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
110
+
111
+ ## Usage
112
+
113
+ ### Direct Usage (Sentence Transformers)
114
+
115
+ First install the Sentence Transformers library:
116
+
117
+ ```bash
118
+ pip install -U sentence-transformers
119
+ ```
120
+
121
+ Then you can load this model and run inference.
122
+ ```python
123
+ from sentence_transformers import CrossEncoder
124
+
125
+ # Download from the 🤗 Hub
126
+ model = CrossEncoder("yjoonjang/reranker-msmarco-v1.1-MiniLM-L12-H384-uncased-plistmle-tanh")
127
+ # Get scores for pairs of texts
128
+ pairs = [
129
+ ['How many calories in an egg', 'There are on average between 55 and 80 calories in an egg depending on its size.'],
130
+ ['How many calories in an egg', 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.'],
131
+ ['How many calories in an egg', 'Most of the calories in an egg come from the yellow yolk in the center.'],
132
+ ]
133
+ scores = model.predict(pairs)
134
+ print(scores.shape)
135
+ # (3,)
136
+
137
+ # Or rank different texts based on similarity to a single text
138
+ ranks = model.rank(
139
+ 'How many calories in an egg',
140
+ [
141
+ 'There are on average between 55 and 80 calories in an egg depending on its size.',
142
+ 'Egg whites are very low in calories, have no fat, no cholesterol, and are loaded with protein.',
143
+ 'Most of the calories in an egg come from the yellow yolk in the center.',
144
+ ]
145
+ )
146
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
147
+ ```
148
+
149
+ <!--
150
+ ### Direct Usage (Transformers)
151
+
152
+ <details><summary>Click to see the direct usage in Transformers</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Downstream Usage (Sentence Transformers)
159
+
160
+ You can finetune this model on your own dataset.
161
+
162
+ <details><summary>Click to expand</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Out-of-Scope Use
169
+
170
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
171
+ -->
172
+
173
+ ## Evaluation
174
+
175
+ ### Metrics
176
+
177
+ #### Cross Encoder Reranking
178
+
179
+ * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
180
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
181
+ ```json
182
+ {
183
+ "at_k": 10,
184
+ "always_rerank_positives": true
185
+ }
186
+ ```
187
+
188
+ | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
189
+ |:------------|:---------------------|:---------------------|:---------------------|
190
+ | map | 0.4793 (-0.0103) | 0.3262 (+0.0652) | 0.5706 (+0.1510) |
191
+ | mrr@10 | 0.4667 (-0.0108) | 0.5391 (+0.0393) | 0.5727 (+0.1460) |
192
+ | **ndcg@10** | **0.5367 (-0.0038)** | **0.3374 (+0.0124)** | **0.6188 (+0.1182)** |
193
+
194
+ #### Cross Encoder Nano BEIR
195
+
196
+ * Dataset: `NanoBEIR_R100_mean`
197
+ * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
198
+ ```json
199
+ {
200
+ "dataset_names": [
201
+ "msmarco",
202
+ "nfcorpus",
203
+ "nq"
204
+ ],
205
+ "rerank_k": 100,
206
+ "at_k": 10,
207
+ "always_rerank_positives": true
208
+ }
209
+ ```
210
+
211
+ | Metric | Value |
212
+ |:------------|:---------------------|
213
+ | map | 0.4587 (+0.0686) |
214
+ | mrr@10 | 0.5262 (+0.0582) |
215
+ | **ndcg@10** | **0.4976 (+0.0423)** |
216
+
217
+ <!--
218
+ ## Bias, Risks and Limitations
219
+
220
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
221
+ -->
222
+
223
+ <!--
224
+ ### Recommendations
225
+
226
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
227
+ -->
228
+
229
+ ## Training Details
230
+
231
+ ### Training Dataset
