Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: optimum.onnxruntime
|
| 3 |
+
tags:
|
| 4 |
+
- onnx
|
| 5 |
+
- int8
|
| 6 |
+
- quantization
|
| 7 |
+
- embeddings
|
| 8 |
+
- cpu
|
| 9 |
+
pipeline_tag: feature-extraction
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
base_model: ibm-granite/granite-embedding-english-r2
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Granite Embedding English R2 — INT8 (ONNX)
|
| 15 |
+
|
| 16 |
+
This is the **INT8-quantized ONNX version** of [`ibm-granite/granite-embedding-english-r2`](https://huggingface.co/ibm-granite/granite-embedding-english-r2).
|
| 17 |
+
It is optimized to run efficiently on **CPU** using [🤗 Optimum](https://huggingface.co/docs/optimum) with ONNX Runtime.
|
| 18 |
+
|
| 19 |
+
- **Embedding dimension:** 768
|
| 20 |
+
- **Precision:** INT8 (dynamic quantization)
|
| 21 |
+
- **Backend:** ONNX Runtime
|
| 22 |
+
- **Use case:** text embeddings, semantic search, clustering, retrieval
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## 📥 Installation
|
| 27 |
+
|
| 28 |
+
```bash
|
| 29 |
+
pip install -U transformers optimum[onnxruntime]
|
| 30 |
+
````
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 🚀 Usage
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
from transformers import AutoTokenizer
|
| 38 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
| 39 |
+
|
| 40 |
+
repo_id = "yasserrmd/granite-embedding-r2-onnx"
|
| 41 |
+
|
| 42 |
+
# Load tokenizer + ONNX model
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 44 |
+
model = ORTModelForFeatureExtraction.from_pretrained(repo_id)
|
| 45 |
+
|
| 46 |
+
# Encode sentences
|
| 47 |
+
inputs = tokenizer(["Hello world", "مرحباً"], padding=True, return_tensors="pt")
|
| 48 |
+
outputs = model(**inputs)
|
| 49 |
+
|
| 50 |
+
# Apply mean pooling over tokens
|
| 51 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 52 |
+
print(embeddings.shape) # (2, 768)
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## ✅ Notes
|
| 58 |
+
|
| 59 |
+
* Quantization reduces model size and makes inference faster on CPUs while preserving accuracy.
|
| 60 |
+
* Pooling strategy here is **mean pooling**; you can adapt CLS pooling or max pooling as needed.
|
| 61 |
+
* Works seamlessly with **Hugging Face Hub** + `optimum.onnxruntime`.
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
## 📚 References
|
| 66 |
+
|
| 67 |
+
* [Original Granite Embedding English R2](https://huggingface.co/ibm-granite/granite-embedding-english-r2)
|
| 68 |
+
* [Optimum ONNX Runtime docs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/models)
|
| 69 |
+
|