Upload flux_kontext.py
Browse files- flux_kontext.py +436 -0
flux_kontext.py
ADDED
|
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import TYPE_CHECKING, List
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision
|
| 6 |
+
import yaml
|
| 7 |
+
from toolkit import train_tools
|
| 8 |
+
from toolkit.config_modules import GenerateImageConfig, ModelConfig
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from toolkit.models.base_model import BaseModel
|
| 11 |
+
from diffusers import FluxTransformer2DModel, AutoencoderKL, FluxKontextPipeline
|
| 12 |
+
from toolkit.basic import flush
|
| 13 |
+
from toolkit.prompt_utils import PromptEmbeds
|
| 14 |
+
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
|
| 15 |
+
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
|
| 16 |
+
from toolkit.dequantize import patch_dequantization_on_save
|
| 17 |
+
from toolkit.accelerator import get_accelerator, unwrap_model
|
| 18 |
+
from optimum.quanto import freeze, QTensor
|
| 19 |
+
from toolkit.util.mask import generate_random_mask, random_dialate_mask
|
| 20 |
+
from toolkit.util.quantize import quantize, get_qtype
|
| 21 |
+
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer
|
| 22 |
+
from einops import rearrange, repeat
|
| 23 |
+
import random
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
|
| 26 |
+
if TYPE_CHECKING:
|
| 27 |
+
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
| 28 |
+
|
| 29 |
+
scheduler_config = {
|
| 30 |
+
"base_image_seq_len": 256,
|
| 31 |
+
"base_shift": 0.5,
|
| 32 |
+
"max_image_seq_len": 4096,
|
| 33 |
+
"max_shift": 1.15,
|
| 34 |
+
"num_train_timesteps": 1000,
|
| 35 |
+
"shift": 3.0,
|
| 36 |
+
"use_dynamic_shifting": True
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class FluxKontextModel(BaseModel):
|
| 42 |
+
arch = "flux_kontext"
|
| 43 |
+
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
device,
|
| 47 |
+
model_config: ModelConfig,
|
| 48 |
+
dtype='bf16',
|
| 49 |
+
custom_pipeline=None,
|
| 50 |
+
noise_scheduler=None,
|
| 51 |
+
**kwargs
|
| 52 |
+
):
|
| 53 |
+
super().__init__(
|
| 54 |
+
device,
|
| 55 |
+
model_config,
|
| 56 |
+
dtype,
|
| 57 |
+
custom_pipeline,
|
| 58 |
+
noise_scheduler,
|
| 59 |
+
**kwargs
|
| 60 |
+
)
|
| 61 |
+
self.is_flow_matching = True
|
| 62 |
+
self.is_transformer = True
|
| 63 |
+
self.target_lora_modules = ['FluxTransformer2DModel']
|
| 64 |
+
|
| 65 |
+
# static method to get the noise scheduler
|
| 66 |
+
@staticmethod
|
| 67 |
+
def get_train_scheduler():
|
| 68 |
+
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
|
| 69 |
+
|
| 70 |
+
def get_bucket_divisibility(self):
|
| 71 |
+
return 16
|
| 72 |
+
|
| 73 |
+
def load_model(self):
|
| 74 |
+
dtype = self.torch_dtype
|
| 75 |
+
self.print_and_status_update("Loading Flux Kontext model")
|
| 76 |
+
# will be updated if we detect a existing checkpoint in training folder
|
| 77 |
+
model_path = self.model_config.name_or_path
|
| 78 |
+
# this is the original path put in the model directory
|
| 79 |
+
# it is here because for finetuning we only save the transformer usually
|
| 80 |
+
# so we need this for the VAE, te, etc
|
| 81 |
+
base_model_path = self.model_config.extras_name_or_path
|
| 82 |
+
|
| 83 |
+
transformer_path = model_path
|
| 84 |
+
transformer_subfolder = 'transformer'
|
| 85 |
+
|
| 86 |
+
# Check if model_path is a .safetensors file
|
| 87 |
+
if model_path.endswith('.safetensors'):
|
| 88 |
+
# Load transformer from safetensors file
|
| 89 |
+
self.print_and_status_update("Loading transformer from safetensors file")
|
| 90 |
+
from safetensors.torch import load_file
|
| 91 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
| 92 |
+
|
| 93 |
+
# Load the config from base model (extras_name_or_path)
|
| 94 |
+
transformer_config_path = os.path.join(base_model_path, 'transformer', 'config.json')
|
| 95 |
+
if not os.path.exists(transformer_config_path):
|
| 96 |
+
# Fallback to downloading config from HF
|
| 97 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
| 98 |
+
"black-forest-labs/FLUX.1-dev",
|
| 99 |
+
subfolder="transformer",
|
| 100 |
+
torch_dtype=dtype
|
| 101 |
+
)
|
| 102 |
+
else:
|
| 103 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
| 104 |
+
base_model_path,
|
| 105 |
+
subfolder="transformer",
|
| 106 |
+
torch_dtype=dtype
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# Load the weights from safetensors file
|
| 110 |
+
state_dict = load_file(model_path)
|
| 111 |
+
transformer.load_state_dict(state_dict, strict=False)
|
| 112 |
+
else:
|
| 113 |
+
# Original logic for directory-based models
|
| 114 |
+
if os.path.exists(transformer_path):
|
| 115 |
+
transformer_subfolder = None
|
| 116 |
+
transformer_path = os.path.join(transformer_path, 'transformer')
