Add new SparseEncoder model
Browse files- 1_SpladePooling/config.json +5 -0
- README.md +1428 -0
- config.json +23 -0
- config_sentence_transformers.json +11 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
1_SpladePooling/config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pooling_strategy": "max",
|
| 3 |
+
"activation_function": "relu",
|
| 4 |
+
"word_embedding_dimension": 30522
|
| 5 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sparse-encoder
|
| 8 |
+
- sparse
|
| 9 |
+
- splade
|
| 10 |
+
- generated_from_trainer
|
| 11 |
+
- dataset_size:99000
|
| 12 |
+
- loss:SpladeLoss
|
| 13 |
+
- loss:SparseMultipleNegativesRankingLoss
|
| 14 |
+
- loss:FlopsLoss
|
| 15 |
+
base_model: distilbert/distilbert-base-uncased
|
| 16 |
+
widget:
|
| 17 |
+
- source_sentence: Time Travel Is It Possible?
|
| 18 |
+
sentences:
|
| 19 |
+
- Why can you not accelerate to faster than light?
|
| 20 |
+
- Is time travel possible? If yes how
|
| 21 |
+
- What do you hAve to say about time travel (I am not science student but I read
|
| 22 |
+
it on net and its so exciting topic but still no clear idea that is it possible
|
| 23 |
+
or it's just a rumour)?
|
| 24 |
+
- source_sentence: How can one be a good product manager?
|
| 25 |
+
sentences:
|
| 26 |
+
- How Do I become a product manager?
|
| 27 |
+
- Can you make online friends with other people on Quora?
|
| 28 |
+
- How do I become a product designer?
|
| 29 |
+
- source_sentence: How do I start a business? Where can I get a funding in India if
|
| 30 |
+
I have a really good idea?
|
| 31 |
+
sentences:
|
| 32 |
+
- I have an awesome app/website idea which may get more than a billion users. But
|
| 33 |
+
I don't have required money and coding skills. I tried crowd-funding but didn't
|
| 34 |
+
help. What should I do?
|
| 35 |
+
- How do I get funding for my web based startup idea?
|
| 36 |
+
- What is the most powerful dog?
|
| 37 |
+
- source_sentence: What are your favorite questions asked on Quora?
|
| 38 |
+
sentences:
|
| 39 |
+
- What are your favorite Quora questions and answers?
|
| 40 |
+
- How do you become a Successfull Game Developer?
|
| 41 |
+
- Who is your favorite Quora follower?
|
| 42 |
+
- source_sentence: Which laptop is best under 25000 INR?
|
| 43 |
+
sentences:
|
| 44 |
+
- Why was the 1000 rupee note replaced with a 2000 rupee note?
|
| 45 |
+
- What is the best laptop under 45k?
|
| 46 |
+
- What are the best laptops under 25k?
|
| 47 |
+
datasets:
|
| 48 |
+
- sentence-transformers/quora-duplicates
|
| 49 |
+
pipeline_tag: feature-extraction
|
| 50 |
+
library_name: sentence-transformers
|
| 51 |
+
metrics:
|
| 52 |
+
- dot_accuracy@1
|
| 53 |
+
- dot_accuracy@3
|
| 54 |
+
- dot_accuracy@5
|
| 55 |
+
- dot_accuracy@10
|
| 56 |
+
- dot_precision@1
|
| 57 |
+
- dot_precision@3
|
| 58 |
+
- dot_precision@5
|
| 59 |
+
- dot_precision@10
|
| 60 |
+
- dot_recall@1
|
| 61 |
+
- dot_recall@3
|
| 62 |
+
- dot_recall@5
|
| 63 |
+
- dot_recall@10
|
| 64 |
+
- dot_ndcg@10
|
| 65 |
+
- dot_mrr@10
|
| 66 |
+
- dot_map@100
|
| 67 |
+
- row_non_zero_mean_query
|
| 68 |
+
- row_sparsity_mean_query
|
| 69 |
+
- row_non_zero_mean_corpus
|
| 70 |
+
- row_sparsity_mean_corpus
|
| 71 |
+
model-index:
|
| 72 |
+
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
| 73 |
+
results:
|
| 74 |
+
- task:
|
| 75 |
+
type: sparse-information-retrieval
|
| 76 |
+
name: Sparse Information Retrieval
|
| 77 |
+
dataset:
|
| 78 |
+
name: NanoClimateFEVER
|
| 79 |
+
type: NanoClimateFEVER
|
| 80 |
+
metrics:
|
| 81 |
+
- type: dot_accuracy@1
|
| 82 |
+
value: 0.2
|
| 83 |
+
name: Dot Accuracy@1
|
| 84 |
+
- type: dot_accuracy@3
|
| 85 |
+
value: 0.34
|
| 86 |
+
name: Dot Accuracy@3
|
| 87 |
+
- type: dot_accuracy@5
|
| 88 |
+
value: 0.38
|
| 89 |
+
name: Dot Accuracy@5
|
| 90 |
+
- type: dot_accuracy@10
|
| 91 |
+
value: 0.46
|
| 92 |
+
name: Dot Accuracy@10
|
| 93 |
+
- type: dot_precision@1
|
| 94 |
+
value: 0.2
|
| 95 |
+
name: Dot Precision@1
|
| 96 |
+
- type: dot_precision@3
|
| 97 |
+
value: 0.12
|
| 98 |
+
name: Dot Precision@3
|
| 99 |
+
- type: dot_precision@5
|
| 100 |
+
value: 0.084
|
| 101 |
+
name: Dot Precision@5
|
| 102 |
+
- type: dot_precision@10
|
| 103 |
+
value: 0.05800000000000001
|
| 104 |
+
name: Dot Precision@10
|
| 105 |
+
- type: dot_recall@1
|
| 106 |
+
value: 0.08833333333333332
|
| 107 |
+
name: Dot Recall@1
|
| 108 |
+
- type: dot_recall@3
|
| 109 |
+
value: 0.15333333333333332
|
| 110 |
+
name: Dot Recall@3
|
| 111 |
+
- type: dot_recall@5
|
| 112 |
+
value: 0.17166666666666663
|
| 113 |
+
name: Dot Recall@5
|
| 114 |
+
- type: dot_recall@10
|
| 115 |
+
value: 0.2223333333333333
|
| 116 |
+
name: Dot Recall@10
|
| 117 |
+
- type: dot_ndcg@10
|
| 118 |
+
value: 0.19096782240643292
|
| 119 |
+
name: Dot Ndcg@10
|
| 120 |
+
- type: dot_mrr@10
|
| 121 |
+
value: 0.27904761904761904
|
| 122 |
+
name: Dot Mrr@10
|
| 123 |
+
- type: dot_map@100
|
| 124 |
+
value: 0.1448665229843916
|
| 125 |
+
name: Dot Map@100
|
| 126 |
+
- type: row_non_zero_mean_query
|
| 127 |
+
value: 83.12000274658203
|
| 128 |
+
name: Row Non Zero Mean Query
|
| 129 |
+
- type: row_sparsity_mean_query
|
| 130 |
+
value: 0.997276782989502
|
| 131 |
+
name: Row Sparsity Mean Query
|
| 132 |
+
- type: row_non_zero_mean_corpus
|
| 133 |
+
value: 196.82540893554688
|
| 134 |
+
name: Row Non Zero Mean Corpus
|
| 135 |
+
- type: row_sparsity_mean_corpus
|
| 136 |
+
value: 0.9935513138771057
|
| 137 |
+
name: Row Sparsity Mean Corpus
|
| 138 |
+
- task:
|
| 139 |
+
type: sparse-information-retrieval
|
| 140 |
+
name: Sparse Information Retrieval
|
| 141 |
+
dataset:
|
| 142 |
+
name: NanoDBPedia
|
| 143 |
+
type: NanoDBPedia
|
| 144 |
+
metrics:
|
| 145 |
+
- type: dot_accuracy@1
|
| 146 |
+
value: 0.46
|
| 147 |
+
name: Dot Accuracy@1
|
| 148 |
+
- type: dot_accuracy@3
|
| 149 |
+
value: 0.66
|
| 150 |
+
name: Dot Accuracy@3
|
| 151 |
+
- type: dot_accuracy@5
|
| 152 |
+
value: 0.76
|
| 153 |
+
name: Dot Accuracy@5
|
| 154 |
+
- type: dot_accuracy@10
|
| 155 |
+
value: 0.82
|
| 156 |
+
name: Dot Accuracy@10
|
| 157 |
+
- type: dot_precision@1
|
| 158 |
+
value: 0.46
|
| 159 |
+
name: Dot Precision@1
|
| 160 |
+
- type: dot_precision@3
|
| 161 |
+
value: 0.4599999999999999
|
| 162 |
+
name: Dot Precision@3
|
| 163 |
+
- type: dot_precision@5
|
| 164 |
+
value: 0.41200000000000003
|
| 165 |
+
name: Dot Precision@5
|
| 166 |
+
- type: dot_precision@10
|
| 167 |
+
value: 0.34800000000000003
|
| 168 |
+
name: Dot Precision@10
|
| 169 |
+
- type: dot_recall@1
|
| 170 |
+
value: 0.024992243870767848
|
| 171 |
+
name: Dot Recall@1
|
| 172 |
+
- type: dot_recall@3
|
| 173 |
+
value: 0.08610042820194802
|
| 174 |
+
name: Dot Recall@3
|
| 175 |
+
- type: dot_recall@5
|
| 176 |
+
value: 0.1356349864336842
|
| 177 |
+
name: Dot Recall@5
|
| 178 |
+
- type: dot_recall@10
|
| 179 |
+
value: 0.2108700010340366
|
| 180 |
+
name: Dot Recall@10
|
| 181 |
+
- type: dot_ndcg@10
|
| 182 |
+
value: 0.4008410950979539
|
| 183 |
+
name: Dot Ndcg@10
|
