Upload config
Browse files- readme_template.md +160 -0
readme_template.md
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: atommic
|
| 6 |
+
datasets:
|
| 7 |
+
- SKMTEA
|
| 8 |
+
thumbnail: null
|
| 9 |
+
tags:
|
| 10 |
+
- multitask-image-reconstruction-image-segmentation
|
| 11 |
+
- SegNet
|
| 12 |
+
- ATOMMIC
|
| 13 |
+
- pytorch
|
| 14 |
+
model-index:
|
| 15 |
+
- name: MTL_SegNet_SKMTEA_poisson2d_4x
|
| 16 |
+
results: []
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
|
| 23 |
+
Segmentation Network MRI (SegNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## ATOMMIC: Training
|
| 27 |
+
|
| 28 |
+
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
|
| 29 |
+
```
|
| 30 |
+
pip install atommic['all']
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## How to Use this Model
|
| 34 |
+
|
| 35 |
+
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
| 36 |
+
|
| 37 |
+
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf).
|
| 38 |
+
|
| 39 |
+
### Automatically instantiate the model
|
| 40 |
+
|
| 41 |
+
```base
|
| 42 |
+
pretrained: true
|
| 43 |
+
checkpoint: https://huggingface.co/wdika/MTL_SegNet_SKMTEA_poisson2d_4x/blob/main/MTL_SegNet_SKMTEA_poisson2d_4x.atommic
|
| 44 |
+
mode: test
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Usage
|
| 48 |
+
|
| 49 |
+
You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information.
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
## Model Architecture
|
| 53 |
+
```base
|
| 54 |
+
model:
|
| 55 |
+
model_name: SEGNET
|
| 56 |
+
use_reconstruction_module: true
|
| 57 |
+
input_channels: 64 # coils * 2
|
| 58 |
+
reconstruction_module_output_channels: 64 # coils * 2
|
| 59 |
+
segmentation_module_output_channels: 4
|
| 60 |
+
channels: 64
|
| 61 |
+
num_pools: 2
|
| 62 |
+
padding_size: 11
|
| 63 |
+
drop_prob: 0.0
|
| 64 |
+
normalize: true
|
| 65 |
+
padding: true
|
| 66 |
+
norm_groups: 2
|
| 67 |
+
num_cascades: 5
|
| 68 |
+
segmentation_final_layer_conv_dim: 2
|
| 69 |
+
segmentation_final_layer_kernel_size: 3
|
| 70 |
+
segmentation_final_layer_dilation: 1
|
| 71 |
+
segmentation_final_layer_bias: False
|
| 72 |
+
segmentation_final_layer_nonlinear: relu
|
| 73 |
+
segmentation_loss:
|
| 74 |
+
dice: 1.0
|
| 75 |
+
dice_loss_include_background: true # always set to true if the background is removed
|
| 76 |
+
dice_loss_to_onehot_y: false
|
| 77 |
+
dice_loss_sigmoid: false
|
| 78 |
+
dice_loss_softmax: false
|
| 79 |
+
dice_loss_other_act: none
|
| 80 |
+
dice_loss_squared_pred: false
|
| 81 |
+
dice_loss_jaccard: false
|
| 82 |
+
dice_loss_flatten: false
|
| 83 |
+
dice_loss_reduction: mean_batch
|
| 84 |
+
dice_loss_smooth_nr: 1e-5
|
| 85 |
+
dice_loss_smooth_dr: 1e-5
|
| 86 |
+
dice_loss_batch: true
|
| 87 |
+
dice_metric_include_background: true # always set to true if the background is removed
|
| 88 |
+
dice_metric_to_onehot_y: false
|
| 89 |
+
dice_metric_sigmoid: false
|
| 90 |
+
dice_metric_softmax: false
|
| 91 |
+
dice_metric_other_act: none
|
| 92 |
+
dice_metric_squared_pred: false
|
| 93 |
+
dice_metric_jaccard: false
|
| 94 |
+
dice_metric_flatten: false
|
| 95 |
+
dice_metric_reduction: mean_batch
|
| 96 |
+
dice_metric_smooth_nr: 1e-5
|
| 97 |
+
dice_metric_smooth_dr: 1e-5
|
| 98 |
+
dice_metric_batch: true
|
| 99 |
+
segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5]
|
| 100 |
+
segmentation_activation: sigmoid
|
| 101 |
+
reconstruction_loss:
|
| 102 |
+
l1: 1.0
|
| 103 |
+
kspace_reconstruction_loss: false
|
| 104 |
+
total_reconstruction_loss_weight: 0.5
|
| 105 |
+
total_segmentation_loss_weight: 0.5
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
## Training
|
| 109 |
+
```base
|
| 110 |
+
optim:
|
| 111 |
+
name: adam
|
| 112 |
+
lr: 1e-4
|
| 113 |
+
betas:
|
| 114 |
+
- 0.9
|
| 115 |
+
- 0.98
|
| 116 |
+
weight_decay: 0.0
|
| 117 |
+
sched:
|
| 118 |
+
name: InverseSquareRootAnnealing
|
| 119 |
+
min_lr: 0.0
|
| 120 |
+
last_epoch: -1
|
| 121 |
+
warmup_ratio: 0.1
|
| 122 |
+
|
| 123 |
+
trainer:
|
| 124 |
+
strategy: ddp
|
| 125 |
+
accelerator: gpu
|
| 126 |
+
devices: 1
|
| 127 |
+
num_nodes: 1
|
| 128 |
+
max_epochs: 10
|
| 129 |
+
precision: 16-mixed
|
| 130 |
+
enable_checkpointing: false
|
| 131 |
+
logger: false
|
| 132 |
+
log_every_n_steps: 50
|
| 133 |
+
check_val_every_n_epoch: -1
|
| 134 |
+
max_steps: -1
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
## Performance
|
| 138 |
+
|
| 139 |
+
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files.
|
| 140 |
+
|
| 141 |
+
Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice.
|
| 142 |
+
|
| 143 |
+
Results
|
| 144 |
+
-------
|
| 145 |
+
|
| 146 |
+
Evaluation against SENSE targets
|
| 147 |
+
--------------------------------
|
| 148 |
+
4x: MSE = 0.001247 +/- 0.002092 NMSE = 0.02623 +/- 0.05875 PSNR = 29.95 +/- 5.115 SSIM = 0.8396 +/- 0.1071 DICE = 0.9154 +/- 0.1138 F1 = 0.2703 +/- 0.2842 HD95 = 3.002 +/- 1.449 IOU = 0.2904 +/- 0.3491
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
## Limitations
|
| 152 |
+
|
| 153 |
+
This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane.
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
## References
|
| 157 |
+
|
| 158 |
+
[1] [ATOMMIC](https://github.com/wdika/atommic)
|
| 159 |
+
|
| 160 |
+
[2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
|