Bagel-Zebra-CoT / train /pretrain_unified_navit.py
yinbq's picture
Add files using upload-large-folder tool
8834223 verified
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import functools
import os
import shutil
import wandb
import yaml
from copy import deepcopy
from dataclasses import dataclass, field
from time import time
import torch
import torch.distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl,
apply_activation_checkpointing,
checkpoint_wrapper,
)
from torch.utils.data import DataLoader
from transformers import HfArgumentParser, set_seed
from transformers.optimization import (
get_constant_schedule_with_warmup,
get_cosine_with_min_lr_schedule_with_warmup,
)
from data.dataset_base import DataConfig, PackedDataset, collate_wrapper
from data.data_utils import add_special_tokens
from modeling.autoencoder import load_ae
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from train.train_utils import create_logger, get_latest_ckpt
from train.fsdp_utils import (
FSDPCheckpoint, FSDPConfig, grad_checkpoint_check_fn, fsdp_wrapper,
fsdp_ema_setup, fsdp_ema_update,
)
@dataclass
class ModelArguments:
model_path: str = field(
default="hf/BAGEL-7B-MoT",
metadata={"help": "Path of the pretrained BAGEL model."}
)
llm_path: str = field(
default="hf/Qwen2.5-0.5B-Instruct/",
metadata={"help": "Path or HuggingFace repo ID of the pretrained Qwen2-style language model."}
)
llm_qk_norm: bool = field(
default=True,
metadata={"help": "Enable QK LayerNorm (qk_norm) inside the attention blocks."}
)
tie_word_embeddings: bool = field(
default=False,
metadata={"help": "Share input and output word embeddings (tied embeddings)."}
)
layer_module: str = field(
default="Qwen2MoTDecoderLayer",
metadata={"help": "Python class name of the decoder layer to instantiate."}
)
vae_path: str = field(
default="flux/vae/ae.safetensors",
metadata={"help": "Path to the pretrained VAE checkpoint for latent-space image generation."}
)
vit_path: str = field(
default="hf/siglip-so400m-14-980-flash-attn2-navit/",
metadata={"help": "Path or repo ID of the SigLIP Vision Transformer used for image understanding."}
)
max_latent_size: int = field(
default=32,
metadata={"help": "Maximum latent grid size (patches per side) for the VAE latent tensor."}
)
latent_patch_size: int = field(
default=2,
metadata={"help": "Spatial size (in VAE pixels) covered by each latent patch."}
)
vit_patch_size: int = field(
default=14,
metadata={"help": "Patch size (pixels) for the Vision Transformer encoder."}
)
vit_max_num_patch_per_side: int = field(
default=70,
metadata={"help": "Maximum number of ViT patches along one image side after cropping / resize."}
)
connector_act: str = field(
default="gelu_pytorch_tanh",
metadata={"help": "Activation function used in the latent-to-text connector MLP."}
)
interpolate_pos: bool = field(
default=False,
metadata={"help": "Interpolate positional embeddings when image resolution differs from pre-training."}
)
vit_select_layer: int = field(
default=-2,
metadata={"help": "Which hidden layer of the ViT to take as the visual feature (negative = from the end)."}
)
vit_rope: bool = field(
default=False,
metadata={"help": "Replace ViT positional encodings with RoPE."}
)
text_cond_dropout_prob: float = field(
default=0.1,
metadata={"help": "Probability of dropping text embeddings during training."}
)
vae_cond_dropout_prob: float = field(
default=0.3,
metadata={"help": "Probability of dropping VAE latent inputs during training."}
)
vit_cond_dropout_prob: float = field(
default=0.3,
metadata={"help": "Probability of dropping ViT visual features during training."}
)
@dataclass
class DataArguments:
dataset_config_file: str = field(
default="data/configs/example.yaml",
metadata={"help": "YAML file specifying dataset groups, weights, and preprocessing rules."}
)
prefetch_factor: int = field(
default=2,
metadata={"help": "How many batches each DataLoader worker pre-loads in advance."}