| 184 |
+
- type: dot_mrr@10
|
| 185 |
+
value: 0.5753888888888887
|
| 186 |
+
name: Dot Mrr@10
|
| 187 |
+
- type: dot_map@100
|
| 188 |
+
value: 0.23475075762293293
|
| 189 |
+
name: Dot Map@100
|
| 190 |
+
- type: row_non_zero_mean_query
|
| 191 |
+
value: 110.18000030517578
|
| 192 |
+
name: Row Non Zero Mean Query
|
| 193 |
+
- type: row_sparsity_mean_query
|
| 194 |
+
value: 0.9963901042938232
|
| 195 |
+
name: Row Sparsity Mean Query
|
| 196 |
+
- type: row_non_zero_mean_corpus
|
| 197 |
+
value: 146.9065399169922
|
| 198 |
+
name: Row Non Zero Mean Corpus
|
| 199 |
+
- type: row_sparsity_mean_corpus
|
| 200 |
+
value: 0.9951868057250977
|
| 201 |
+
name: Row Sparsity Mean Corpus
|
| 202 |
+
- task:
|
| 203 |
+
type: sparse-information-retrieval
|
| 204 |
+
name: Sparse Information Retrieval
|
| 205 |
+
dataset:
|
| 206 |
+
name: NanoFEVER
|
| 207 |
+
type: NanoFEVER
|
| 208 |
+
metrics:
|
| 209 |
+
- type: dot_accuracy@1
|
| 210 |
+
value: 0.56
|
| 211 |
+
name: Dot Accuracy@1
|
| 212 |
+
- type: dot_accuracy@3
|
| 213 |
+
value: 0.64
|
| 214 |
+
name: Dot Accuracy@3
|
| 215 |
+
- type: dot_accuracy@5
|
| 216 |
+
value: 0.72
|
| 217 |
+
name: Dot Accuracy@5
|
| 218 |
+
- type: dot_accuracy@10
|
| 219 |
+
value: 0.82
|
| 220 |
+
name: Dot Accuracy@10
|
| 221 |
+
- type: dot_precision@1
|
| 222 |
+
value: 0.56
|
| 223 |
+
name: Dot Precision@1
|
| 224 |
+
- type: dot_precision@3
|
| 225 |
+
value: 0.2333333333333333
|
| 226 |
+
name: Dot Precision@3
|
| 227 |
+
- type: dot_precision@5
|
| 228 |
+
value: 0.15600000000000003
|
| 229 |
+
name: Dot Precision@5
|
| 230 |
+
- type: dot_precision@10
|
| 231 |
+
value: 0.088
|
| 232 |
+
name: Dot Precision@10
|
| 233 |
+
- type: dot_recall@1
|
| 234 |
+
value: 0.5266666666666666
|
| 235 |
+
name: Dot Recall@1
|
| 236 |
+
- type: dot_recall@3
|
| 237 |
+
value: 0.6333333333333333
|
| 238 |
+
name: Dot Recall@3
|
| 239 |
+
- type: dot_recall@5
|
| 240 |
+
value: 0.7133333333333333
|
| 241 |
+
name: Dot Recall@5
|
| 242 |
+
- type: dot_recall@10
|
| 243 |
+
value: 0.8133333333333332
|
| 244 |
+
name: Dot Recall@10
|
| 245 |
+
- type: dot_ndcg@10
|
| 246 |
+
value: 0.6697436984572378
|
| 247 |
+
name: Dot Ndcg@10
|
| 248 |
+
- type: dot_mrr@10
|
| 249 |
+
value: 0.6316349206349205
|
| 250 |
+
name: Dot Mrr@10
|
| 251 |
+
- type: dot_map@100
|
| 252 |
+
value: 0.6281723194238796
|
| 253 |
+
name: Dot Map@100
|
| 254 |
+
- type: row_non_zero_mean_query
|
| 255 |
+
value: 96.77999877929688
|
| 256 |
+
name: Row Non Zero Mean Query
|
| 257 |
+
- type: row_sparsity_mean_query
|
| 258 |
+
value: 0.9968292117118835
|
| 259 |
+
name: Row Sparsity Mean Query
|
| 260 |
+
- type: row_non_zero_mean_corpus
|
| 261 |
+
value: 219.1212921142578
|
| 262 |
+
name: Row Non Zero Mean Corpus
|
| 263 |
+
- type: row_sparsity_mean_corpus
|
| 264 |
+
value: 0.9928209185600281
|
| 265 |
+
name: Row Sparsity Mean Corpus
|
| 266 |
+
- task:
|
| 267 |
+
type: sparse-information-retrieval
|
| 268 |
+
name: Sparse Information Retrieval
|
| 269 |
+
dataset:
|
| 270 |
+
name: NanoFiQA2018
|
| 271 |
+
type: NanoFiQA2018
|
| 272 |
+
metrics:
|
| 273 |
+
- type: dot_accuracy@1
|
| 274 |
+
value: 0.14
|
| 275 |
+
name: Dot Accuracy@1
|
| 276 |
+
- type: dot_accuracy@3
|
| 277 |
+
value: 0.32
|
| 278 |
+
name: Dot Accuracy@3
|
| 279 |
+
- type: dot_accuracy@5
|
| 280 |
+
value: 0.36
|
| 281 |
+
name: Dot Accuracy@5
|
| 282 |
+
- type: dot_accuracy@10
|
| 283 |
+
value: 0.44
|
| 284 |
+
name: Dot Accuracy@10
|
| 285 |
+
- type: dot_precision@1
|
| 286 |
+
value: 0.14
|
| 287 |
+
name: Dot Precision@1
|
| 288 |
+
- type: dot_precision@3
|
| 289 |
+
value: 0.12
|
| 290 |
+
name: Dot Precision@3
|
| 291 |
+
- type: dot_precision@5
|
| 292 |
+
value: 0.10400000000000001
|
| 293 |
+
name: Dot Precision@5
|
| 294 |
+
- type: dot_precision@10
|
| 295 |
+
value: 0.068
|
| 296 |
+
name: Dot Precision@10
|
| 297 |
+
- type: dot_recall@1
|
| 298 |
+
value: 0.06783333333333333
|
| 299 |
+
name: Dot Recall@1
|
| 300 |
+
- type: dot_recall@3
|
| 301 |
+
value: 0.14569047619047618
|
| 302 |
+
name: Dot Recall@3
|
| 303 |
+
- type: dot_recall@5
|
| 304 |
+
value: 0.20004761904761903
|
| 305 |
+
name: Dot Recall@5
|
| 306 |
+
- type: dot_recall@10
|
| 307 |
+
value: 0.2636825396825397
|
| 308 |
+
name: Dot Recall@10
|
| 309 |
+
- type: dot_ndcg@10
|
| 310 |
+
value: 0.19745078204560165
|
| 311 |
+
name: Dot Ndcg@10
|
| 312 |
+
- type: dot_mrr@10
|
| 313 |
+
value: 0.23552380952380955
|
| 314 |
+
name: Dot Mrr@10
|
| 315 |
+
- type: dot_map@100
|
| 316 |
+
value: 0.14731140504396462
|
| 317 |
+
name: Dot Map@100
|
| 318 |
+
- type: row_non_zero_mean_query
|
| 319 |
+
value: 80.33999633789062
|
| 320 |
+
name: Row Non Zero Mean Query
|
| 321 |
+
- type: row_sparsity_mean_query
|
| 322 |
+
value: 0.9973678588867188
|
| 323 |
+
name: Row Sparsity Mean Query
|
| 324 |
+
- type: row_non_zero_mean_corpus
|
| 325 |
+
value: 125.915771484375
|
| 326 |
+
name: Row Non Zero Mean Corpus
|
| 327 |
+
- type: row_sparsity_mean_corpus
|
| 328 |
+
value: 0.9958745241165161
|
| 329 |
+
name: Row Sparsity Mean Corpus
|
| 330 |
+
- task:
|
| 331 |
+
type: sparse-information-retrieval
|
| 332 |
+
name: Sparse Information Retrieval
|
| 333 |
+
dataset:
|
| 334 |
+
name: NanoHotpotQA
|
| 335 |
+
type: NanoHotpotQA
|
| 336 |
+
metrics:
|
| 337 |
+
- type: dot_accuracy@1
|
| 338 |
+
value: 0.46
|
| 339 |
+
name: Dot Accuracy@1
|
| 340 |
+
- type: dot_accuracy@3
|
| 341 |
+
value: 0.66
|
| 342 |
+
name: Dot Accuracy@3
|
| 343 |
+
- type: dot_accuracy@5
|
| 344 |
+
value: 0.72
|
| 345 |
+
name: Dot Accuracy@5
|
| 346 |
+
- type: dot_accuracy@10
|
| 347 |
+
value: 0.84
|
| 348 |
+
name: Dot Accuracy@10
|
| 349 |
+
- type: dot_precision@1
|
| 350 |
+
value: 0.46
|
| 351 |
+
name: Dot Precision@1
|
| 352 |
+
- type: dot_precision@3
|
| 353 |
+
value: 0.25333333333333335
|
| 354 |
+
name: Dot Precision@3
|
| 355 |
+
- type: dot_precision@5
|
| 356 |
+
value: 0.176
|
| 357 |
+
name: Dot Precision@5
|
| 358 |
+
- type: dot_precision@10
|
| 359 |
+
value: 0.11
|
| 360 |
+
name: Dot Precision@10
|
| 361 |
+
- type: dot_recall@1
|
| 362 |
+
value: 0.23
|
| 363 |
+
name: Dot Recall@1
|
| 364 |
+
- type: dot_recall@3
|
| 365 |
+
value: 0.38
|
| 366 |
+
name: Dot Recall@3
|
| 367 |
+
- type: dot_recall@5
|
| 368 |
+
value: 0.44
|
| 369 |
+
name: Dot Recall@5
|
| 370 |
+
- type: dot_recall@10
|
| 371 |
+
value: 0.55
|
| 372 |
+
name: Dot Recall@10
|
| 373 |
+
- type: dot_ndcg@10
|
| 374 |
+
value: 0.4642094806420616
|
| 375 |
+
name: Dot Ndcg@10
|
| 376 |
+
- type: dot_mrr@10
|
| 377 |
+
value: 0.5762777777777778
|
| 378 |
+
name: Dot Mrr@10
|
| 379 |
+
- type: dot_map@100
|
| 380 |
+
value: 0.3781729878529178
|
| 381 |
+
name: Dot Map@100
|
| 382 |
+
- type: row_non_zero_mean_query
|
| 383 |
+
value: 87.26000213623047
|
| 384 |
+
name: Row Non Zero Mean Query
|
| 385 |
+
- type: row_sparsity_mean_query
|
| 386 |
+
value: 0.9971410632133484
|
| 387 |
+
name: Row Sparsity Mean Query
|
| 388 |
+
- type: row_non_zero_mean_corpus