|
| 117 |
+
# check if the path is a full checkpoint.
|
| 118 |
+
te_folder_path = os.path.join(model_path, 'text_encoder')
|
| 119 |
+
# if we have the te, this folder is a full checkpoint, use it as the base
|
| 120 |
+
if os.path.exists(te_folder_path):
|
| 121 |
+
base_model_path = model_path
|
| 122 |
+
|
| 123 |
+
self.print_and_status_update("Loading transformer")
|
| 124 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
| 125 |
+
transformer_path,
|
| 126 |
+
subfolder=transformer_subfolder,
|
| 127 |
+
torch_dtype=dtype
|
| 128 |
+
)
|
| 129 |
+
transformer.to(self.quantize_device, dtype=dtype)
|
| 130 |
+
|
| 131 |
+
if self.model_config.quantize:
|
| 132 |
+
# patch the state dict method
|
| 133 |
+
patch_dequantization_on_save(transformer)
|
| 134 |
+
quantization_type = get_qtype(self.model_config.qtype)
|
| 135 |
+
self.print_and_status_update("Quantizing transformer")
|
| 136 |
+
quantize(transformer, weights=quantization_type,
|
| 137 |
+
**self.model_config.quantize_kwargs)
|
| 138 |
+
freeze(transformer)
|
| 139 |
+
transformer.to(self.device_torch)
|
| 140 |
+
else:
|
| 141 |
+
transformer.to(self.device_torch, dtype=dtype)
|
| 142 |
+
|
| 143 |
+
flush()
|
| 144 |
+
|
| 145 |
+
self.print_and_status_update("Loading T5")
|
| 146 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(
|
| 147 |
+
base_model_path, subfolder="tokenizer_2", torch_dtype=dtype
|
| 148 |
+
)
|
| 149 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
| 150 |
+
base_model_path, subfolder="text_encoder_2", torch_dtype=dtype
|
| 151 |
+
)
|
| 152 |
+
text_encoder_2.to(self.device_torch, dtype=dtype)
|
| 153 |
+
flush()
|
| 154 |
+
|
| 155 |
+
if self.model_config.quantize_te:
|
| 156 |
+
self.print_and_status_update("Quantizing T5")
|
| 157 |
+
quantize(text_encoder_2, weights=get_qtype(
|
| 158 |
+
self.model_config.qtype))
|
| 159 |
+
freeze(text_encoder_2)
|
| 160 |
+
flush()
|
| 161 |
+
|
| 162 |
+
self.print_and_status_update("Loading CLIP")
|
| 163 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 164 |
+
base_model_path, subfolder="text_encoder", torch_dtype=dtype)
|
| 165 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 166 |
+
base_model_path, subfolder="tokenizer", torch_dtype=dtype)
|
| 167 |
+
text_encoder.to(self.device_torch, dtype=dtype)
|
| 168 |
+
|
| 169 |
+
self.print_and_status_update("Loading VAE")
|
| 170 |
+
vae = AutoencoderKL.from_pretrained(
|
| 171 |
+
base_model_path, subfolder="vae", torch_dtype=dtype)
|
| 172 |
+
|
| 173 |
+
self.noise_scheduler = FluxKontextModel.get_train_scheduler()
|
| 174 |
+
|
| 175 |
+
self.print_and_status_update("Making pipe")
|
| 176 |
+
|
| 177 |
+
pipe: FluxKontextPipeline = FluxKontextPipeline(
|
| 178 |
+
scheduler=self.noise_scheduler,
|
| 179 |
+
text_encoder=text_encoder,
|
| 180 |
+
tokenizer=tokenizer,
|
| 181 |
+
text_encoder_2=None,
|
| 182 |
+
tokenizer_2=tokenizer_2,
|
| 183 |
+
vae=vae,
|
| 184 |
+
transformer=None,
|
| 185 |
+
)
|
| 186 |
+
# for quantization, it works best to do these after making the pipe
|
| 187 |
+
pipe.text_encoder_2 = text_encoder_2
|
| 188 |
+
pipe.transformer = transformer
|
| 189 |
+
|
| 190 |
+
self.print_and_status_update("Preparing Model")
|
| 191 |
+
|
| 192 |
+
text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
|
| 193 |
+
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
|
| 194 |
+
|
| 195 |
+
pipe.transformer = pipe.transformer.to(self.device_torch)
|
| 196 |
+
|
| 197 |
+
flush()
|
| 198 |
+
# just to make sure everything is on the right device and dtype
|
| 199 |
+
text_encoder[0].to(self.device_torch)
|
| 200 |
+
text_encoder[0].requires_grad_(False)
|
| 201 |
+
text_encoder[0].eval()
|
| 202 |
+
text_encoder[1].to(self.device_torch)
|
| 203 |
+
text_encoder[1].requires_grad_(False)
|
| 204 |
+
text_encoder[1].eval()
|
| 205 |
+
pipe.transformer = pipe.transformer.to(self.device_torch)
|
| 206 |
+
flush()
|
| 207 |
+
|
| 208 |
+
# save it to the model class
|
| 209 |
+
self.vae = vae
|
| 210 |
+
self.text_encoder = text_encoder # list of text encoders
|
| 211 |
+
self.tokenizer = tokenizer # list of tokenizers
|
| 212 |
+
self.model = pipe.transformer
|
| 213 |
+
self.pipeline = pipe
|
| 214 |
+
self.print_and_status_update("Model Loaded")
|
| 215 |
+
|
| 216 |
+
def get_generation_pipeline(self):
|
| 217 |
+
scheduler = FluxKontextModel.get_train_scheduler()
|
| 218 |
+
|
| 219 |
+
pipeline: FluxKontextPipeline = FluxKontextPipeline(
|
| 220 |
+
scheduler=scheduler,
|
| 221 |
+
text_encoder=unwrap_model(self.text_encoder[0]),
|
| 222 |
+
tokenizer=self.tokenizer[0],
|
| 223 |
+
text_encoder_2=unwrap_model(self.text_encoder[1]),
|
| 224 |
+
tokenizer_2=self.tokenizer[1],
|
| 225 |
+
vae=unwrap_model(self.vae),
|
| 226 |
+
transformer=unwrap_model(self.transformer)
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
pipeline = pipeline.to(self.device_torch)
|
| 230 |
+
|
| 231 |
+
return pipeline
|
| 232 |
+
|
| 233 |
+
def generate_single_image(
|
| 234 |
+
self,
|
| 235 |
+
pipeline: FluxKontextPipeline,
|
| 236 |
+
gen_config: GenerateImageConfig,
|
| 237 |
+
conditional_embeds: PromptEmbeds,
|
| 238 |
+
unconditional_embeds: PromptEmbeds,
|
| 239 |
+
generator: torch.Generator,
|
| 240 |
+
extra: dict,
|
| 241 |
+
):
|
| 242 |
+
if gen_config.ctrl_img is None:
|
| 243 |
+
raise ValueError(
|
| 244 |
+
"Control image is required for Flux Kontext model generation."
|
| 245 |
+
)
|
| 246 |
+
else:
|
| 247 |
+
control_img = Image.open(gen_config.ctrl_img)
|
| 248 |
+
control_img = control_img.convert("RGB")
|
| 249 |
+
img = pipeline(
|
| 250 |
+
image=control_img,
|
| 251 |
+
prompt_embeds=conditional_embeds.text_embeds,
|
| 252 |
+
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
|
| 253 |
+
height=gen_config.height,
|
| 254 |
+
width=gen_config.width,
|
| 255 |
+
num_inference_steps=gen_config.num_inference_steps,
|
| 256 |
+
guidance_scale=gen_config.guidance_scale,
|
| 257 |
+
latents=gen_config.latents,
|
| 258 |
+
generator=generator,
|
| 259 |
+
**extra
|
| 260 |
+
).images[0]
|
| 261 |
+
return img
|
| 262 |
+
|
| 263 |
+
def get_noise_prediction(
|
| 264 |
+
self,
|
| 265 |
+
latent_model_input: torch.Tensor,
|
| 266 |
+
timestep: torch.Tensor, # 0 to 1000 scale
|
| 267 |
+
text_embeddings: PromptEmbeds,
|
| 268 |
+
guidance_embedding_scale: float,
|
| 269 |
+
bypass_guidance_embedding: bool,
|
| 270 |
+
**kwargs
|
| 271 |
+
):
|
| 272 |
+
with torch.no_grad():
|
| 273 |
+
bs, c, h, w = latent_model_input.shape
|
| 274 |
+
# if we have a control on the channel dimension, put it on the batch for packing
|
| 275 |
+
has_control = False
|
| 276 |
+
if latent_model_input.shape[1] == 32:
|
| 277 |
+
# chunk it and stack it on batch dimension
|
| 278 |
+
# dont update batch size for img_its
|
| 279 |
+
lat, control = torch.chunk(latent_model_input, 2, dim=1)
|
| 280 |
+
latent_model_input = torch.cat([lat, control], dim=0)
|
| 281 |
+
has_control = True
|
| 282 |
+
|
| 283 |
+
latent_model_input_packed = rearrange(
|
| 284 |
+
latent_model_input,
|
| 285 |
+
"b c (h ph) (w pw) -> b (h w) (c ph pw)",
|
| 286 |
+
ph=2,
|
| 287 |
+
pw=2
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
| 291 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
| 292 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
| 293 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c",
|
| 294 |
+
b=bs).to(self.device_torch)
|
| 295 |
+
|
| 296 |
+
# handle control image ids
|
| 297 |
+
if has_control:
|
| 298 |
+
ctrl_ids = img_ids.clone()
|
| 299 |
+
ctrl_ids[..., 0] = 1
|
| 300 |
+
img_ids = torch.cat([img_ids, ctrl_ids], dim=1)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
txt_ids = torch.zeros(
|
| 304 |
+
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)
|
| 305 |
+
|
| 306 |
+
# # handle guidance
|
| 307 |
+
if self.unet_unwrapped.config.guidance_embeds:
|
| 308 |
+
if isinstance(guidance_embedding_scale, list):
|
| 309 |
+
guidance = torch.tensor(
|
| 310 |
+
guidance_embedding_scale, device=self.device_torch)
|
| 311 |
+
else:
|
| 312 |
+
guidance = torch.tensor(
|
| 313 |
+
[guidance_embedding_scale], device=self.device_torch)
|
| 314 |
+
guidance = guidance.expand(latent_model_input.shape[0])
|
| 315 |
+
else:
|
| 316 |
+
guidance = None
|
| 317 |
+
|
| 318 |
+
if bypass_guidance_embedding:
|
| 319 |
+
bypass_flux_guidance(self.unet)
|
| 320 |
+
|
| 321 |
+
cast_dtype = self.unet.dtype
|
| 322 |
+
# changes from orig implementation
|
| 323 |
+
if txt_ids.ndim == 3:
|
| 324 |
+
txt_ids = txt_ids[0]
|
| 325 |
+
if img_ids.ndim == 3:
|
| 326 |
+
img_ids = img_ids[0]
|
| 327 |
+
|
| 328 |
+
latent_size = latent_model_input_packed.shape[1]
|
| 329 |
+
# move the kontext channels. We have them on batch dimension to here, but need to put them on the latent dimension
|
| 330 |
+
if has_control:
|
| 331 |
+
latent, control = torch.chunk(latent_model_input_packed, 2, dim=0)
|
| 332 |
+
latent_model_input_packed = torch.cat(
|
| 333 |
+
[latent, control], dim=1
|
| 334 |
+
)
|
| 335 |
+
latent_size = latent.shape[1]
|
| 336 |
+
|
| 337 |
+
noise_pred = self.unet(
|
| 338 |
+
hidden_states=latent_model_input_packed.to(
|
| 339 |
+
self.device_torch, cast_dtype),
|
| 340 |
+
timestep=timestep / 1000,
|
| 341 |
+
encoder_hidden_states=text_embeddings.text_embeds.to(
|
| 342 |
+
self.device_torch, cast_dtype),
|
| 343 |
+
pooled_projections=text_embeddings.pooled_embeds.to(
|
| 344 |
+
self.device_torch, cast_dtype),
|
| 345 |
+
txt_ids=txt_ids,
|
| 346 |
+
img_ids=img_ids,
|
| 347 |
+
guidance=guidance,
|
| 348 |
+
return_dict=False,
|
| 349 |
+
**kwargs,
|
| 350 |
+
)[0]
|
| 351 |
+
|
| 352 |
+
# remove kontext image conditioning
|
| 353 |
+
noise_pred = noise_pred[:, :latent_size]
|
| 354 |
+
|
| 355 |
+
if isinstance(noise_pred, QTensor):
|
| 356 |
+
noise_pred = noise_pred.dequantize()
|
| 357 |
+
|
| 358 |
+
noise_pred = rearrange(
|
| 359 |
+
noise_pred,
|
| 360 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
| 361 |
+
h=latent_model_input.shape[2] // 2,
|
| 362 |
+
w=latent_model_input.shape[3] // 2,
|
| 363 |
+
ph=2,
|
| 364 |
+
pw=2,
|
| 365 |
+
c=self.vae.config.latent_channels
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
if bypass_guidance_embedding:
|
| 369 |
+
restore_flux_guidance(self.unet)
|
| 370 |
+
|
| 371 |
+
return noise_pred
|
| 372 |
+
|
| 373 |
+
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
| 374 |
+
if self.pipeline.text_encoder.device != self.device_torch:
|
| 375 |
+
self.pipeline.text_encoder.to(self.device_torch)
|
| 376 |
+
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux(
|
| 377 |
+
self.tokenizer,
|
| 378 |
+
self.text_encoder,
|
| 379 |
+
prompt,
|
| 380 |
+
max_length=512,
|
| 381 |
+
)
|
| 382 |
+
pe = PromptEmbeds(
|
| 383 |
+
prompt_embeds
|
| 384 |
+
)
|
| 385 |
+
pe.pooled_embeds = pooled_prompt_embeds
|
| 386 |
+
return pe
|
| 387 |
+
|
| 388 |
+
def get_model_has_grad(self):
|
| 389 |
+
# return from a weight if it has grad
|
| 390 |
+
return self.model.proj_out.weight.requires_grad
|
| 391 |
+
|
| 392 |
+
def get_te_has_grad(self):
|
| 393 |
+
# return from a weight if it has grad
|
| 394 |
+
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
|
| 395 |
+
|
| 396 |
+
def save_model(self, output_path, meta, save_dtype):
|
| 397 |
+
# only save the unet
|
| 398 |
+
transformer: FluxTransformer2DModel = unwrap_model(self.model)
|
| 399 |
+
transformer.save_pretrained(
|
| 400 |
+
save_directory=os.path.join(output_path, 'transformer'),
|
| 401 |
+
safe_serialization=True,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
|
| 405 |
+
with open(meta_path, 'w') as f:
|
| 406 |
+
yaml.dump(meta, f)
|
| 407 |
+
|
| 408 |
+
def get_loss_target(self, *args, **kwargs):
|
| 409 |
+
noise = kwargs.get('noise')
|
| 410 |
+
batch = kwargs.get('batch')
|
| 411 |
+
return (noise - batch.latents).detach()
|
| 412 |
+
|
| 413 |
+
def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'):
|
| 414 |
+
with torch.no_grad():
|
| 415 |
+
control_tensor = batch.control_tensor
|
| 416 |
+
if control_tensor is not None:
|
| 417 |
+
self.vae.to(self.device_torch)
|
| 418 |
+
# we are not packed here, so we just need to pass them so we can pack them later
|
| 419 |
+
control_tensor = control_tensor * 2 - 1
|
| 420 |
+
control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype)
|
| 421 |
+
|
| 422 |
+
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
|
| 423 |
+
if batch.tensor is not None:
|
| 424 |
+
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
|
| 425 |
+
else:
|
| 426 |
+
# When caching latents, batch.tensor is None. We get the size from the file_items instead.
|
| 427 |
+
target_h = batch.file_items[0].crop_height
|
| 428 |
+
target_w = batch.file_items[0].crop_width
|
| 429 |
+
|
| 430 |
+
if control_tensor.shape[2] != target_h or control_tensor.shape[3] != target_w:
|
| 431 |
+
control_tensor = F.interpolate(control_tensor, size=(target_h, target_w), mode='bilinear')
|
| 432 |
+
|
| 433 |
+
control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype)
|
| 434 |
+
latents = torch.cat((latents, control_latent), dim=1)
|
| 435 |
+
|
| 436 |
+
return latents.detach()
|