)
num_workers: int = field(
default=4,
metadata={"help": "Number of background workers for the PyTorch DataLoader."}
)
max_num_tokens_per_sample: int = field(
default=16384,
metadata={"help": "Maximum tokens allowed in one raw sample; longer samples are skipped."}
)
max_num_tokens: int = field(
default=36864,
metadata={"help": "Hard limit on tokens in a packed batch; flush if adding a sample would exceed it."}
)
prefer_buffer_before: int = field(
default=16384,
metadata={"help": "While batch length is below this, pop from the overflow buffer before new sampling."}
)
max_buffer_size: int = field(
default=50,
metadata={"help": "Maximum number of oversized samples kept in the overflow buffer."}
)
data_seed: int = field(
default=42,
metadata={"help": "Seed used when shuffling / sampling data shards to ensure reproducibility."}
)
@dataclass
class TrainingArguments:
# --- modality switches ---
visual_gen: bool = field(
default=True,
metadata={"help": "Train image generation branch."}
)
visual_und: bool = field(
default=True,
metadata={"help": "Train image understanding branch."}
)
# --- bookkeeping & logging ---
results_dir: str = field(
default="results",
metadata={"help": "Root directory for logs."}
)
checkpoint_dir: str = field(
default="results/checkpoints",
metadata={"help": "Root directory for model checkpoints."}
)
wandb_project: str = field(
default="bagel",
metadata={"help": "Weights & Biases project name."}
)
wandb_name: str = field(
default="run",
metadata={"help": "Name shown in the Weights & Biases UI for this run."}
)
wandb_runid: str = field(
default="0",
metadata={"help": "Unique identifier to resume a previous W&B run, if desired."}
)
wandb_resume: str = field(
default="allow",
metadata={"help": "W&B resume mode: 'allow', 'must', or 'never'."}
)
wandb_offline: bool = field(
default=True,
metadata={"help": "Run W&B in offline mode (logs locally, sync later)."}
)
# --- reproducibility & resume ---
global_seed: int = field(
default=4396,
metadata={"help": "Base random seed; actual seed is offset by rank for DDP."}
)
auto_resume: bool = field(
default=False,
metadata={"help": "Automatically pick up the latest checkpoint found in checkpoint_dir."}
)
resume_from: str = field(
default=None,
metadata={"help": "Explicit checkpoint path to resume from (overrides auto_resume)." }
)
resume_model_only: bool = field(
default=False,
metadata={"help": "Load only model weights, ignoring optimizer/scheduler states."}
)
finetune_from_ema: bool = field(
default=False,
metadata={"help": "When resume_model_only=True, load the EMA (exponential moving average) weights instead of raw weights."}
)
finetune_from_hf: bool = field(
default=False,
metadata={"help": "Whether finetune from HugginFace model."}
)
# --- reporting frequency ---
log_every: int = field(
default=10,
metadata={"help": "Print / log every N training steps."}
)
save_every: int = field(
default=2000,
metadata={"help": "Save a checkpoint every N training steps."}
)
max_checkpoints: int = field(
default=3,
metadata={"help": "Maximum number of checkpoints to keep. Older checkpoints will be deleted."}
)
total_steps: int = field(
default=20000,
metadata={"help": "Total number of optimizer steps to train for."}
)
# --- optimization & scheduler ---
warmup_steps: int = field(
default=2000,
metadata={"help": "Linear warm-up steps before applying the main LR schedule."}
)
lr_scheduler: str = field(
default="constant",
metadata={"help": "Type of LR schedule: 'constant' or 'cosine'."}
)
lr: float = field(
default=1e-4,
metadata={"help": "Peak learning rate after warm-up."}
)
min_lr: float = field(
default=1e-7,
metadata={"help": "Minimum learning rate for cosine schedule (ignored for constant)."}
)
beta1: float = field(
default=0.9,
metadata={"help": "AdamW β₁ coefficient."}
)
beta2: float = field(
default=0.95,
metadata={"help": "AdamW β₂ coefficient."}
)
eps: float = field(
default=1e-8,