|
| 389 |
+
value: 166.47190856933594
|
| 390 |
+
name: Row Non Zero Mean Corpus
|
| 391 |
+
- type: row_sparsity_mean_corpus
|
| 392 |
+
value: 0.9945458173751831
|
| 393 |
+
name: Row Sparsity Mean Corpus
|
| 394 |
+
- task:
|
| 395 |
+
type: sparse-information-retrieval
|
| 396 |
+
name: Sparse Information Retrieval
|
| 397 |
+
dataset:
|
| 398 |
+
name: NanoMSMARCO
|
| 399 |
+
type: NanoMSMARCO
|
| 400 |
+
metrics:
|
| 401 |
+
- type: dot_accuracy@1
|
| 402 |
+
value: 0.16
|
| 403 |
+
name: Dot Accuracy@1
|
| 404 |
+
- type: dot_accuracy@3
|
| 405 |
+
value: 0.26
|
| 406 |
+
name: Dot Accuracy@3
|
| 407 |
+
- type: dot_accuracy@5
|
| 408 |
+
value: 0.36
|
| 409 |
+
name: Dot Accuracy@5
|
| 410 |
+
- type: dot_accuracy@10
|
| 411 |
+
value: 0.46
|
| 412 |
+
name: Dot Accuracy@10
|
| 413 |
+
- type: dot_precision@1
|
| 414 |
+
value: 0.16
|
| 415 |
+
name: Dot Precision@1
|
| 416 |
+
- type: dot_precision@3
|
| 417 |
+
value: 0.08666666666666666
|
| 418 |
+
name: Dot Precision@3
|
| 419 |
+
- type: dot_precision@5
|
| 420 |
+
value: 0.07200000000000001
|
| 421 |
+
name: Dot Precision@5
|
| 422 |
+
- type: dot_precision@10
|
| 423 |
+
value: 0.046000000000000006
|
| 424 |
+
name: Dot Precision@10
|
| 425 |
+
- type: dot_recall@1
|
| 426 |
+
value: 0.16
|
| 427 |
+
name: Dot Recall@1
|
| 428 |
+
- type: dot_recall@3
|
| 429 |
+
value: 0.26
|
| 430 |
+
name: Dot Recall@3
|
| 431 |
+
- type: dot_recall@5
|
| 432 |
+
value: 0.36
|
| 433 |
+
name: Dot Recall@5
|
| 434 |
+
- type: dot_recall@10
|
| 435 |
+
value: 0.46
|
| 436 |
+
name: Dot Recall@10
|
| 437 |
+
- type: dot_ndcg@10
|
| 438 |
+
value: 0.2889744107825637
|
| 439 |
+
name: Dot Ndcg@10
|
| 440 |
+
- type: dot_mrr@10
|
| 441 |
+
value: 0.23699999999999996
|
| 442 |
+
name: Dot Mrr@10
|
| 443 |
+
- type: dot_map@100
|
| 444 |
+
value: 0.2547054047317205
|
| 445 |
+
name: Dot Map@100
|
| 446 |
+
- type: row_non_zero_mean_query
|
| 447 |
+
value: 96.05999755859375
|
| 448 |
+
name: Row Non Zero Mean Query
|
| 449 |
+
- type: row_sparsity_mean_query
|
| 450 |
+
value: 0.996852695941925
|
| 451 |
+
name: Row Sparsity Mean Query
|
| 452 |
+
- type: row_non_zero_mean_corpus
|
| 453 |
+
value: 105.46202850341797
|
| 454 |
+
name: Row Non Zero Mean Corpus
|
| 455 |
+
- type: row_sparsity_mean_corpus
|
| 456 |
+
value: 0.9965446591377258
|
| 457 |
+
name: Row Sparsity Mean Corpus
|
| 458 |
+
- task:
|
| 459 |
+
type: sparse-information-retrieval
|
| 460 |
+
name: Sparse Information Retrieval
|
| 461 |
+
dataset:
|
| 462 |
+
name: NanoNFCorpus
|
| 463 |
+
type: NanoNFCorpus
|
| 464 |
+
metrics:
|
| 465 |
+
- type: dot_accuracy@1
|
| 466 |
+
value: 0.28
|
| 467 |
+
name: Dot Accuracy@1
|
| 468 |
+
- type: dot_accuracy@3
|
| 469 |
+
value: 0.36
|
| 470 |
+
name: Dot Accuracy@3
|
| 471 |
+
- type: dot_accuracy@5
|
| 472 |
+
value: 0.4
|
| 473 |
+
name: Dot Accuracy@5
|
| 474 |
+
- type: dot_accuracy@10
|
| 475 |
+
value: 0.44
|
| 476 |
+
name: Dot Accuracy@10
|
| 477 |
+
- type: dot_precision@1
|
| 478 |
+
value: 0.28
|
| 479 |
+
name: Dot Precision@1
|
| 480 |
+
- type: dot_precision@3
|
| 481 |
+
value: 0.18666666666666665
|
| 482 |
+
name: Dot Precision@3
|
| 483 |
+
- type: dot_precision@5
|
| 484 |
+
value: 0.18
|
| 485 |
+
name: Dot Precision@5
|
| 486 |
+
- type: dot_precision@10
|
| 487 |
+
value: 0.14800000000000002
|
| 488 |
+
name: Dot Precision@10
|
| 489 |
+
- type: dot_recall@1
|
| 490 |
+
value: 0.01004738213752895
|
| 491 |
+
name: Dot Recall@1
|
| 492 |
+
- type: dot_recall@3
|
| 493 |
+
value: 0.017620026805744985
|
| 494 |
+
name: Dot Recall@3
|
| 495 |
+
- type: dot_recall@5
|
| 496 |
+
value: 0.031161291315801767
|
| 497 |
+
name: Dot Recall@5
|
| 498 |
+
- type: dot_recall@10
|
| 499 |
+
value: 0.04364801295748046
|
| 500 |
+
name: Dot Recall@10
|
| 501 |
+
- type: dot_ndcg@10
|
| 502 |
+
value: 0.16900908943281664
|
| 503 |
+
name: Dot Ndcg@10
|
| 504 |
+
- type: dot_mrr@10
|
| 505 |
+
value: 0.3281666666666666
|
| 506 |
+
name: Dot Mrr@10
|
| 507 |
+
- type: dot_map@100
|
| 508 |
+
value: 0.04873203232918475
|
| 509 |
+
name: Dot Map@100
|
| 510 |
+
- type: row_non_zero_mean_query
|
| 511 |
+
value: 122.94000244140625
|
| 512 |
+
name: Row Non Zero Mean Query
|
| 513 |
+
- type: row_sparsity_mean_query
|
| 514 |
+
value: 0.9959720373153687
|
| 515 |
+
name: Row Sparsity Mean Query
|
| 516 |
+
- type: row_non_zero_mean_corpus
|
| 517 |
+
value: 199.5936279296875
|
| 518 |
+
name: Row Non Zero Mean Corpus
|
| 519 |
+
- type: row_sparsity_mean_corpus
|
| 520 |
+
value: 0.9934607744216919
|
| 521 |
+
name: Row Sparsity Mean Corpus
|
| 522 |
+
- task:
|
| 523 |
+
type: sparse-information-retrieval
|
| 524 |
+
name: Sparse Information Retrieval
|
| 525 |
+
dataset:
|
| 526 |
+
name: NanoNQ
|
| 527 |
+
type: NanoNQ
|
| 528 |
+
metrics:
|
| 529 |
+
- type: dot_accuracy@1
|
| 530 |
+
value: 0.18
|
| 531 |
+
name: Dot Accuracy@1
|
| 532 |
+
- type: dot_accuracy@3
|
| 533 |
+
value: 0.34
|
| 534 |
+
name: Dot Accuracy@3
|
| 535 |
+
- type: dot_accuracy@5
|
| 536 |
+
value: 0.4
|
| 537 |
+
name: Dot Accuracy@5
|
| 538 |
+
- type: dot_accuracy@10
|
| 539 |
+
value: 0.48
|
| 540 |
+
name: Dot Accuracy@10
|
| 541 |
+
- type: dot_precision@1
|
| 542 |
+
value: 0.18
|
| 543 |
+
name: Dot Precision@1
|
| 544 |
+
- type: dot_precision@3
|
| 545 |
+
value: 0.11333333333333333
|
| 546 |
+
name: Dot Precision@3
|
| 547 |
+
- type: dot_precision@5
|
| 548 |
+
value: 0.08
|
| 549 |
+
name: Dot Precision@5
|
| 550 |
+
- type: dot_precision@10
|
| 551 |
+
value: 0.04800000000000001
|
| 552 |
+
name: Dot Precision@10
|
| 553 |
+
- type: dot_recall@1
|
| 554 |
+
value: 0.17
|
| 555 |
+
name: Dot Recall@1
|
| 556 |
+
- type: dot_recall@3
|
| 557 |
+
value: 0.32
|
| 558 |
+
name: Dot Recall@3
|
| 559 |
+
- type: dot_recall@5
|
| 560 |
+
value: 0.38
|
| 561 |
+
name: Dot Recall@5
|
| 562 |
+
- type: dot_recall@10
|
| 563 |
+
value: 0.46
|
| 564 |
+
name: Dot Recall@10
|
| 565 |
+
- type: dot_ndcg@10
|
| 566 |
+
value: 0.30557584177037744
|
| 567 |
+
name: Dot Ndcg@10
|
| 568 |
+
- type: dot_mrr@10
|
| 569 |
+
value: 0.26749206349206345
|
| 570 |
+
name: Dot Mrr@10
|
| 571 |
+
- type: dot_map@100
|
| 572 |
+
value: 0.26111102151483273
|
| 573 |
+
name: Dot Map@100
|
| 574 |
+
- type: row_non_zero_mean_query
|
| 575 |
+
value: 79.22000122070312
|
| 576 |
+
name: Row Non Zero Mean Query
|
| 577 |
+
- type: row_sparsity_mean_query
|
| 578 |
+
value: 0.9974044561386108
|
| 579 |
+
name: Row Sparsity Mean Query
|
| 580 |
+
- type: row_non_zero_mean_corpus
|
| 581 |
+
value: 145.250244140625
|
| 582 |
+
name: Row Non Zero Mean Corpus
|
| 583 |
+
- type: row_sparsity_mean_corpus
|
| 584 |
+
value: 0.995241105556488
|
| 585 |
+
name: Row Sparsity Mean Corpus
|
| 586 |
+
- task:
|
| 587 |
+
type: sparse-information-retrieval
|
| 588 |
+
name: Sparse Information Retrieval
|
| 589 |
+
dataset:
|
| 590 |
+
name: NanoQuoraRetrieval
|
| 591 |
+
type: NanoQuoraRetrieval
|
| 592 |
+
metrics:
|
| 593 |
+
- type: dot_accuracy@1
|
| 594 |
+
value: 0.92
|
| 595 |
+
name: Dot Accuracy@1
|
| 596 |
+
- type: dot_accuracy@3
|
| 597 |
+
value: 0.96
|
| 598 |
+
name: Dot Accuracy@3
|
| 599 |
+
- type: dot_accuracy@5
|
| 600 |
+
value: 1.0
|
| 601 |
+
name: Dot Accuracy@5
|
| 602 |
+
- type: dot_accuracy@10
|
| 603 |
+
value: 1.0
|
| 604 |
+
name: Dot Accuracy@10
|
| 605 |
+
- type: dot_precision@1
|
| 606 |
+
value: 0.92
|
| 607 |
+
name: Dot Precision@1
|
| 608 |
+
- type: dot_precision@3
|
| 609 |
+
value: 0.3733333333333333
|
| 610 |
+
name: Dot Precision@3
|
| 611 |
+
- type: dot_precision@5
|
| 612 |
+
value: 0.256
|
| 613 |
+
name: Dot Precision@5
|
| 614 |
+
- type: dot_precision@10
|
| 615 |
+
value: 0.132
|
| 616 |
+
name: Dot Precision@10
|
| 617 |
+
- type: dot_recall@1
|
| 618 |
+
value: 0.8206666666666667
|
| 619 |
+
name: Dot Recall@1
|
| 620 |
+
- type: dot_recall@3
|
| 621 |
+
value: 0.8986666666666667
|
| 622 |
+
name: Dot Recall@3
|
| 623 |
+
- type: dot_recall@5
|
| 624 |
+
value: 0.9726666666666667
|
| 625 |
+
name: Dot Recall@5
|
| 626 |
+
- type: dot_recall@10
|
| 627 |
+
value: 0.9826666666666667
|
| 628 |
+
name: Dot Recall@10
|
| 629 |
+
- type: dot_ndcg@10
|
| 630 |
+
value: 0.9456812009077233
|
| 631 |
+
name: Dot Ndcg@10
|
| 632 |
+
- type: dot_mrr@10
|
| 633 |
+
value: 0.95
|
| 634 |
+
name: Dot Mrr@10
|
| 635 |
+
- type: dot_map@100
|
| 636 |
+
value: 0.9232605046294702
|
| 637 |
+
name: Dot Map@100
|
| 638 |
+
- type: row_non_zero_mean_query
|
| 639 |
+
value: 73.83999633789062
|
| 640 |
+
name: Row Non Zero Mean Query
|
| 641 |
+
- type: row_sparsity_mean_query
|
| 642 |
+
value: 0.9975807070732117
|
| 643 |
+
name: Row Sparsity Mean Query
|
| 644 |
+
- type: row_non_zero_mean_corpus
|
| 645 |
+
value: 74.96769714355469
|
| 646 |
+
name: Row Non Zero Mean Corpus
|
| 647 |
+
- type: row_sparsity_mean_corpus
|
| 648 |
+
value: 0.9975438117980957
|
| 649 |
+
name: Row Sparsity Mean Corpus
|
| 650 |
+
- task:
|
| 651 |
+
type: sparse-information-retrieval
|
| 652 |
+
name: Sparse Information Retrieval
|
| 653 |
+
dataset:
|
| 654 |
+
name: NanoSCIDOCS
|
| 655 |
+
type: NanoSCIDOCS
|
| 656 |
+
metrics:
|
| 657 |
+
- type: dot_accuracy@1
|
| 658 |
+
value: 0.36
|
| 659 |
+
name: Dot Accuracy@1
|
| 660 |
+
- type: dot_accuracy@3
|
| 661 |
+
value: 0.5
|
| 662 |
+
name: Dot Accuracy@3
|
| 663 |
+
- type: dot_accuracy@5
|
| 664 |
+
value: 0.62
|
| 665 |
+
name: Dot Accuracy@5
|
| 666 |
+
- type: dot_accuracy@10
|
| 667 |
+
value: 0.7
|
| 668 |
+
name: Dot Accuracy@10
|
| 669 |
+
- type: dot_precision@1
|
| 670 |
+
value: 0.36
|
| 671 |
+
name: Dot Precision@1
|
| 672 |
+
- type: dot_precision@3
|
| 673 |
+
value: 0.26
|
| 674 |
+
name: Dot Precision@3
|
| 675 |
+
- type: dot_precision@5
|
| 676 |
+
value: 0.19199999999999995
|
| 677 |
+
name: Dot Precision@5
|
| 678 |
+
- type: dot_precision@10
|
| 679 |
+
value: 0.12399999999999999
|
| 680 |
+
name: Dot Precision@10
|
| 681 |
+
- type: dot_recall@1
|
| 682 |
+
value: 0.07666666666666666
|
| 683 |
+
name: Dot Recall@1
|
| 684 |
+
- type: dot_recall@3
|
| 685 |
+
value: 0.16166666666666665
|
| 686 |
+
name: Dot Recall@3
|
| 687 |
+
- type: dot_recall@5
|
| 688 |
+
value: 0.19766666666666666
|
| 689 |
+
name: Dot Recall@5
|
| 690 |
+
- type: dot_recall@10
|
| 691 |
+
value: 0.25466666666666665
|
| 692 |
+
name: Dot Recall@10
|
| 693 |
+
- type: dot_ndcg@10
|
| 694 |
+
value: 0.2640445339047696
|
| 695 |
+
name: Dot Ndcg@10
|
| 696 |
+
- type: dot_mrr@10
|
| 697 |
+
value: 0.45502380952380955
|
| 698 |
+
name: Dot Mrr@10
|
| 699 |
+
- type: dot_map@100
|
| 700 |
+
value: 0.18681370322897212
|
| 701 |
+
name: Dot Map@100
|
| 702 |
+
- type: row_non_zero_mean_query
|
| 703 |
+
value: 95.91999816894531
|
| 704 |
+
name: Row Non Zero Mean Query
|
| 705 |
+
- type: row_sparsity_mean_query
|
| 706 |
+
value: 0.9968574047088623
|
| 707 |
+
name: Row Sparsity Mean Query
|
| 708 |
+
- type: row_non_zero_mean_corpus
|
| 709 |
+
value: 184.44908142089844
|
| 710 |
+
name: Row Non Zero Mean Corpus
|
| 711 |
+
- type: row_sparsity_mean_corpus
|
| 712 |
+
value: 0.9939568638801575
|
| 713 |
+
name: Row Sparsity Mean Corpus
|
| 714 |
+
- task:
|
| 715 |
+
type: sparse-information-retrieval
|
| 716 |
+
name: Sparse Information Retrieval
|
| 717 |
+
dataset:
|
| 718 |
+
name: NanoArguAna
|
| 719 |
+
type: NanoArguAna
|
| 720 |
+
metrics:
|
| 721 |
+
- type: dot_accuracy@1
|
| 722 |
+
value: 0.1
|
| 723 |
+
name: Dot Accuracy@1
|
| 724 |
+
- type: dot_accuracy@3
|
| 725 |
+
value: 0.28
|
| 726 |
+
name: Dot Accuracy@3
|
| 727 |
+
- type: dot_accuracy@5
|
| 728 |
+
value: 0.32
|
| 729 |
+
name: Dot Accuracy@5
|
| 730 |
+
- type: dot_accuracy@10
|
| 731 |
+
value: 0.38
|
| 732 |
+
name: Dot Accuracy@10
|
| 733 |
+
- type: dot_precision@1
|
| 734 |
+
value: 0.1
|
| 735 |
+
name: Dot Precision@1
|
| 736 |
+
- type: dot_precision@3
|
| 737 |
+
value: 0.09333333333333332
|
| 738 |
+
name: Dot Precision@3
|
| 739 |
+
- type: dot_precision@5
|
| 740 |
+
value: 0.064
|
| 741 |
+
name: Dot Precision@5
|
| 742 |
+
- type: dot_precision@10
|
| 743 |
+
value: 0.038000000000000006
|
| 744 |
+
name: Dot Precision@10
|
| 745 |
+
- type: dot_recall@1
|
| 746 |
+
value: 0.1
|
| 747 |
+
name: Dot Recall@1
|
| 748 |
+
- type: dot_recall@3
|
| 749 |
+
value: 0.28
|
| 750 |
+
name: Dot Recall@3
|
| 751 |
+
- type: dot_recall@5
|
| 752 |
+
value: 0.32
|
| 753 |
+
name: Dot Recall@5
|
| 754 |
+
- type: dot_recall@10
|
| 755 |
+
value: 0.38
|
| 756 |
+
name: Dot Recall@10
|
| 757 |
+
- type: dot_ndcg@10
|
| 758 |
+
value: 0.24652298080535653
|
| 759 |
+
name: Dot Ndcg@10
|
| 760 |
+
- type: dot_mrr@10
|
| 761 |
+
value: 0.2033571428571429
|
| 762 |
+
name: Dot Mrr@10
|
| 763 |
+
- type: dot_map@100
|
| 764 |
+
value: 0.2089304613637203
|
| 765 |
+
name: Dot Map@100
|
| 766 |
+
- type: row_non_zero_mean_query
|
| 767 |
+
value: 181.27999877929688
|
| 768 |
+
name: Row Non Zero Mean Query
|
| 769 |
+
- type: row_sparsity_mean_query
|
| 770 |
+
value: 0.9940606951713562
|
| 771 |
+
name: Row Sparsity Mean Query
|
| 772 |
+
- type: row_non_zero_mean_corpus
|
| 773 |
+
value: 160.55982971191406
|
| 774 |
+
name: Row Non Zero Mean Corpus
|
| 775 |
+
- type: row_sparsity_mean_corpus
|
| 776 |
+
value: 0.9947395324707031
|
| 777 |
+
name: Row Sparsity Mean Corpus
|
| 778 |
+
- task:
|
| 779 |
+
type: sparse-information-retrieval
|
| 780 |
+
name: Sparse Information Retrieval
|
| 781 |
+
dataset:
|
| 782 |
+
name: NanoSciFact
|
| 783 |
+
type: NanoSciFact
|
| 784 |
+
metrics:
|
| 785 |
+
- type: dot_accuracy@1
|
| 786 |
+
value: 0.38
|
| 787 |
+
name: Dot Accuracy@1
|
| 788 |
+
- type: dot_accuracy@3
|
| 789 |
+
value: 0.56
|
| 790 |
+
name: Dot Accuracy@3
|
| 791 |
+
- type: dot_accuracy@5
|
| 792 |
+
value: 0.64
|
| 793 |
+
name: Dot Accuracy@5
|
| 794 |
+
- type: dot_accuracy@10
|
| 795 |
+
value: 0.66
|
| 796 |
+
name: Dot Accuracy@10
|
| 797 |
+
- type: dot_precision@1
|
| 798 |
+
value: 0.38
|
| 799 |
+
name: Dot Precision@1
|
| 800 |
+
- type: dot_precision@3
|
| 801 |
+
value: 0.19333333333333333
|
| 802 |
+
name: Dot Precision@3
|
| 803 |
+
- type: dot_precision@5
|
| 804 |
+
value: 0.14
|
| 805 |
+
name: Dot Precision@5
|
| 806 |
+
- type: dot_precision@10
|
| 807 |
+
value: 0.07200000000000001
|
| 808 |
+
name: Dot Precision@10
|
| 809 |
+
- type: dot_recall@1
|
| 810 |
+
value: 0.365
|
| 811 |
+
name: Dot Recall@1
|
| 812 |
+
- type: dot_recall@3
|
| 813 |
+
value: 0.54
|
| 814 |
+
name: Dot Recall@3
|
| 815 |
+
- type: dot_recall@5
|
| 816 |
+
value: 0.61
|
| 817 |
+
name: Dot Recall@5
|
| 818 |
+
- type: dot_recall@10
|
| 819 |
+
value: 0.63
|
| 820 |
+
name: Dot Recall@10
|
| 821 |
+
- type: dot_ndcg@10
|
| 822 |
+
value: 0.5012811403788975
|
| 823 |
+
name: Dot Ndcg@10
|
| 824 |
+
- type: dot_mrr@10
|
| 825 |
+
value: 0.4666666666666666
|
| 826 |
+
name: Dot Mrr@10
|
| 827 |
+
- type: dot_map@100
|
| 828 |
+
value: 0.4647112383054177
|
| 829 |
+
name: Dot Map@100
|
| 830 |
+
- type: row_non_zero_mean_query
|
| 831 |
+
value: 90.80000305175781
|
| 832 |
+
name: Row Non Zero Mean Query
|
| 833 |
+
- type: row_sparsity_mean_query
|
| 834 |
+
value: 0.9970251321792603
|
| 835 |
+
name: Row Sparsity Mean Query
|
| 836 |
+
- type: row_non_zero_mean_corpus
|
| 837 |
+
value: 197.8948211669922
|
| 838 |
+
name: Row Non Zero Mean Corpus
|
| 839 |
+
- type: row_sparsity_mean_corpus
|
| 840 |
+
value: 0.9935163259506226
|
| 841 |
+
name: Row Sparsity Mean Corpus
|
| 842 |
+
- task:
|
| 843 |
+
type: sparse-information-retrieval
|
| 844 |
+
name: Sparse Information Retrieval
|
| 845 |
+
dataset:
|
| 846 |
+
name: NanoTouche2020
|
| 847 |
+
type: NanoTouche2020
|
| 848 |
+
metrics:
|
| 849 |
+
- type: dot_accuracy@1
|
| 850 |
+
value: 0.4897959183673469
|
| 851 |
+
name: Dot Accuracy@1
|
| 852 |
+
- type: dot_accuracy@3
|
| 853 |
+
value: 0.7551020408163265
|
| 854 |
+
name: Dot Accuracy@3
|
| 855 |
+
- type: dot_accuracy@5
|
| 856 |
+
value: 0.8367346938775511
|
| 857 |
+
name: Dot Accuracy@5
|
| 858 |
+
- type: dot_accuracy@10
|
| 859 |
+
value: 0.9387755102040817
|
| 860 |
+
name: Dot Accuracy@10
|
| 861 |
+
- type: dot_precision@1
|
| 862 |
+
value: 0.4897959183673469
|
| 863 |
+
name: Dot Precision@1
|
| 864 |
+
- type: dot_precision@3
|
| 865 |
+
value: 0.43537414965986393
|
| 866 |
+
name: Dot Precision@3
|
| 867 |
+
- type: dot_precision@5
|
| 868 |
+
value: 0.42857142857142855
|
| 869 |
+
name: Dot Precision@5
|
| 870 |
+
- type: dot_precision@10
|
| 871 |
+
value: 0.336734693877551
|
| 872 |
+
name: Dot Precision@10
|
| 873 |
+
- type: dot_recall@1
|
| 874 |
+
value: 0.03231843040459851
|
| 875 |
+
name: Dot Recall@1
|
| 876 |
+
- type: dot_recall@3
|
| 877 |
+
value: 0.08325211008018112
|
| 878 |
+
name: Dot Recall@3
|
| 879 |
+
- type: dot_recall@5
|
| 880 |
+
value: 0.13623768956747034
|
| 881 |
+
name: Dot Recall@5
|
| 882 |
+
- type: dot_recall@10
|
| 883 |
+
value: 0.20745266217275266
|
| 884 |
+
name: Dot Recall@10
|
| 885 |
+
- type: dot_ndcg@10
|
| 886 |
+
value: 0.3790647958645717
|
| 887 |
+
name: Dot Ndcg@10
|
| 888 |
+
- type: dot_mrr@10
|
| 889 |
+
value: 0.6323372206025266
|
| 890 |
+
name: Dot Mrr@10
|
| 891 |
+
- type: dot_map@100
|
| 892 |
+
value: 0.2305586843086588
|
| 893 |
+
name: Dot Map@100
|
| 894 |
+
- type: row_non_zero_mean_query
|
| 895 |
+
value: 78.7755126953125
|
| 896 |
+
name: Row Non Zero Mean Query
|
| 897 |
+
- type: row_sparsity_mean_query
|
| 898 |
+
value: 0.9974190592765808
|
| 899 |
+
name: Row Sparsity Mean Query
|
| 900 |
+
- type: row_non_zero_mean_corpus
|
| 901 |
+
value: 140.8109588623047
|
| 902 |
+
name: Row Non Zero Mean Corpus
|
| 903 |
+
- type: row_sparsity_mean_corpus
|
| 904 |
+
value: 0.9953866004943848
|
| 905 |
+
name: Row Sparsity Mean Corpus
|
| 906 |
+
- task:
|
| 907 |
+
type: sparse-nano-beir
|
| 908 |
+
name: Sparse Nano BEIR
|
| 909 |
+
dataset:
|
| 910 |
+
name: NanoBEIR mean
|
| 911 |
+
type: NanoBEIR_mean
|
| 912 |
+
metrics:
|
| 913 |
+
- type: dot_accuracy@1
|
| 914 |
+
value: 0.3607535321821036
|
| 915 |
+
name: Dot Accuracy@1
|
| 916 |
+
- type: dot_accuracy@3
|
| 917 |
+
value: 0.510392464678179
|
| 918 |
+
name: Dot Accuracy@3
|
| 919 |
+
- type: dot_accuracy@5
|
| 920 |
+
value: 0.578210361067504
|
| 921 |
+
name: Dot Accuracy@5
|
| 922 |
+
- type: dot_accuracy@10
|
| 923 |
+
value: 0.6491365777080063
|
| 924 |
+
name: Dot Accuracy@10
|
| 925 |
+
- type: dot_precision@1
|
| 926 |
+
value: 0.3607535321821036
|
| 927 |
+
name: Dot Precision@1
|
| 928 |
+
- type: dot_precision@3
|
| 929 |
+
value: 0.2252851909994767
|
| 930 |
+
name: Dot Precision@3
|
| 931 |
+
- type: dot_precision@5
|
| 932 |
+
value: 0.18035164835164832
|
| 933 |
+
name: Dot Precision@5
|
| 934 |
+
- type: dot_precision@10
|
| 935 |
+
value: 0.1243642072213501
|
| 936 |
+
name: Dot Precision@10
|
| 937 |
+
- type: dot_recall@1
|
| 938 |
+
value: 0.20557882485227402
|
| 939 |
+
name: Dot Recall@1
|
| 940 |
+
- type: dot_recall@3
|
| 941 |
+
value: 0.3045894647137193
|
| 942 |
+
name: Dot Recall@3
|
| 943 |
+
- type: dot_recall@5
|
| 944 |
+
value: 0.3591088399767622
|
| 945 |
+
name: Dot Recall@5
|
| 946 |
+
- type: dot_recall@10
|
| 947 |
+
value: 0.42143486275744696
|
| 948 |
+
name: Dot Recall@10
|
| 949 |
+
- type: dot_ndcg@10
|
| 950 |
+
value: 0.3864128363458742
|
| 951 |
+
name: Dot Ndcg@10
|
| 952 |
+
- type: dot_mrr@10
|
| 953 |
+
value: 0.44907050659091463
|
| 954 |
+
name: Dot Mrr@10
|
| 955 |
+
- type: dot_map@100
|
| 956 |
+
value: 0.31631515718000486
|
| 957 |
+
name: Dot Map@100
|
| 958 |
+
- type: row_non_zero_mean_query
|
| 959 |
+
value: 98.19350081223708
|
| 960 |
+
name: Row Non Zero Mean Query
|
| 961 |
+
- type: row_sparsity_mean_query
|
| 962 |
+
value: 0.9967828622231116
|
| 963 |
+
name: Row Sparsity Mean Query
|
| 964 |
+
- type: row_non_zero_mean_corpus
|
| 965 |
+
value: 158.7868622999925
|
| 966 |
+
name: Row Non Zero Mean Corpus
|
| 967 |
+
- type: row_sparsity_mean_corpus
|
| 968 |
+
value: 0.994797619489523
|
| 969 |
+
name: Row Sparsity Mean Corpus
|
| 970 |
+
---
|
| 971 |
+
|
| 972 |
+
# splade-distilbert-base-uncased trained on Quora Duplicates Questions
|
| 973 |
+
|
| 974 |
+
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
| 975 |
+
|
| 976 |
+
## Model Details
|
| 977 |
+
|
| 978 |
+
### Model Description
|
| 979 |
+
- **Model Type:** SPLADE Sparse Encoder
|
| 980 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
| 981 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 982 |
+
- **Output Dimensionality:** 30522 dimensions
|
| 983 |
+
- **Similarity Function:** Dot Product
|
| 984 |
+
- **Training Dataset:**
|
| 985 |
+
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
|
| 986 |
+
- **Language:** en
|
| 987 |
+
- **License:** apache-2.0
|
| 988 |
+
|
| 989 |
+
### Model Sources
|
| 990 |
+
|
| 991 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 992 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
| 993 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 994 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
| 995 |
+
|
| 996 |
+
### Full Model Architecture
|
| 997 |
+
|
| 998 |
+
```
|
| 999 |
+
SparseEncoder(
|
| 1000 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
| 1001 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
| 1002 |
+
)
|
| 1003 |
+
```
|
| 1004 |
+
|
| 1005 |
+
## Usage
|
| 1006 |
+
|
| 1007 |
+
### Direct Usage (Sentence Transformers)
|
| 1008 |
+
|
| 1009 |
+
First install the Sentence Transformers library:
|
| 1010 |
+
|
| 1011 |
+
```bash
|
| 1012 |
+
pip install -U sentence-transformers
|
| 1013 |
+
```
|
| 1014 |
+
|
| 1015 |
+
Then you can load this model and run inference.
|
| 1016 |
+
```python
|
| 1017 |
+
from sentence_transformers import SparseEncoder
|
| 1018 |
+
|
| 1019 |
+
# Download from the 🤗 Hub
|
| 1020 |
+
model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
|
| 1021 |
+
# Run inference
|
| 1022 |
+
sentences = [
|
| 1023 |
+
'Which laptop is best under 25000 INR?',
|
| 1024 |
+
'What are the best laptops under 25k?',
|
| 1025 |
+
'What is the best laptop under 45k?',
|
| 1026 |
+
]
|
| 1027 |
+
embeddings = model.encode(sentences)
|
| 1028 |
+
print(embeddings.shape)
|
| 1029 |
+
# (3, 30522)
|
| 1030 |
+
|
| 1031 |
+
# Get the similarity scores for the embeddings
|
| 1032 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 1033 |
+
print(similarities.shape)
|
| 1034 |
+
# [3, 3]
|
| 1035 |
+
```
|
| 1036 |
+
|
| 1037 |
+
<!--
|
| 1038 |
+
### Direct Usage (Transformers)
|
| 1039 |
+
|
| 1040 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 1041 |
+
|
| 1042 |
+
</details>
|
| 1043 |
+
-->
|
| 1044 |
+
|
| 1045 |
+
<!--
|
| 1046 |
+
### Downstream Usage (Sentence Transformers)
|
| 1047 |
+
|
| 1048 |
+
You can finetune this model on your own dataset.
|
| 1049 |
+
|
| 1050 |
+
<details><summary>Click to expand</summary>
|
| 1051 |
+
|
| 1052 |
+
</details>
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Out-of-Scope Use
|
| 1057 |
+
|
| 1058 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Evaluation
|
| 1062 |
+
|
| 1063 |
+
### Metrics
|
| 1064 |
+
|
| 1065 |
+
#### Sparse Information Retrieval
|
| 1066 |
+
|
| 1067 |
+
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
|
| 1068 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
| 1069 |
+
|
| 1070 |
+
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|
| 1071 |
+
|:-------------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
|
| 1072 |
+
| dot_accuracy@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
|
| 1073 |
+
| dot_accuracy@3 | 0.34 | 0.66 | 0.64 | 0.32 | 0.66 | 0.26 | 0.36 | 0.34 | 0.96 | 0.5 | 0.28 | 0.56 | 0.7551 |
|
| 1074 |
+
| dot_accuracy@5 | 0.38 | 0.76 | 0.72 | 0.36 | 0.72 | 0.36 | 0.4 | 0.4 | 1.0 | 0.62 | 0.32 | 0.64 | 0.8367 |
|
| 1075 |
+
| dot_accuracy@10 | 0.46 | 0.82 | 0.82 | 0.44 | 0.84 | 0.46 | 0.44 | 0.48 | 1.0 | 0.7 | 0.38 | 0.66 | 0.9388 |
|
| 1076 |
+
| dot_precision@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
|
| 1077 |
+
| dot_precision@3 | 0.12 | 0.46 | 0.2333 | 0.12 | 0.2533 | 0.0867 | 0.1867 | 0.1133 | 0.3733 | 0.26 | 0.0933 | 0.1933 | 0.4354 |
|
| 1078 |
+
| dot_precision@5 | 0.084 | 0.412 | 0.156 | 0.104 | 0.176 | 0.072 | 0.18 | 0.08 | 0.256 | 0.192 | 0.064 | 0.14 | 0.4286 |
|
| 1079 |
+
| dot_precision@10 | 0.058 | 0.348 | 0.088 | 0.068 | 0.11 | 0.046 | 0.148 | 0.048 | 0.132 | 0.124 | 0.038 | 0.072 | 0.3367 |
|
| 1080 |
+
| dot_recall@1 | 0.0883 | 0.025 | 0.5267 | 0.0678 | 0.23 | 0.16 | 0.01 | 0.17 | 0.8207 | 0.0767 | 0.1 | 0.365 | 0.0323 |
|
| 1081 |
+
| dot_recall@3 | 0.1533 | 0.0861 | 0.6333 | 0.1457 | 0.38 | 0.26 | 0.0176 | 0.32 | 0.8987 | 0.1617 | 0.28 | 0.54 | 0.0833 |
|
| 1082 |
+
| dot_recall@5 | 0.1717 | 0.1356 | 0.7133 | 0.2 | 0.44 | 0.36 | 0.0312 | 0.38 | 0.9727 | 0.1977 | 0.32 | 0.61 | 0.1362 |
|
| 1083 |
+
| dot_recall@10 | 0.2223 | 0.2109 | 0.8133 | 0.2637 | 0.55 | 0.46 | 0.0436 | 0.46 | 0.9827 | 0.2547 | 0.38 | 0.63 | 0.2075 |
|
| 1084 |
+
| **dot_ndcg@10** | **0.191** | **0.4008** | **0.6697** | **0.1975** | **0.4642** | **0.289** | **0.169** | **0.3056** | **0.9457** | **0.264** | **0.2465** | **0.5013** | **0.3791** |
|
| 1085 |
+
| dot_mrr@10 | 0.279 | 0.5754 | 0.6316 | 0.2355 | 0.5763 | 0.237 | 0.3282 | 0.2675 | 0.95 | 0.455 | 0.2034 | 0.4667 | 0.6323 |
|
| 1086 |
+
| dot_map@100 | 0.1449 | 0.2348 | 0.6282 | 0.1473 | 0.3782 | 0.2547 | 0.0487 | 0.2611 | 0.9233 | 0.1868 | 0.2089 | 0.4647 | 0.2306 |
|
| 1087 |
+
| row_non_zero_mean_query | 83.12 | 110.18 | 96.78 | 80.34 | 87.26 | 96.06 | 122.94 | 79.22 | 73.84 | 95.92 | 181.28 | 90.8 | 78.7755 |
|
| 1088 |
+
| row_sparsity_mean_query | 0.9973 | 0.9964 | 0.9968 | 0.9974 | 0.9971 | 0.9969 | 0.996 | 0.9974 | 0.9976 | 0.9969 | 0.9941 | 0.997 | 0.9974 |
|
| 1089 |
+
| row_non_zero_mean_corpus | 196.8254 | 146.9065 | 219.1213 | 125.9158 | 166.4719 | 105.462 | 199.5936 | 145.2502 | 74.9677 | 184.4491 | 160.5598 | 197.8948 | 140.811 |
|
| 1090 |
+
| row_sparsity_mean_corpus | 0.9936 | 0.9952 | 0.9928 | 0.9959 | 0.9945 | 0.9965 | 0.9935 | 0.9952 | 0.9975 | 0.994 | 0.9947 | 0.9935 | 0.9954 |
|
| 1091 |
+
|
| 1092 |
+
#### Sparse Nano BEIR
|
| 1093 |
+
|
| 1094 |
+
* Dataset: `NanoBEIR_mean`
|
| 1095 |
+
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
| 1096 |
+
```json
|
| 1097 |
+
{
|
| 1098 |
+
"dataset_names": [
|
| 1099 |
+
"climatefever",
|
| 1100 |
+
"dbpedia",
|
| 1101 |
+
"fever",
|
| 1102 |
+
"fiqa2018",
|
| 1103 |
+
"hotpotqa",
|
| 1104 |
+
"msmarco",
|
| 1105 |
+
"nfcorpus",
|
| 1106 |
+
"nq",
|
| 1107 |
+
"quoraretrieval",
|
| 1108 |
+
"scidocs",
|
| 1109 |
+
"arguana",
|
| 1110 |
+
"scifact",
|
| 1111 |
+
"touche2020"
|
| 1112 |
+
]
|
| 1113 |
+
}
|
| 1114 |
+
```
|
| 1115 |
+
|
| 1116 |
+
| Metric | Value |
|
| 1117 |
+
|:-------------------------|:-----------|
|
| 1118 |
+
| dot_accuracy@1 | 0.3608 |
|
| 1119 |
+
| dot_accuracy@3 | 0.5104 |
|
| 1120 |
+
| dot_accuracy@5 | 0.5782 |
|
| 1121 |
+
| dot_accuracy@10 | 0.6491 |
|
| 1122 |
+
| dot_precision@1 | 0.3608 |
|
| 1123 |
+
| dot_precision@3 | 0.2253 |
|
| 1124 |
+
| dot_precision@5 | 0.1804 |
|
| 1125 |
+
| dot_precision@10 | 0.1244 |
|
| 1126 |
+
| dot_recall@1 | 0.2056 |
|
| 1127 |
+
| dot_recall@3 | 0.3046 |
|
| 1128 |
+
| dot_recall@5 | 0.3591 |
|
| 1129 |
+
| dot_recall@10 | 0.4214 |
|
| 1130 |
+
| **dot_ndcg@10** | **0.3864** |
|
| 1131 |
+
| dot_mrr@10 | 0.4491 |
|
| 1132 |
+
| dot_map@100 | 0.3163 |
|
| 1133 |
+
| row_non_zero_mean_query | 98.1935 |
|
| 1134 |
+
| row_sparsity_mean_query | 0.9968 |
|
| 1135 |
+
| row_non_zero_mean_corpus | 158.7869 |
|
| 1136 |
+
| row_sparsity_mean_corpus | 0.9948 |
|
| 1137 |
+
|
| 1138 |
+
<!--
|
| 1139 |
+
## Bias, Risks and Limitations
|
| 1140 |
+
|
| 1141 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1142 |
+
-->
|
| 1143 |
+
|
| 1144 |
+
<!--
|
| 1145 |
+
### Recommendations
|
| 1146 |
+
|
| 1147 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1148 |
+
-->
|
| 1149 |
+
|
| 1150 |
+
## Training Details
|
| 1151 |
+
|
| 1152 |
+
### Training Dataset
|
| 1153 |
+
|
| 1154 |
+
#### quora-duplicates
|
| 1155 |
+
|
| 1156 |
+
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
| 1157 |
+
* Size: 99,000 training samples
|
| 1158 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 1159 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1160 |
+
| | anchor | positive | negative |
|
| 1161 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1162 |
+
| type | string | string | string |
|
| 1163 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 14.1 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.83 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.21 tokens</li><li>max: 75 tokens</li></ul> |
|
| 1164 |
+
* Samples:
|
| 1165 |
+
| anchor | positive | negative |
|
| 1166 |
+
|:----------------------------------------------------------------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 1167 |
+
| <code>What are the best GMAT coaching institutes in Delhi NCR?</code> | <code>Which are the best GMAT coaching institutes in Delhi/NCR?</code> | <code>What are the best GMAT coaching institutes in Delhi-Noida Area?</code> |
|
| 1168 |
+
| <code>Is a third world war coming?</code> | <code>Is World War 3 more imminent than expected?</code> | <code>Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?</code> |
|
| 1169 |
+
| <code>Should I build iOS or Android apps first?</code> | <code>Should people choose Android or iOS first to build their App?</code> | <code>How much more effort is it to build your app on both iOS and Android?</code> |
|
| 1170 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
| 1171 |
+
```json
|
| 1172 |
+
{'loss': SparseMultipleNegativesRankingLoss(
|
| 1173 |
+
(model): SparseEncoder(
|
| 1174 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
| 1175 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
|
| 1176 |
+
)
|
| 1177 |
+
(cross_entropy_loss): CrossEntropyLoss()
|
| 1178 |
+
), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
|
| 1179 |
+
```
|
| 1180 |
+
|
| 1181 |
+
### Evaluation Dataset
|
| 1182 |
+
|
| 1183 |
+
#### quora-duplicates
|
| 1184 |
+
|
| 1185 |
+
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
|
| 1186 |
+
* Size: 1,000 evaluation samples
|
| 1187 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 1188 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1189 |
+
| | anchor | positive | negative |
|
| 1190 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1191 |
+
| type | string | string | string |
|
| 1192 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 14.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.14 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.56 tokens</li><li>max: 60 tokens</li></ul> |
|
| 1193 |
+
* Samples:
|
| 1194 |
+
| anchor | positive | negative |
|
| 1195 |
+
|:-------------------------------------------------------------------|:------------------------------------------------------------|:-----------------------------------------------------------------|
|
| 1196 |
+
| <code>What happens if we use petrol in diesel vehicles?</code> | <code>Why can't we use petrol in diesel?</code> | <code>Why are diesel engines noisier than petrol engines?</code> |
|
| 1197 |
+
| <code>Why is Saltwater taffy candy imported in Switzerland?</code> | <code>Why is Saltwater taffy candy imported in Laos?</code> | <code>Is salt a consumer product?</code> |
|
| 1198 |
+
| <code>Which is your favourite film in 2016?</code> | <code>What movie is the best movie of 2016?</code> | <code>What will the best movie of 2017 be?</code> |
|
| 1199 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
| 1200 |
+
```json
|
| 1201 |
+
{'loss': SparseMultipleNegativesRankingLoss(
|
| 1202 |
+
(model): SparseEncoder(
|
| 1203 |
+
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
|
| 1204 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
|
| 1205 |
+
)
|
| 1206 |
+
(cross_entropy_loss): CrossEntropyLoss()
|
| 1207 |
+
), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
|
| 1208 |
+
```
|
| 1209 |
+
|
| 1210 |
+
### Training Hyperparameters
|
| 1211 |
+
#### Non-Default Hyperparameters
|
| 1212 |
+
|
| 1213 |
+
- `eval_strategy`: steps
|
| 1214 |
+
- `per_device_train_batch_size`: 12
|
| 1215 |
+
- `per_device_eval_batch_size`: 12
|
| 1216 |
+
- `learning_rate`: 2e-05
|
| 1217 |
+
- `num_train_epochs`: 1
|
| 1218 |
+
- `bf16`: True
|
| 1219 |
+
- `load_best_model_at_end`: True
|
| 1220 |
+
|
| 1221 |
+
#### All Hyperparameters
|
| 1222 |
+
<details><summary>Click to expand</summary>
|
| 1223 |
+
|
| 1224 |
+
- `overwrite_output_dir`: False
|
| 1225 |
+
- `do_predict`: False
|
| 1226 |
+
- `eval_strategy`: steps
|
| 1227 |
+
- `prediction_loss_only`: True
|
| 1228 |
+
- `per_device_train_batch_size`: 12
|
| 1229 |
+
- `per_device_eval_batch_size`: 12
|
| 1230 |
+
- `per_gpu_train_batch_size`: None
|
| 1231 |
+
- `per_gpu_eval_batch_size`: None
|
| 1232 |
+
- `gradient_accumulation_steps`: 1
|
| 1233 |
+
- `eval_accumulation_steps`: None
|
| 1234 |
+
- `torch_empty_cache_steps`: None
|
| 1235 |
+
- `learning_rate`: 2e-05
|
| 1236 |
+
- `weight_decay`: 0.0
|
| 1237 |
+
- `adam_beta1`: 0.9
|
| 1238 |
+
- `adam_beta2`: 0.999
|
| 1239 |
+
- `adam_epsilon`: 1e-08
|
| 1240 |
+
- `max_grad_norm`: 1.0
|
| 1241 |
+
- `num_train_epochs`: 1
|
| 1242 |
+
- `max_steps`: -1
|
| 1243 |
+
- `lr_scheduler_type`: linear
|
| 1244 |
+
- `lr_scheduler_kwargs`: {}
|
| 1245 |
+
- `warmup_ratio`: 0.0
|
| 1246 |
+
- `warmup_steps`: 0
|
| 1247 |
+
- `log_level`: passive
|
| 1248 |
+
- `log_level_replica`: warning
|
| 1249 |
+
- `log_on_each_node`: True
|
| 1250 |
+
- `logging_nan_inf_filter`: True
|
| 1251 |
+
- `save_safetensors`: True
|
| 1252 |
+
- `save_on_each_node`: False
|
| 1253 |
+
- `save_only_model`: False
|
| 1254 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1255 |
+
- `no_cuda`: False
|
| 1256 |
+
- `use_cpu`: False
|
| 1257 |
+
- `use_mps_device`: False
|
| 1258 |
+
- `seed`: 42
|
| 1259 |
+
- `data_seed`: None
|
| 1260 |
+
- `jit_mode_eval`: False
|
| 1261 |
+
- `use_ipex`: False
|
| 1262 |
+
- `bf16`: True
|
| 1263 |
+
- `fp16`: False
|
| 1264 |
+
- `fp16_opt_level`: O1
|
| 1265 |
+
- `half_precision_backend`: auto
|
| 1266 |
+
- `bf16_full_eval`: False
|
| 1267 |
+
- `fp16_full_eval`: False
|
| 1268 |
+
- `tf32`: None
|
| 1269 |
+
- `local_rank`: 0
|
| 1270 |
+
- `ddp_backend`: None
|
| 1271 |
+
- `tpu_num_cores`: None
|
| 1272 |
+
- `tpu_metrics_debug`: False
|
| 1273 |
+
- `debug`: []
|
| 1274 |
+
- `dataloader_drop_last`: False
|
| 1275 |
+
- `dataloader_num_workers`: 0
|
| 1276 |
+
- `dataloader_prefetch_factor`: None
|
| 1277 |
+
- `past_index`: -1
|
| 1278 |
+
- `disable_tqdm`: False
|
| 1279 |
+
- `remove_unused_columns`: True
|
| 1280 |
+
- `label_names`: None
|
| 1281 |
+
- `load_best_model_at_end`: True
|
| 1282 |
+
- `ignore_data_skip`: False
|
| 1283 |
+
- `fsdp`: []
|
| 1284 |
+
- `fsdp_min_num_params`: 0
|
| 1285 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1286 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1287 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1288 |
+
- `deepspeed`: None
|
| 1289 |
+
- `label_smoothing_factor`: 0.0
|
| 1290 |
+
- `optim`: adamw_torch
|
| 1291 |
+
- `optim_args`: None
|
| 1292 |
+
- `adafactor`: False
|
| 1293 |
+
- `group_by_length`: False
|
| 1294 |
+
- `length_column_name`: length
|
| 1295 |
+
- `ddp_find_unused_parameters`: None
|
| 1296 |
+
- `ddp_bucket_cap_mb`: None
|
| 1297 |
+
- `ddp_broadcast_buffers`: False
|
| 1298 |
+
- `dataloader_pin_memory`: True
|
| 1299 |
+
- `dataloader_persistent_workers`: False
|
| 1300 |
+
- `skip_memory_metrics`: True
|
| 1301 |
+
- `use_legacy_prediction_loop`: False
|
| 1302 |
+
- `push_to_hub`: False
|
| 1303 |
+
- `resume_from_checkpoint`: None
|
| 1304 |
+
- `hub_model_id`: None
|
| 1305 |
+
- `hub_strategy`: every_save
|
| 1306 |
+
- `hub_private_repo`: None
|
| 1307 |
+
- `hub_always_push`: False
|
| 1308 |
+
- `gradient_checkpointing`: False
|
| 1309 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1310 |
+
- `include_inputs_for_metrics`: False
|
| 1311 |
+
- `include_for_metrics`: []
|
| 1312 |
+
- `eval_do_concat_batches`: True
|
| 1313 |
+
- `fp16_backend`: auto
|
| 1314 |
+
- `push_to_hub_model_id`: None
|
| 1315 |
+
- `push_to_hub_organization`: None
|
| 1316 |
+
- `mp_parameters`:
|
| 1317 |
+
- `auto_find_batch_size`: False
|
| 1318 |
+
- `full_determinism`: False
|
| 1319 |
+
- `torchdynamo`: None
|
| 1320 |
+
- `ray_scope`: last
|
| 1321 |
+
- `ddp_timeout`: 1800
|
| 1322 |
+
- `torch_compile`: False
|
| 1323 |
+
- `torch_compile_backend`: None
|
| 1324 |
+
- `torch_compile_mode`: None
|
| 1325 |
+
- `include_tokens_per_second`: False
|
| 1326 |
+
- `include_num_input_tokens_seen`: False
|
| 1327 |
+
- `neftune_noise_alpha`: None
|
| 1328 |
+
- `optim_target_modules`: None
|
| 1329 |
+
- `batch_eval_metrics`: False
|
| 1330 |
+
- `eval_on_start`: False
|
| 1331 |
+
- `use_liger_kernel`: False
|
| 1332 |
+
- `eval_use_gather_object`: False
|
| 1333 |
+
- `average_tokens_across_devices`: False
|
| 1334 |
+
- `prompts`: None
|
| 1335 |
+
- `batch_sampler`: batch_sampler
|
| 1336 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1337 |
+
|
| 1338 |
+
</details>
|
| 1339 |
+
|
| 1340 |
+
### Training Logs
|
| 1341 |
+
| Epoch | Step | Training Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|
| 1342 |
+
|:------:|:----:|:-------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:-----------------------:|:------------------------:|:------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|:-------------------------:|
|
| 1343 |
+
| 0.1938 | 200 | 12.7715 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1344 |
+
| 0.3876 | 400 | 0.2719 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1345 |
+
| 0.5814 | 600 | 0.234 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1346 |
+
| 0.7752 | 800 | 0.2068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1347 |
+
| 0.9690 | 1000 | 0.2041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
| 1348 |
+
| -1 | -1 | - | 0.1910 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.2890 | 0.1690 | 0.3056 | 0.9457 | 0.2640 | 0.2465 | 0.5013 | 0.3791 | 0.3864 |
|
| 1349 |
+
|
| 1350 |
+
|
| 1351 |
+
### Framework Versions
|
| 1352 |
+
- Python: 3.9.22
|
| 1353 |
+
- Sentence Transformers: 4.2.0.dev0
|
| 1354 |
+
- Transformers: 4.52.1
|
| 1355 |
+
- PyTorch: 2.6.0+cu124
|
| 1356 |
+
- Accelerate: 1.7.0
|
| 1357 |
+
- Datasets: 3.6.0
|
| 1358 |
+
- Tokenizers: 0.21.1
|
| 1359 |
+
|
| 1360 |
+
## Citation
|
| 1361 |
+
|
| 1362 |
+
### BibTeX
|
| 1363 |
+
|
| 1364 |
+
#### Sentence Transformers
|
| 1365 |
+
```bibtex
|
| 1366 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1367 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1368 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1369 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1370 |
+
month = "11",
|
| 1371 |
+
year = "2019",
|
| 1372 |
+
publisher = "Association for Computational Linguistics",
|
| 1373 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1374 |
+
}
|
| 1375 |
+
```
|
| 1376 |
+
|
| 1377 |
+
#### SpladeLoss
|
| 1378 |
+
```bibtex
|
| 1379 |
+
@misc{formal2022distillationhardnegativesampling,
|
| 1380 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
| 1381 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
| 1382 |
+
year={2022},
|
| 1383 |
+
eprint={2205.04733},
|
| 1384 |
+
archivePrefix={arXiv},
|
| 1385 |
+
primaryClass={cs.IR},
|
| 1386 |
+
url={https://arxiv.org/abs/2205.04733},
|
| 1387 |
+
}
|
| 1388 |
+
```
|
| 1389 |
+
|
| 1390 |
+
#### SparseMultipleNegativesRankingLoss
|
| 1391 |
+
```bibtex
|
| 1392 |
+
@misc{henderson2017efficient,
|
| 1393 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 1394 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 1395 |
+
year={2017},
|
| 1396 |
+
eprint={1705.00652},
|
| 1397 |
+
archivePrefix={arXiv},
|
| 1398 |
+
primaryClass={cs.CL}
|
| 1399 |
+
}
|
| 1400 |
+
```
|
| 1401 |
+
|
| 1402 |
+
#### FlopsLoss
|
| 1403 |
+
```bibtex
|
| 1404 |
+
@article{paria2020minimizing,
|
| 1405 |
+
title={Minimizing flops to learn efficient sparse representations},
|
| 1406 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
| 1407 |
+
journal={arXiv preprint arXiv:2004.05665},
|
| 1408 |
+
year={2020}
|
| 1409 |
+
}
|
| 1410 |
+
```
|
| 1411 |
+
|
| 1412 |
+
<!--
|
| 1413 |
+
## Glossary
|
| 1414 |
+
|
| 1415 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1416 |
+
-->
|
| 1417 |
+
|
| 1418 |
+
<!--
|
| 1419 |
+
## Model Card Authors
|
| 1420 |
+
|
| 1421 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1422 |
+
-->
|
| 1423 |
+
|
| 1424 |
+
<!--
|
| 1425 |
+
## Model Card Contact
|
| 1426 |
+
|
| 1427 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1428 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DistilBertForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"dim": 768,
|
| 8 |
+
"dropout": 0.1,
|
| 9 |
+
"hidden_dim": 3072,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"max_position_embeddings": 512,
|
| 12 |
+
"model_type": "distilbert",
|
| 13 |
+
"n_heads": 12,
|
| 14 |
+
"n_layers": 6,
|
| 15 |
+
"pad_token_id": 0,
|
| 16 |
+
"qa_dropout": 0.1,
|
| 17 |
+
"seq_classif_dropout": 0.2,
|
| 18 |
+
"sinusoidal_pos_embds": false,
|
| 19 |
+
"tie_weights_": true,
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.52.1",
|
| 22 |
+
"vocab_size": 30522
|
| 23 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SparseEncoder",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "4.2.0.dev0",
|
| 5 |
+
"transformers": "4.52.1",
|
| 6 |
+
"pytorch": "2.6.0+cu124"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {},
|
| 9 |
+
"default_prompt_name": null,
|
| 10 |
+
"similarity_fn_name": "dot"
|
| 11 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b8c9578ec3b7dc6eba96a15103f75a0e2a1d53d7a47b564231f029e5233e6e0
|
| 3 |
+
size 267954768
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_SpladePooling",
|
| 12 |
+
"type": "sentence_transformers.sparse_encoder.models.SpladePooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|