232
+
233
+ #### ms_marco
234
+
235
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
236
+ * Size: 78,704 training samples
237
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
238
+ * Approximate statistics based on the first 1000 samples:
239
+ | | query | docs | labels |
240
+ |:--------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
241
+ | type | string | list | list |
242
+ | details | <ul><li>min: 11 characters</li><li>mean: 33.21 characters</li><li>max: 83 characters</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 2 elements</li><li>mean: 6.00 elements</li><li>max: 10 elements</li></ul> |
243
+ * Samples:
244
+ | query | docs | labels |
245
+ |:----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
246
+ | <code>what is dubbin made of</code> | <code>["A recipe for Dubbin. One of the disadvantages of living out in the sticks is that when and idea or urge pops into your head and you need to purchase something to complete it, you need to be patient. I had a bit of a browse on tinternet to find out if you could make it. turns out it is made from tallow, beeswax and fish or mink oil. Found a website where they make their own and got the recipe, tweaked it a bit and Bob's your uncle, got it made, Go Mel !!", 'I have successfully made my own Dubbin: I rendered sheep fat for the tallow (beautiful white stuff-also good for cooking and preparing cast iron cookware), and then I added Beeswax and Neatsfoot oil and a few other extras. 1 DUBBIN Can be used over any non-sealing finish, such as spirit dyes and water based dyes as well as water based inks. 2 DUBBIN allows leather to become supple without loosing its shape-it helps the leather to stay alive and always as beautiful as new.', "Dubbin is made from tallow, natural wax and OIL. The wax...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
247
+ | <code>is chromogranin a a tumor marker</code> | <code>['Chromogranin A (CGA) is a protein found in and released from neuroendocrine cells. The Chromogranin A test is used as a tumor marker. It may be ordered in combination with or in place of serotonin to help as an aid to diagnose carcinoid syndrome. Typical carcinoid symptoms include: 1 Flushing. 2 Diarrhea. 3 Abdominal pain. 4 Wheezing. 5 Valvular heart disease. ', 'Chromogranin A. Chromogranins are a family of glycoproteins with dense-core secretory vesicles that are found in neuronal and endocrine tissues. 3 Despite certain limitations, CgA is currently the most useful circulating marker for carcinoid tumors and PNET 5 and is elevated in 60% to 100% of NET. 4.', '* [email protected] Abstract: Evaluation of Serum Chromogranin A as a Useful Tumor Marker for Diagnosis of Hepatocellular Carcinoma. Journal of American Science 2011; 7(1):999-1007]. (ISSN: 1545-1003). http://www.americanscience.org. ', 'Chromogranin A (CgA) is an acidic glycoprotein expressed in the secretory gran...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
248
+ | <code>what is an MRA</code> | <code>['Magnetic Resonance Angiogram (MRA). Guide. A magnetic resonance angiogram (MRA) is a type of magnetic resonance imaging (MRI) scan that uses a magnetic field and pulses of radio wave energy to provide pictures of blood vessels inside the body.', 'Why It Is Done. A magnetic resonance angiogram (MRA) is done to look for: 1 A bulge (aneurysm), clot, or the buildup of fat and calcium deposits (stenosis caused by plaque) in the blood vessels leading to the brain. 