metadata={"help": "AdamW ε for numerical stability."}
)
ema: float = field(
default=0.9999,
metadata={"help": "Decay rate for the exponential moving average of model weights."}
)
max_grad_norm: int = field(
default=1.0,
metadata={"help": "Gradient clipping threshold (L2 norm)."}
)
timestep_shift: float = field(
default=1.0,
metadata={"help": "Shift applied to diffusion timestep indices (for latent prediction)."}
)
mse_weight: float = field(
default=1.0,
metadata={"help": "Scaling factor for the image-reconstruction MSE loss term."}
)
ce_weight: float = field(
default=1.0,
metadata={"help": "Scaling factor for the language cross-entropy loss term."}
)
ce_loss_reweighting: bool = field(
default=False,
metadata={"help": "Reweight CE loss by token importance (provided via ce_loss_weights)."}
)
expected_num_tokens: int = field(
default=32768,
metadata={"help": "Soft target token count; yield the batch once it reaches or exceeds this size."}
)
# --- distributed training / FSDP ---
num_replicate: int = field(
default=1,
metadata={"help": "Number of model replicas per GPU rank for tensor parallelism."}
)
num_shard: int = field(
default=8,
metadata={"help": "Number of parameter shards when using FSDP HYBRID_SHARD."}
)
sharding_strategy: str = field(
default="HYBRID_SHARD",
metadata={"help": "FSDP sharding strategy: FULL_SHARD, SHARD_GRAD_OP, HYBRID_SHARD, etc."}
)
backward_prefetch: str = field(
default="BACKWARD_PRE",
metadata={"help": "FSDP backward prefetch strategy (BACKWARD_PRE or NO_PREFETCH)."}
)
cpu_offload: bool = field(
default=False,
metadata={"help": "Enable FSDP parameter offload to CPU."}
)
# --- module freezing ---
freeze_llm: bool = field(
default=False,
metadata={"help": "Keep language-model weights fixed (no gradient updates)."}
)
freeze_vit: bool = field(
default=False,
metadata={"help": "Keep ViT weights fixed during training."}
)
freeze_vae: bool = field(
default=True,
metadata={"help": "Keep VAE weights fixed; only predict latents, don't fine-tune encoder/decoder."}
)
freeze_und: bool = field(
default=False,
metadata={"help": "Freeze the visual understanding connector layers."}
)
copy_init_moe: bool = field(
default=True,
metadata={"help": "Duplicate initial MoE experts so each has identical initialisation."}
)
use_flex: bool = field(
default=False,
metadata={"help": "Enable FLEX (flash-ext friendly) packing algorithm for sequence data."}
)
def main():
assert torch.cuda.is_available()
dist.init_process_group("nccl")
device = dist.get_rank() % torch.cuda.device_count()
torch.cuda.set_device(device)
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging:
if dist.get_rank() == 0:
os.makedirs(training_args.results_dir, exist_ok=True)
os.makedirs(training_args.checkpoint_dir, exist_ok=True)
logger = create_logger(training_args.results_dir, dist.get_rank())
wandb.init(
project=training_args.wandb_project,
id=f"{training_args.wandb_name}-run{training_args.wandb_runid}",
name=training_args.wandb_name,
resume=training_args.wandb_resume,
mode="offline" if training_args.wandb_offline else "online"
)
wandb.config.update(training_args, allow_val_change=True)
wandb.config.update(model_args, allow_val_change=True)
wandb.config.update(data_args, allow_val_change=True)
else:
logger = create_logger(None, dist.get_rank())
dist.barrier()
logger.info(f'Training arguments {training_args}')
logger.info(f'Model arguments {model_args}')
logger.info(f'Data arguments {data_args}')
# prepare auto resume logic:
if training_args.auto_resume:
resume_from = get_latest_ckpt(training_args.checkpoint_dir)
if resume_from is None:
resume_from = training_args.resume_from
resume_model_only = training_args.resume_model_only
if resume_model_only:
finetune_from_ema = training_args.finetune_from_ema
else:
finetune_from_ema = False
else:
resume_model_only = False
finetune_from_ema = False
else:
resume_from = training_args.resume_from
resume_model_only = training_args.resume_model_only
if resume_model_only:
