Upload load_quantized_model.py
Browse files- load_quantized_model.py +66 -0
load_quantized_model.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# load_quantized_model.py
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
from safetensors.torch import load_file
|
| 5 |
+
from optimum.quanto import requantize, quantize, qint4
|
| 6 |
+
from hunyuan_image_3.hunyuan import HunyuanImage3ForCausalMM
|
| 7 |
+
from transformers import AutoConfig, QuantoConfig
|
| 8 |
+
from transformers.generation.utils import GenerationConfig
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def load_quantized_hi3_m1(model_path):
|
| 12 |
+
print(f"Loading model architecture from {model_path} to CPU...")
|
| 13 |
+
Qmodel = HunyuanImage3ForCausalMM.from_pretrained(
|
| 14 |
+
model_path,
|
| 15 |
+
dtype=torch.bfloat16,
|
| 16 |
+
device_map=None,
|
| 17 |
+
attn_implementation="sdpa",
|
| 18 |
+
moe_impl="eager",
|
| 19 |
+
moe_drop_tokens=True,
|
| 20 |
+
trust_remote_code=True,
|
| 21 |
+
low_cpu_mem_usage=False,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
print("Applying int4 quantization structure...")
|
| 25 |
+
quantize(Qmodel, weights=qint4)
|
| 26 |
+
|
| 27 |
+
print("Loading quantized weights...")
|
| 28 |
+
state_dict = load_file(f"{model_path}/model.safetensors")
|
| 29 |
+
Qmodel.load_state_dict(state_dict, strict=False, assign=True)
|
| 30 |
+
|
| 31 |
+
print("Moving quantized model to GPU...")
|
| 32 |
+
Qmodel = Qmodel.to("cuda")
|
| 33 |
+
|
| 34 |
+
return Qmodel
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_quantized_hi3_m2(model_path):
|
| 38 |
+
|
| 39 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 40 |
+
|
| 41 |
+
state_dict = load_file(f"{model_path}/model.safetensors")
|
| 42 |
+
with open(f"{model_path}/quantization_map.json", "r") as f: quantization_map = json.load(f)
|
| 43 |
+
|
| 44 |
+
print("Create Meta model and Loading quantized weights to CPU...")
|
| 45 |
+
with torch.device('meta'): Qmodel = HunyuanImage3ForCausalMM(config)
|
| 46 |
+
Qmodel = Qmodel.to(torch.bfloat16)
|
| 47 |
+
requantize(Qmodel, state_dict, quantization_map, device=torch.device('cpu'))
|
| 48 |
+
|
| 49 |
+
generation_config = GenerationConfig.from_pretrained(model_path)
|
| 50 |
+
Qmodel.generation_config = generation_config
|
| 51 |
+
|
| 52 |
+
print("Moving quantized model to GPU...")
|
| 53 |
+
Qmodel = Qmodel.to(torch.device('cuda'))
|
| 54 |
+
|
| 55 |
+
return Qmodel
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# modify your "app/pipeline.py" script as below:
|
| 59 |
+
# from load_quantized_model import load_quantized_hi3_m1, load_quantized_hi3_m2
|
| 60 |
+
|
| 61 |
+
# replace:
|
| 62 |
+
# self.model = HunyuanImage3ForCausalMM.from_pretrained(args.model_id, **kwargs)
|
| 63 |
+
# with:
|
| 64 |
+
# self.model = load_quantized_hi3_m1(args.model_id)
|
| 65 |
+
# or with:
|
| 66 |
+
# self.model = load_quantized_hi3_m2(args.model_id)
|