2 An aneurysm or tear (dissection) in the aorta, which carries blood from the heart to the rest of the body.', 'MRA: The magnetic resonance angiogram, or MRA, is a noninvasive test that has demonstrated usefulness in defining the anatomy of blood vessels of certain size in the head and neck. MRA serves as a complement to traditional MRI scanning in evaluation of the brain and neck.', '2. MRA. An MRA is a troglodyte that writes “women’s rights --- ROFLOL!“ and “a woman is the useless skin around the vagina” on Urban Dictionary. ...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
249
+ * Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
250
+ ```json
251
+ {
252
+ "lambda_weight": "sentence_transformers.cross_encoder.losses.ListMLELoss.ListMLELambdaWeight",
253
+ "activation_fct": "torch.nn.modules.activation.Tanh",
254
+ "mini_batch_size": 16,
255
+ "respect_input_order": true
256
+ }
257
+ ```
258
+
259
+ ### Evaluation Dataset
260
+
261
+ #### ms_marco
262
+
263
+ * Dataset: [ms_marco](https://huggingface.co/datasets/microsoft/ms_marco) at [a47ee7a](https://huggingface.co/datasets/microsoft/ms_marco/tree/a47ee7aae8d7d466ba15f9f0bfac3b3681087b3a)
264
+ * Size: 1,000 evaluation samples
265
+ * Columns: <code>query</code>, <code>docs</code>, and <code>labels</code>
266
+ * Approximate statistics based on the first 1000 samples:
267
+ | | query | docs | labels |
268
+ |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
269
+ | type | string | list | list |
270
+ | details | <ul><li>min: 11 characters</li><li>mean: 33.85 characters</li><li>max: 109 characters</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> | <ul><li>min: 3 elements</li><li>mean: 6.50 elements</li><li>max: 10 elements</li></ul> |
271
+ * Samples:
272
+ | query | docs | labels |
273
+ |:----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
274
+ | <code>what is an xc mountain bike</code> | <code>['A cross-country mountain biker on a trail in Utah. Cross-country (XC) cycling is the most common discipline of mountain biking. Cross-country cycling became an Olympic sport in 1996 and is the only form of mountain biking practiced at the Olympics. Cross-country bicycles are some of the lightest mountain bikes, typically between 7 and 16 kilograms (15 and 35 lb). They usually feature suspension forks in front and sometimes have suspension in the rear', 'All Mountain, or Enduro bikes, are very similar to XC Trail bikes, but will have stronger frames, and a bit more travel in the suspension. Most of these bike will be in the full suspension category, and will have around 140-160 mm travel in them. The cold hard reality of modern mountain biking is that there as many bike types as there are riding disciplines. For people who are really into riding, and for whom riding is a way of life, it really isn’t uncommon for them to own 2 or 3 different types of mountain bike.', "Posts. 12. XC cou...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
275
+ | <code>when did colorado become a state</code> | <code>["Colorado Became a State August 1, 1876. The 1846-1848 war between Mexico and the United States ended in the Treaty of Guadalupe Hidalgo (1848). The impetus for the organization of the Colorado territory was the discovery of gold. On 28 February 1861, the U.S. government organized the Territory of Colorado. (Colorado City and Golden served as the territory's capital, before Denver was declared the capital in 1867.). Colorado became a state on 1 August 1876. Due to the expansion of the railroads across the plains and into the mountains, and the subsequent increase in economic linkages, the state's population quickly grew", "The impetus for the organization of the Colorado territory was the discovery of gold. On 28 February 1861, the U.S. government organized the Territory of Colorado. (Colorado City and Golden served as the territory's capital, before Denver was declared the capital in 1867.) Colorado became a state on 1 August 1876.", 'It took sixteen years, four Colorado votes, three...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
