koelectra-small-clue-mrc
This model is a fine-tuned version of monologg/koelectra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 7.1824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 1.0 | 10 | 6.1555 |
| No log | 2.0 | 20 | 6.2147 |
| No log | 3.0 | 30 | 6.2340 |
| No log | 4.0 | 40 | 6.2524 |
| No log | 5.0 | 50 | 6.3273 |
| No log | 6.0 | 60 | 6.3144 |
| No log | 7.0 | 70 | 6.3801 |
| No log | 8.0 | 80 | 6.3412 |
| No log | 9.0 | 90 | 6.3442 |
| No log | 10.0 | 100 | 6.3031 |
| No log | 11.0 | 110 | 6.4105 |
| No log | 12.0 | 120 | 6.3805 |
| No log | 13.0 | 130 | 6.2836 |
| No log | 14.0 | 140 | 6.3430 |
| No log | 15.0 | 150 | 6.4388 |
| No log | 16.0 | 160 | 6.4083 |
| No log | 17.0 | 170 | 6.5182 |
| No log | 18.0 | 180 | 6.4754 |
| No log | 19.0 | 190 | 6.5464 |
| No log | 20.0 | 200 | 6.5799 |
| No log | 21.0 | 210 | 6.5363 |
| No log | 22.0 | 220 | 6.5673 |
| No log | 23.0 | 230 | 6.4947 |
| No log | 24.0 | 240 | 6.5463 |
| No log | 25.0 | 250 | 6.4552 |
| No log | 26.0 | 260 | 6.6232 |
| No log | 27.0 | 270 | 6.5952 |
| No log | 28.0 | 280 | 6.6527 |
| No log | 29.0 | 290 | 6.7180 |
| No log | 30.0 | 300 | 6.7968 |
| No log | 31.0 | 310 | 6.7918 |
| No log | 32.0 | 320 | 6.6616 |
| No log | 33.0 | 330 | 6.7570 |
| No log | 34.0 | 340 | 6.7317 |
| No log | 35.0 | 350 | 6.7470 |
| No log | 36.0 | 360 | 6.7407 |
| No log | 37.0 | 370 | 6.7294 |
| No log | 38.0 | 380 | 6.6954 |
| No log | 39.0 | 390 | 6.7345 |
| No log | 40.0 | 400 | 6.6893 |
| No log | 41.0 | 410 | 6.7154 |
| No log | 42.0 | 420 | 6.7860 |
| No log | 43.0 | 430 | 6.7898 |
| No log | 44.0 | 440 | 6.7796 |
| No log | 45.0 | 450 | 6.8280 |
| No log | 46.0 | 460 | 6.7464 |
| No log | 47.0 | 470 | 6.9669 |
| No log | 48.0 | 480 | 6.8378 |
| No log | 49.0 | 490 | 6.8529 |
| 0.8074 | 50.0 | 500 | 7.0133 |
| 0.8074 | 51.0 | 510 | 7.0422 |
| 0.8074 | 52.0 | 520 | 6.9611 |
| 0.8074 | 53.0 | 530 | 6.9869 |
| 0.8074 | 54.0 | 540 | 6.9359 |
| 0.8074 | 55.0 | 550 | 6.9736 |
| 0.8074 | 56.0 | 560 | 7.0233 |
| 0.8074 | 57.0 | 570 | 6.8595 |
| 0.8074 | 58.0 | 580 | 6.9922 |
| 0.8074 | 59.0 | 590 | 6.9933 |
| 0.8074 | 60.0 | 600 | 6.9497 |
| 0.8074 | 61.0 | 610 | 6.9149 |
| 0.8074 | 62.0 | 620 | 6.9843 |
| 0.8074 | 63.0 | 630 | 6.9076 |
| 0.8074 | 64.0 | 640 | 6.9961 |
| 0.8074 | 65.0 | 650 | 7.0133 |
| 0.8074 | 66.0 | 660 | 7.0827 |
| 0.8074 | 67.0 | 670 | 7.0696 |
| 0.8074 | 68.0 | 680 | 7.1281 |
| 0.8074 | 69.0 | 690 | 7.0869 |
| 0.8074 | 70.0 | 700 | 6.9208 |
| 0.8074 | 71.0 | 710 | 7.0654 |
| 0.8074 | 72.0 | 720 | 7.1179 |
| 0.8074 | 73.0 | 730 | 7.0358 |
| 0.8074 | 74.0 | 740 | 7.0207 |
| 0.8074 | 75.0 | 750 | 7.0764 |
| 0.8074 | 76.0 | 760 | 7.0927 |
| 0.8074 | 77.0 | 770 | 7.1204 |
| 0.8074 | 78.0 | 780 | 7.1306 |
| 0.8074 | 79.0 | 790 | 7.0395 |
| 0.8074 | 80.0 | 800 | 7.0904 |
| 0.8074 | 81.0 | 810 | 7.1728 |
| 0.8074 | 82.0 | 820 | 7.1736 |
| 0.8074 | 83.0 | 830 | 7.1737 |
| 0.8074 | 84.0 | 840 | 7.1170 |
| 0.8074 | 85.0 | 850 | 7.1273 |
| 0.8074 | 86.0 | 860 | 7.1002 |
| 0.8074 | 87.0 | 870 | 7.1119 |
| 0.8074 | 88.0 | 880 | 7.1539 |
| 0.8074 | 89.0 | 890 | 7.1715 |
| 0.8074 | 90.0 | 900 | 7.1523 |
| 0.8074 | 91.0 | 910 | 7.1583 |
| 0.8074 | 92.0 | 920 | 7.1967 |
| 0.8074 | 93.0 | 930 | 7.2076 |
| 0.8074 | 94.0 | 940 | 7.1889 |
| 0.8074 | 95.0 | 950 | 7.1646 |
| 0.8074 | 96.0 | 960 | 7.1693 |
| 0.8074 | 97.0 | 970 | 7.1801 |
| 0.8074 | 98.0 | 980 | 7.1830 |
| 0.8074 | 99.0 | 990 | 7.1843 |
| 0.4709 | 100.0 | 1000 | 7.1824 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 6
Model tree for wfos3241/koelectra-small-clue-mrc
Base model
monologg/koelectra-small-discriminator