finetune_from_ema = training_args.finetune_from_ema
else:
finetune_from_ema = False
# Set seed:
seed = training_args.global_seed * dist.get_world_size() + dist.get_rank()
set_seed(seed)
# Setup model:
if training_args.finetune_from_hf:
llm_config = Qwen2Config.from_json_file(os.path.join(model_args.model_path, "llm_config.json"))
else:
llm_config = Qwen2Config.from_pretrained(model_args.llm_path)
llm_config.layer_module = model_args.layer_module
llm_config.qk_norm = model_args.llm_qk_norm
llm_config.tie_word_embeddings = model_args.tie_word_embeddings
llm_config.freeze_und = training_args.freeze_und
if training_args.finetune_from_hf:
language_model = Qwen2ForCausalLM(llm_config)
else:
language_model = Qwen2ForCausalLM.from_pretrained(model_args.llm_path, config=llm_config)
if training_args.copy_init_moe:
language_model.init_moe()
if training_args.visual_und:
if training_args.finetune_from_hf:
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_args.model_path, "vit_config.json"))
else:
vit_config = SiglipVisionConfig.from_pretrained(model_args.vit_path)
vit_config.num_hidden_layers = vit_config.num_hidden_layers + 1 + model_args.vit_select_layer
vit_config.rope = model_args.vit_rope
if training_args.finetune_from_hf:
vit_model = SiglipVisionModel(vit_config)
else:
vit_model = SiglipVisionModel.from_pretrained(model_args.vit_path, config=vit_config)
if training_args.visual_gen:
vae_model, vae_config = load_ae(
local_path=os.path.join(model_args.model_path, "ae.safetensors")
if training_args.finetune_from_hf else model_args.vae_path
)
config = BagelConfig(
visual_gen=training_args.visual_gen,
visual_und=training_args.visual_und,
llm_config=llm_config,
vit_config=vit_config if training_args.visual_und else None,
vae_config=vae_config if training_args.visual_gen else None,
latent_patch_size=model_args.latent_patch_size,
max_latent_size=model_args.max_latent_size,
vit_max_num_patch_per_side=model_args.vit_max_num_patch_per_side,
connector_act=model_args.connector_act,
interpolate_pos=model_args.interpolate_pos,
timestep_shift=training_args.timestep_shift,
)
model = Bagel(
language_model,
vit_model if training_args.visual_und else None,
config
)
if training_args.visual_und:
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
# Setup tokenizer for model:
tokenizer = Qwen2Tokenizer.from_pretrained(model_args.model_path if training_args.finetune_from_hf else model_args.llm_path)
tokenizer, new_token_ids, num_new_tokens = add_special_tokens(tokenizer)
if num_new_tokens > 0:
model.language_model.resize_token_embeddings(len(tokenizer))
model.config.llm_config.vocab_size = len(tokenizer)
model.language_model.config.vocab_size = len(tokenizer)
# maybe freeze something:
if training_args.freeze_vae and training_args.visual_gen:
for param in vae_model.parameters():
param.requires_grad = False
if training_args.freeze_llm:
model.language_model.eval()
for param in model.language_model.parameters():
param.requires_grad = False
if training_args.freeze_vit and training_args.visual_und:
model.vit_model.eval()
for param in model.vit_model.parameters():
param.requires_grad = False
# Setup FSDP and load pretrained model:
fsdp_config = FSDPConfig(
sharding_strategy=training_args.sharding_strategy,
backward_prefetch=training_args.backward_prefetch,
cpu_offload=training_args.cpu_offload,
num_replicate=training_args.num_replicate,
num_shard=training_args.num_shard,
)
ema_model = deepcopy(model)
model, ema_model = FSDPCheckpoint.try_load_ckpt(
resume_from, logger, model, ema_model, resume_from_ema=finetune_from_ema
)
ema_model = fsdp_ema_setup(ema_model, fsdp_config)
fsdp_model = fsdp_wrapper(model, fsdp_config)
apply_activation_checkpointing(
fsdp_model,
checkpoint_wrapper_fn=functools.partial(
checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT
),
check_fn=grad_checkpoint_check_fn
)
if dist.get_rank() == 0:
print(fsdp_model)
for name, param in model.named_parameters():
print(name, param.requires_grad)
# Setup optimizer and scheduler
optimizer = torch.optim.AdamW(
fsdp_model.parameters(),
lr=training_args.lr,
betas=(training_args.beta1, training_args.beta2),
eps=training_args.eps,
weight_decay=0
)
if training_args.lr_scheduler == 'cosine':
scheduler = get_cosine_with_min_lr_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=training_args.warmup_steps,
num_training_steps=training_args.total_steps,
min_lr=training_args.min_lr,
)
elif training_args.lr_scheduler == 'constant':
scheduler = get_constant_schedule_with_warmup(
optimizer=optimizer, num_warmup_steps=training_args.warmup_steps
)
else:
raise ValueError
# maybe resume optimizer, scheduler, and train_steps
if resume_model_only:
train_step = 0
data_status = None
else:
optimizer, scheduler, train_step, data_status = FSDPCheckpoint.try_load_train_state(
resume_from, optimizer, scheduler, fsdp_config,
)
# Setup packed dataloader
with open(data_args.dataset_config_file, "r") as stream:
dataset_meta = yaml.safe_load(stream)
print(dataset_meta)
dataset_config = DataConfig(grouped_datasets=dataset_meta)
if training_args.visual_und:
dataset_config.vit_patch_size = model_args.vit_patch_size
dataset_config.max_num_patch_per_side = model_args.vit_max_num_patch_per_side
if training_args.visual_gen:
vae_image_downsample = model_args.latent_patch_size * vae_config.downsample
dataset_config.vae_image_downsample = vae_image_downsample
dataset_config.max_latent_size = model_args.max_latent_size
dataset_config.text_cond_dropout_prob = model_args.text_cond_dropout_prob
dataset_config.vae_cond_dropout_prob = model_args.vae_cond_dropout_prob
dataset_config.vit_cond_dropout_prob = model_args.vit_cond_dropout_prob
train_dataset = PackedDataset(
dataset_config,
tokenizer=tokenizer,
special_tokens=new_token_ids,
local_rank=dist.get_rank(),
world_size=dist.get_world_size(),
num_workers=data_args.num_workers,
expected_num_tokens=training_args.expected_num_tokens,
max_num_tokens_per_sample=data_args.max_num_tokens_per_sample,
max_num_tokens=data_args.max_num_tokens,
max_buffer_size=data_args.max_buffer_size,
prefer_buffer_before=data_args.prefer_buffer_before,
interpolate_pos=model_args.interpolate_pos,
use_flex=training_args.use_flex,
data_status=data_status,
)
train_dataset.set_epoch(data_args.data_seed)
train_loader = DataLoader(
train_dataset,
batch_size=1, # batch size is 1 packed dataset
num_workers=data_args.num_workers,
pin_memory=True,
collate_fn=collate_wrapper(),
drop_last=True,
prefetch_factor=data_args.prefetch_factor,
)
# Prepare models for training:
if training_args.visual_gen:
vae_model.to(device).eval()
fsdp_model.train()
ema_model.eval()
# train loop
start_time = time()
logger.info(f"Training for {training_args.total_steps} steps, starting at {train_step}...")
for curr_step, data in enumerate(train_loader, start=train_step):
data = data.cuda(device).to_dict()
data_indexes = data.pop('batch_data_indexes', None)
ce_loss_weights = data.pop('ce_loss_weights', None)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
if training_args.visual_gen:
with torch.no_grad():
data['padded_latent'] = vae_model.encode(data.pop('padded_images'))
loss_dict = fsdp_model(**data)
loss = 0
ce = loss_dict["ce"]
if ce is not None:
total_ce_tokens = torch.tensor(len(data['ce_loss_indexes']), device=device)
dist.all_reduce(total_ce_tokens, op=dist.ReduceOp.SUM)
if training_args.ce_loss_reweighting:
ce = ce * ce_loss_weights
total_ce_loss_weights = ce_loss_weights.sum()
dist.all_reduce(total_ce_loss_weights, op=dist.ReduceOp.SUM)
ce = ce.sum() * dist.get_world_size() / total_ce_loss_weights
else:
ce = ce.sum() * dist.get_world_size() / total_ce_tokens
loss_dict["ce"] = ce.detach()
loss = loss + ce * training_args.ce_weight
else:
assert not training_args.visual_und
loss_dict["ce"] = torch.tensor(0, device=device)
total_ce_tokens = torch.tensor(0, device=device)
if training_args.visual_gen:
mse = loss_dict["mse"]
total_mse_tokens = torch.tensor(len(data['mse_loss_indexes']), device=device)
dist.all_reduce(total_mse_tokens, op=dist.ReduceOp.SUM)
mse = mse.mean(dim=-1).sum() * dist.get_world_size() / total_mse_tokens
loss_dict["mse"] = mse.detach()
loss = loss + mse * training_args.mse_weight
else:
assert not training_args.visual_gen
loss_dict["mse"] = torch.tensor(0, device=device)
total_mse_tokens = torch.tensor(0, device=device)
# Skip training step if loss is NaN
if torch.isnan(loss):
logger.warning(f"Step {curr_step}: Loss is NaN, skipping this step")
continue
optimizer.zero_grad()
loss.backward()
total_norm = fsdp_model.clip_grad_norm_(training_args.max_grad_norm)
optimizer.step()
scheduler.step()
fsdp_ema_update(ema_model, fsdp_model, decay=training_args.ema)
# Log loss values:
if curr_step % training_args.log_every == 0:
total_samples = torch.tensor(len(data['sample_lens']), device=device)
dist.all_reduce(total_samples, op=dist.ReduceOp.SUM)
# Measure training speed:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = training_args.log_every / (end_time - start_time)
message = f"(step={curr_step:07d}) "
wandb_log = {}
for key, value in loss_dict.items():
# Reduce loss history over all processes:
avg_loss = torch.tensor(value.item(), device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
message += f"Train Loss {key}: {avg_loss:.4f}, "
wandb_log[key] = avg_loss
message += f"Train Steps/Sec: {steps_per_sec:.2f}, "
logger.info(message)
wandb_log['lr'] = optimizer.param_groups[0]['lr']
wandb_log['total_mse_tokens'] = total_mse_tokens.item()
wandb_log['total_ce_tokens'] = total_ce_tokens.item()
wandb_log['total_norm'] = total_norm.item()
wandb_log['total_samples'] = total_samples.item()
mem_allocated = torch.tensor(torch.cuda.max_memory_allocated() / 1024**2, device=device)
dist.all_reduce(mem_allocated, op=dist.ReduceOp.MAX)
wandb_log['mem_allocated'] = mem_allocated
mem_cache = torch.tensor(torch.cuda.max_memory_reserved() / 1024**2, device=device)
dist.all_reduce(mem_cache, op=dist.ReduceOp.MAX)
wandb_log['mem_cache'] = mem_cache
if dist.get_rank() == 0:
wandb.log(wandb_log, step=curr_step)
start_time = time()
if data_status is None:
data_status = {}
for item in data_indexes:
if item['dataset_name'] not in data_status.keys():
data_status[item['dataset_name']] = {}
data_status[item['dataset_name']][item['worker_id']] = item['data_indexes']
if curr_step > 0 and curr_step % training_args.save_every == 0:
if dist.get_rank() == 0:
gather_list = [None] * dist.get_world_size()
else:
gather_list = None
dist.gather_object(data_status, gather_list, dst=0)
FSDPCheckpoint.fsdp_save_ckpt(
ckpt_dir=training_args.checkpoint_dir,
train_steps=curr_step,
model=fsdp_model,
ema_model=ema_model,
optimizer=optimizer,
scheduler=scheduler,
logger=logger,
fsdp_config=fsdp_config,
data_status=gather_list
)
# Delete old checkpoints (keep at most max_checkpoints)
if dist.get_rank() == 0:
try:
# Get all checkpoint directories
checkpoint_dirs = [d for d in os.listdir(training_args.checkpoint_dir)
if os.path.isdir(os.path.join(training_args.checkpoint_dir, d))
and d.isdigit()]
checkpoint_dirs.sort(key=int) # Sort by step number (oldest first)
logger.info(f"Found {len(checkpoint_dirs)} checkpoint directories: {checkpoint_dirs}")
# Keep at most max_checkpoints, delete the oldest ones
while len(checkpoint_dirs) > training_args.max_checkpoints:
oldest_checkpoint = checkpoint_dirs.pop(0) # Remove oldest from list
old_path = os.path.join(training_args.checkpoint_dir, oldest_checkpoint)
shutil.rmtree(old_path)
logger.info(f"Deleted old checkpoint folder: {old_path}")
logger.info(f"Now keeping {len(checkpoint_dirs)} checkpoints (max: {training_args.max_checkpoints})")
except Exception as e:
logger.warning(f"Failed to delete old checkpoints: {e}")
logger.info("Done!")
if dist.get_rank() == 0:
wandb.finish()
dist.destroy_process_group()
if __name__ == "__main__":
main()