276
+ | <code>how much for roth ira value</code> | <code>['For details, see more on Roth IRA conversions). For 2015, you can contribute the maximum $5,500 to a Roth IRA ($6,500 if you are age 50 or older by the end of the year) if you are single or the single head of a household and your modified adjusted gross income (MAGI) is less than $164,000.', 'Calculate your after tax deposit amount and how much you will save in a Roth IRA. Add this retirement calculator to your site to keep your customers coming back. This Roth IRA calculator will integrate right into your existing website automatically.', 'The current balance of your Roth IRA. Annual contribution. The amount you will contribute to your Roth IRA each year. This calculator assumes that you make your contribution at the beginning of each year. The maximum annual IRA contribution of $5,500 is unchanged for 2015. It is important to note that this is the maximum total contributed to all of your IRA accounts.', 'Contribution Limits. As of 2013 you can contribute up to $5,500 each year to y...</code> | <code>[1, 0, 0, 0, 0, ...]</code> |
277
+ * Loss: [<code>ListMLELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#listmleloss) with these parameters:
278
+ ```json
279
+ {
280
+ "lambda_weight": "sentence_transformers.cross_encoder.losses.ListMLELoss.ListMLELambdaWeight",
281
+ "activation_fct": "torch.nn.modules.activation.Tanh",
282
+ "mini_batch_size": 16,
283
+ "respect_input_order": true
284
+ }
285
+ ```
286
+
287
+ ### Training Hyperparameters
288
+ #### Non-Default Hyperparameters
289
+
290
+ - `eval_strategy`: steps
291
+ - `per_device_train_batch_size`: 16
292
+ - `per_device_eval_batch_size`: 16
293
+ - `learning_rate`: 2e-05
294
+ - `num_train_epochs`: 1
295
+ - `warmup_ratio`: 0.1
296
+ - `seed`: 12
297
+ - `bf16`: True
298
+ - `load_best_model_at_end`: True
299
+
300
+ #### All Hyperparameters
301
+ <details><summary>Click to expand</summary>
302
+
303
+ - `overwrite_output_dir`: False
304
+ - `do_predict`: False
305
+ - `eval_strategy`: steps
306
+ - `prediction_loss_only`: True
307
+ - `per_device_train_batch_size`: 16
308
+ - `per_device_eval_batch_size`: 16
309
+ - `per_gpu_train_batch_size`: None
310
+ - `per_gpu_eval_batch_size`: None
311
+ - `gradient_accumulation_steps`: 1
312
+ - `eval_accumulation_steps`: None
313
+ - `torch_empty_cache_steps`: None
314
+ - `learning_rate`: 2e-05
315
+ - `weight_decay`: 0.0
316
+ - `adam_beta1`: 0.9
317
+ - `adam_beta2`: 0.999
318
+ - `adam_epsilon`: 1e-08
319
+ - `max_grad_norm`: 1.0
320
+ - `num_train_epochs`: 1
321
+ - `max_steps`: -1
322
+ - `lr_scheduler_type`: linear
323
+ - `lr_scheduler_kwargs`: {}
324
+ - `warmup_ratio`: 0.1
325
+ - `warmup_steps`: 0
326
+ - `log_level`: passive
327
+ - `log_level_replica`: warning
328
+ - `log_on_each_node`: True
329
+ - `logging_nan_inf_filter`: True
330
+ - `save_safetensors`: True
331
+ - `save_on_each_node`: False
332
+ - `save_only_model`: False
333
+ - `restore_callback_states_from_checkpoint`: False
334
+ - `no_cuda`: False
335
+ - `use_cpu`: False
336
+ - `use_mps_device`: False
337
+ - `seed`: 12
338
+ - `data_seed`: None
339
+ - `jit_mode_eval`: False
340
+ - `use_ipex`: False
341
+ - `bf16`: True
342
+ - `fp16`: False
343
+ - `fp16_opt_level`: O1
344
+ - `half_precision_backend`: auto
345
+ - `bf16_full_eval`: False
346
+ - `fp16_full_eval`: False
347
+ - `tf32`: None
348
+ - `local_rank`: 0
349
+ - `ddp_backend`: None
350
+ - `tpu_num_cores`: None
351
+ - `tpu_metrics_debug`: False
352
+ - `debug`: []
353
+ - `dataloader_drop_last`: False
354
+ - `dataloader_num_workers`: 0
355
+ - `dataloader_prefetch_factor`: None
356
+ - `past_index`: -1
357
+ - `disable_tqdm`: False
358
+ - `remove_unused_columns`: True
359
+ - `label_names`: None
360
+ - `load_best_model_at_end`: True
361
+ - `ignore_data_skip`: False
362
+ - `fsdp`: []
363
+ - `fsdp_min_num_params`: 0
364
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
365
+ - `fsdp_transformer_layer_cls_to_wrap`: None
366
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
367
+ - `deepspeed`: None
368
+ - `label_smoothing_factor`: 0.0
369
+ - `optim`: adamw_torch
370
+ - `optim_args`: None
371
+ - `adafactor`: False
372
+ - `group_by_length`: False
373
+ - `length_column_name`: length
374
+ - `ddp_find_unused_parameters`: None
375
+ - `ddp_bucket_cap_mb`: None
376
+ - `ddp_broadcast_buffers`: False
377
+ - `dataloader_pin_memory`: True
378
+ - `dataloader_persistent_workers`: False
379
+ - `skip_memory_metrics`: True
380
+ - `use_legacy_prediction_loop`: False
381
+ - `push_to_hub`: False
382
+ - `resume_from_checkpoint`: None
383
+ - `hub_model_id`: None
384
+ - `hub_strategy`: every_save
385
+ - `hub_private_repo`: None
386
+ - `hub_always_push`: False
387
+ - `gradient_checkpointing`: False
388
+ - `gradient_checkpointing_kwargs`: None
389
+ - `include_inputs_for_metrics`: False
390
+ - `include_for_metrics`: []
391
+ - `eval_do_concat_batches`: True
392
+ - `fp16_backend`: auto
393
+ - `push_to_hub_model_id`: None
394
+ - `push_to_hub_organization`: None
395
+ - `mp_parameters`:
396
+ - `auto_find_batch_size`: False
397
+ - `full_determinism`: False
398
+ - `torchdynamo`: None
399
+ - `ray_scope`: last
400
+ - `ddp_timeout`: 1800
401
+ - `torch_compile`: False
402
+ - `torch_compile_backend`: None
403
+ - `torch_compile_mode`: None
404
+ - `dispatch_batches`: None
405
+ - `split_batches`: None
406
+ - `include_tokens_per_second`: False
407
+ - `include_num_input_tokens_seen`: False
408
+ - `neftune_noise_alpha`: None
409
+ - `optim_target_modules`: None
410
+ - `batch_eval_metrics`: False
411
+ - `eval_on_start`: False
412
+ - `use_liger_kernel`: False
413
+ - `eval_use_gather_object`: False
414
+ - `average_tokens_across_devices`: False
415
+ - `prompts`: None
416
+ - `batch_sampler`: batch_sampler
417
+ - `multi_dataset_batch_sampler`: proportional
418
+
419
+ </details>
420
+
421
+ ### Training Logs
422
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
423
+ |:----------:|:--------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
424
+ | -1 | -1 | - | - | 0.0669 (-0.4735) | 0.2492 (-0.0759) | 0.0338 (-0.4669) | 0.1166 (-0.3387) |
425
+ | 0.0002 | 1 | 1172.8087 | - | - | - | - | - |
426
+ | 0.0508 | 250 | 927.3161 | - | - | - | - | - |
427
+ | 0.1016 | 500 | 922.4274 | 900.2140 | 0.1417 (-0.3987) | 0.2186 (-0.1064) | 0.3470 (-0.1536) | 0.2358 (-0.2196) |
428
+ | 0.1525 | 750 | 887.1161 | - | - | - | - | - |
429
+ | 0.2033 | 1000 | 883.4986 | 890.5686 | 0.3210 (-0.2194) | 0.3210 (-0.0040) | 0.5384 (+0.0377) | 0.3935 (-0.0619) |
430
+ | 0.2541 | 1250 | 893.9945 | - | - | - | - | - |
431
+ | 0.3049 | 1500 | 882.1399 | 886.1149 | 0.4382 (-0.1023) | 0.3402 (+0.0151) | 0.6326 (+0.1319) | 0.4703 (+0.0149) |
432
+ | 0.3558 | 1750 | 893.6919 | - | - | - | - | - |
433
+ | 0.4066 | 2000 | 860.9903 | 883.2151 | 0.4323 (-0.1081) | 0.3507 (+0.0256) | 0.5919 (+0.0913) | 0.4583 (+0.0029) |
434
+ | 0.4574 | 2250 | 864.9159 | - | - | - | - | - |
435
+ | 0.5082 | 2500 | 879.1681 | 880.0072 | 0.4801 (-0.0603) | 0.3309 (+0.0058) | 0.5657 (+0.0651) | 0.4589 (+0.0035) |
436
+ | 0.5591 | 2750 | 871.9338 | - | - | - | - | - |
437
+ | **0.6099** | **3000** | **876.5861** | **876.0945** | **0.5367 (-0.0038)** | **0.3374 (+0.0124)** | **0.6188 (+0.1182)** | **0.4976 (+0.0423)** |
438
+ | 0.6607 | 3250 | 869.3333 | - | - | - | - | - |
439
+ | 0.7115 | 3500 | 877.5201 | 878.9338 | 0.4719 (-0.0685) | 0.3416 (+0.0166) | 0.5921 (+0.0914) | 0.4685 (+0.0132) |
440
+ | 0.7624 | 3750 | 874.4561 | - | - | - | - | - |
441
+ | 0.8132 | 4000 | 869.9234 | 875.8646 | 0.5169 (-0.0236) | 0.3306 (+0.0055) | 0.5979 (+0.0973) | 0.4818 (+0.0264) |
442
+ | 0.8640 | 4250 | 876.4072 | - | - | - | - | - |
443
+ | 0.9148 | 4500 | 873.4344 | 875.6801 | 0.5085 (-0.0319) | 0.3286 (+0.0036) | 0.6254 (+0.1248) | 0.4875 (+0.0322) |
444
+ | 0.9656 | 4750 | 858.7703 | - | - | - | - | - |
445
+ | -1 | -1 | - | - | 0.5367 (-0.0038) | 0.3374 (+0.0124) | 0.6188 (+0.1182) | 0.4976 (+0.0423) |
446
+
447
+ * The bold row denotes the saved checkpoint.
448
+
449
+ ### Framework Versions
450
+ - Python: 3.11.11
451
+ - Sentence Transformers: 3.5.0.dev0
452
+ - Transformers: 4.49.0
453
+ - PyTorch: 2.6.0+cu124
454
+ - Accelerate: 1.5.2
455
+ - Datasets: 3.4.0
456
+ - Tokenizers: 0.21.1
457
+
458
+ ## Citation
459
+
460
+ ### BibTeX
461
+
462
+ #### Sentence Transformers
463
+ ```bibtex
464
+ @inproceedings{reimers-2019-sentence-bert,
465
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
466
+ author = "Reimers, Nils and Gurevych, Iryna",
467
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
468
+ month = "11",
469
+ year = "2019",
470
+ publisher = "Association for Computational Linguistics",
471
+ url = "https://arxiv.org/abs/1908.10084",
472
+ }
473
+ ```
474
+
475
+ #### ListMLELoss
476
+ ```bibtex
477
+ @inproceedings{lan2013position,
478
+ title={Position-aware ListMLE: a sequential learning process for ranking},
479
+ author={Lan, Yanyan and Guo, Jiafeng and Cheng, Xueqi and Liu, Tie-Yan},
480
+ booktitle={Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence},
481
+ pages={333--342},
482
+ year={2013}
483
+ }
484
+ ```
485
+
486
+ <!--
487
+ ## Glossary
488
+
489
+ *Clearly define terms in order to be accessible across audiences.*
490
+ -->
491
+
492
+ <!--
493
+ ## Model Card Authors
494
+
495
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
496
+ -->
497
+
498
+ <!--
499
+ ## Model Card Contact
500
+
501
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
502
+ -->
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/MiniLM-L12-H384-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "sentence_transformers": {
27
+ "activation_fn": "torch.nn.modules.activation.Sigmoid"
28
+ },
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.49.0",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 30522
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2854033aefb71127095418dea3156cc6549023b48bde94c2e39abd73611e4ac9
3
+ size 133464836
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff