Initial upload of Wargon Clothing Classifier v1.0
Browse files- README.md +229 -0
- class_mappings.json +122 -0
- config.json +83 -0
- model.safetensors +3 -0
- preprocessor_config.json +31 -0
README.md
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: google/vit-base-patch16-224
|
| 4 |
+
tags:
|
| 5 |
+
- image-classification
|
| 6 |
+
- vision
|
| 7 |
+
- clothing
|
| 8 |
+
- fashion
|
| 9 |
+
- vit
|
| 10 |
+
- pytorch
|
| 11 |
+
datasets:
|
| 12 |
+
- wargoninnovation/clothingdatasetsecondhand
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
- f1
|
| 16 |
+
pipeline_tag: image-classification
|
| 17 |
+
widget:
|
| 18 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
|
| 19 |
+
example_title: Tiger
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
# Wargon Clothing Classifier
|
| 23 |
+
|
| 24 |
+
A Vision Transformer (ViT) based model for clothing classification, trained on secondhand clothing images. This model can classify 27 different types of clothing items with 73% accuracy.
|
| 25 |
+
|
| 26 |
+
## Model Details
|
| 27 |
+
|
| 28 |
+
### Model Description
|
| 29 |
+
|
| 30 |
+
This is a Vision Transformer model fine-tuned for clothing classification. It was developed to solve real-world clothing categorization challenges in secondhand fashion applications.
|
| 31 |
+
|
| 32 |
+
- **Developed by:** Wargon Innovation
|
| 33 |
+
- **Model type:** Image Classification
|
| 34 |
+
- **Language(s):** N/A (Vision model)
|
| 35 |
+
- **License:** Apache 2.0
|
| 36 |
+
- **Finetuned from model:** google/vit-base-patch16-224
|
| 37 |
+
|
| 38 |
+
### Model Sources
|
| 39 |
+
|
| 40 |
+
- **Repository:** [Wargon Innovation Clothing Dataset](https://huggingface.co/datasets/wargoninnovation/clothingdatasetsecondhand)
|
| 41 |
+
- **Base Model:** [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
|
| 42 |
+
|
| 43 |
+
## Uses
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
This model can be used for:
|
| 48 |
+
- Automatic clothing categorization in e-commerce
|
| 49 |
+
- Fashion inventory management
|
| 50 |
+
- Secondhand clothing marketplaces
|
| 51 |
+
- Fashion recommendation systems
|
| 52 |
+
|
| 53 |
+
### Downstream Use
|
| 54 |
+
|
| 55 |
+
The model can be fine-tuned for:
|
| 56 |
+
- Specific clothing brand recognition
|
| 57 |
+
- Size estimation from images
|
| 58 |
+
- Style classification
|
| 59 |
+
- Multi-label clothing attribute detection
|
| 60 |
+
|
| 61 |
+
## How to Get Started with the Model
|
| 62 |
+
|
| 63 |
+
```python
|
| 64 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 65 |
+
from PIL import Image
|
| 66 |
+
import torch
|
| 67 |
+
|
| 68 |
+
# Load model and processor
|
| 69 |
+
processor = AutoImageProcessor.from_pretrained("wargoninnovation/wargon-clothing-classifier")
|
| 70 |
+
model = AutoModelForImageClassification.from_pretrained("wargoninnovation/wargon-clothing-classifier")
|
| 71 |
+
|
| 72 |
+
# Load and preprocess image
|
| 73 |
+
image = Image.open("path_to_clothing_image.jpg")
|
| 74 |
+
inputs = processor(image, return_tensors="pt")
|
| 75 |
+
|
| 76 |
+
# Make prediction
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 80 |
+
|
| 81 |
+
# Get top prediction
|
| 82 |
+
predicted_class_id = predictions.argmax().item()
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Training Details
|
| 86 |
+
|
| 87 |
+
### Training Data
|
| 88 |
+
|
| 89 |
+
The model was trained on the [wargoninnovation/clothingdatasetsecondhand](https://huggingface.co/datasets/wargoninnovation/clothingdatasetsecondhand) dataset, which contains over 30,000 images of secondhand clothing items across 34+ categories.
|
| 90 |
+
|
| 91 |
+
**Data Preprocessing:**
|
| 92 |
+
- Filtered classes with fewer than 10 samples to ensure robust train/validation splits
|
| 93 |
+
- Final dataset contains 27 clothing categories
|
| 94 |
+
- Images resized to 224x224 pixels
|
| 95 |
+
- Stratified train/validation split (80/20)
|
| 96 |
+
|
| 97 |
+
### Training Procedure
|
| 98 |
+
|
| 99 |
+
#### Preprocessing
|
| 100 |
+
|
| 101 |
+
- **Image Size:** 224x224 pixels
|
| 102 |
+
- **Normalization:** ImageNet statistics
|
| 103 |
+
- **Data Augmentation:** Standard transformations applied
|
| 104 |
+
|
| 105 |
+
#### Training Hyperparameters
|
| 106 |
+
|
| 107 |
+
- **Training regime:** Mixed precision (fp16)
|
| 108 |
+
- **Learning Rate:** 2e-5
|
| 109 |
+
- **Batch Size:** 16
|
| 110 |
+
- **Epochs:** 6
|
| 111 |
+
- **Optimizer:** AdamW
|
| 112 |
+
- **Weight Decay:** 0.01
|
| 113 |
+
- **Warmup Steps:** 500
|
| 114 |
+
- **Label Smoothing:** 0.1
|
| 115 |
+
|
| 116 |
+
#### Hardware
|
| 117 |
+
|
| 118 |
+
- **GPU:** NVIDIA RTX 3060 (12GB VRAM)
|
| 119 |
+
- **Training Time:** ~1.5 hours
|
| 120 |
+
|
| 121 |
+
## Evaluation
|
| 122 |
+
|
| 123 |
+
### Testing Data, Factors & Metrics
|
| 124 |
+
|
| 125 |
+
The model was evaluated on a stratified validation set (20% of the filtered dataset).
|
| 126 |
+
|
| 127 |
+
#### Metrics
|
| 128 |
+
|
| 129 |
+
- **Validation Accuracy:** 73.0%
|
| 130 |
+
- **F1 Score:** 72.7%
|
| 131 |
+
- **Precision:** 72.8%
|
| 132 |
+
- **Recall:** 73.0%
|
| 133 |
+
|
| 134 |
+
### Results
|
| 135 |
+
|
| 136 |
+
The model achieves balanced performance across major clothing categories, with particular strength in:
|
| 137 |
+
- Common items (T-shirts, Jeans, Dresses)
|
| 138 |
+
- Well-represented categories in the training data
|
| 139 |
+
- Clean product photography (as in the training dataset)
|
| 140 |
+
|
| 141 |
+
## Clothing Categories
|
| 142 |
+
|
| 143 |
+
The model can classify the following 27 clothing types:
|
| 144 |
+
|
| 145 |
+
1. Blazer
|
| 146 |
+
2. Blouse
|
| 147 |
+
3. Cardigan
|
| 148 |
+
4. Dress
|
| 149 |
+
5. Hoodie
|
| 150 |
+
6. Jacket
|
| 151 |
+
7. Jeans
|
| 152 |
+
8. Nightgown
|
| 153 |
+
9. Outerwear
|
| 154 |
+
10. Pajamas
|
| 155 |
+
11. Rain jacket
|
| 156 |
+
12. Rain trousers
|
| 157 |
+
13. Robe
|
| 158 |
+
14. Shirt
|
| 159 |
+
15. Shorts
|
| 160 |
+
16. Skirt
|
| 161 |
+
17. Sweater
|
| 162 |
+
18. T-shirt
|
| 163 |
+
19. Tank top
|
| 164 |
+
20. Tights
|
| 165 |
+
21. Top
|
| 166 |
+
22. Training top
|
| 167 |
+
23. Trousers
|
| 168 |
+
24. Tunic
|
| 169 |
+
25. Vest
|
| 170 |
+
26. Winter jacket
|
| 171 |
+
27. Winter trousers
|
| 172 |
+
|
| 173 |
+
## Limitations and Bias
|
| 174 |
+
|
| 175 |
+
### Limitations
|
| 176 |
+
|
| 177 |
+
- **Image Quality:** Best performance on clean, well-lit product photos similar to training data
|
| 178 |
+
- **Background:** Optimized for images with minimal background distractions
|
| 179 |
+
- **Viewpoint:** Trained primarily on front-facing clothing images
|
| 180 |
+
- **Categories:** Limited to the 27 categories present in training data
|
| 181 |
+
|
| 182 |
+
### Bias
|
| 183 |
+
|
| 184 |
+
- **Data Source:** Trained on secondhand clothing, may not generalize well to new/luxury items
|
| 185 |
+
- **Cultural Bias:** Dataset may reflect specific regional fashion preferences
|
| 186 |
+
- **Class Imbalance:** Some categories had limited representation even after filtering
|
| 187 |
+
|
| 188 |
+
## Environmental Impact
|
| 189 |
+
|
| 190 |
+
- **Hardware Type:** NVIDIA RTX 3060
|
| 191 |
+
- **Hours Used:** ~1.5 hours training time
|
| 192 |
+
- **Cloud Provider:** N/A (Local training)
|
| 193 |
+
- **Compute Region:** Local
|
| 194 |
+
|
| 195 |
+
## Technical Specifications
|
| 196 |
+
|
| 197 |
+
### Model Architecture
|
| 198 |
+
|
| 199 |
+
- **Base:** Vision Transformer (ViT-Base/16)
|
| 200 |
+
- **Parameters:** ~86M parameters
|
| 201 |
+
- **Input Size:** 224x224x3
|
| 202 |
+
- **Patch Size:** 16x16
|
| 203 |
+
- **Number of Classes:** 27
|
| 204 |
+
|
| 205 |
+
### Software
|
| 206 |
+
|
| 207 |
+
- **Framework:** PyTorch
|
| 208 |
+
- **Libraries:** HuggingFace Transformers, Datasets
|
| 209 |
+
- **Training Libraries:** Weights & Biases (W&B)
|
| 210 |
+
|
| 211 |
+
## Citation
|
| 212 |
+
|
| 213 |
+
```bibtex
|
| 214 |
+
@misc{wargon_clothing_classifier_2024,
|
| 215 |
+
title={Wargon Clothing Classifier: A Vision Transformer for Secondhand Fashion Classification},
|
| 216 |
+
author={Wargon Innovation},
|
| 217 |
+
year={2024},
|
| 218 |
+
publisher={Hugging Face},
|
| 219 |
+
howpublished={\url{https://huggingface.co/wargoninnovation/wargon-clothing-classifier}},
|
| 220 |
+
}
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
## Model Card Authors
|
| 224 |
+
|
| 225 |
+
Wargon Innovation Team
|
| 226 |
+
|
| 227 |
+
## Model Card Contact
|
| 228 |
+
|
| 229 |
+
For questions and feedback, please open an issue in the model repository or contact the Wargon Innovation team.
|
class_mappings.json
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"class_to_id": {
|
| 3 |
+
"Blazer": 0,
|
| 4 |
+
"Blouse": 1,
|
| 5 |
+
"Cardigan": 2,
|
| 6 |
+
"Dress": 3,
|
| 7 |
+
"Hoodie": 4,
|
| 8 |
+
"Jacket": 5,
|
| 9 |
+
"Jeans": 6,
|
| 10 |
+
"Nightgown": 7,
|
| 11 |
+
"Outerwear": 8,
|
| 12 |
+
"Pajamas": 9,
|
| 13 |
+
"Rain jacket": 10,
|
| 14 |
+
"Rain trousers": 11,
|
| 15 |
+
"Robe": 12,
|
| 16 |
+
"Shirt": 13,
|
| 17 |
+
"Shorts": 14,
|
| 18 |
+
"Skirt": 15,
|
| 19 |
+
"Sweater": 16,
|
| 20 |
+
"T-shirt": 17,
|
| 21 |
+
"Tank top": 18,
|
| 22 |
+
"Tights": 19,
|
| 23 |
+
"Top": 20,
|
| 24 |
+
"Training top": 21,
|
| 25 |
+
"Trousers": 22,
|
| 26 |
+
"Tunic": 23,
|
| 27 |
+
"Vest": 24,
|
| 28 |
+
"Winter jacket": 25,
|
| 29 |
+
"Winter trousers": 26
|
| 30 |
+
},
|
| 31 |
+
"id_to_class": {
|
| 32 |
+
"0": "Blazer",
|
| 33 |
+
"1": "Blouse",
|
| 34 |
+
"2": "Cardigan",
|
| 35 |
+
"3": "Dress",
|
| 36 |
+
"4": "Hoodie",
|
| 37 |
+
"5": "Jacket",
|
| 38 |
+
"6": "Jeans",
|
| 39 |
+
"7": "Nightgown",
|
| 40 |
+
"8": "Outerwear",
|
| 41 |
+
"9": "Pajamas",
|
| 42 |
+
"10": "Rain jacket",
|
| 43 |
+
"11": "Rain trousers",
|
| 44 |
+
"12": "Robe",
|
| 45 |
+
"13": "Shirt",
|
| 46 |
+
"14": "Shorts",
|
| 47 |
+
"15": "Skirt",
|
| 48 |
+
"16": "Sweater",
|
| 49 |
+
"17": "T-shirt",
|
| 50 |
+
"18": "Tank top",
|
| 51 |
+
"19": "Tights",
|
| 52 |
+
"20": "Top",
|
| 53 |
+
"21": "Training top",
|
| 54 |
+
"22": "Trousers",
|
| 55 |
+
"23": "Tunic",
|
| 56 |
+
"24": "Vest",
|
| 57 |
+
"25": "Winter jacket",
|
| 58 |
+
"26": "Winter trousers"
|
| 59 |
+
},
|
| 60 |
+
"num_classes": 27,
|
| 61 |
+
"valid_classes": [
|
| 62 |
+
0,
|
| 63 |
+
1,
|
| 64 |
+
2,
|
| 65 |
+
3,
|
| 66 |
+
4,
|
| 67 |
+
5,
|
| 68 |
+
6,
|
| 69 |
+
7,
|
| 70 |
+
8,
|
| 71 |
+
9,
|
| 72 |
+
10,
|
| 73 |
+
11,
|
| 74 |
+
12,
|
| 75 |
+
13,
|
| 76 |
+
14,
|
| 77 |
+
15,
|
| 78 |
+
16,
|
| 79 |
+
17,
|
| 80 |
+
18,
|
| 81 |
+
19,
|
| 82 |
+
20,
|
| 83 |
+
21,
|
| 84 |
+
22,
|
| 85 |
+
23,
|
| 86 |
+
25,
|
| 87 |
+
26,
|
| 88 |
+
27,
|
| 89 |
+
30,
|
| 90 |
+
31,
|
| 91 |
+
32
|
| 92 |
+
],
|
| 93 |
+
"class_weights": [
|
| 94 |
+
3.2049648761749268,
|
| 95 |
+
0.7775523066520691,
|
| 96 |
+
0.9295064210891724,
|
| 97 |
+
0.4611579179763794,
|
| 98 |
+
1.5798324346542358,
|
| 99 |
+
1.1890760660171509,
|
| 100 |
+
0.7341421842575073,
|
| 101 |
+
5.0,
|
| 102 |
+
3.072801351547241,
|
| 103 |
+
5.0,
|
| 104 |
+
5.0,
|
| 105 |
+
5.0,
|
| 106 |
+
5.0,
|
| 107 |
+
0.5360822677612305,
|
| 108 |
+
0.9422394037246704,
|
| 109 |
+
1.1290216445922852,
|
| 110 |
+
0.4077451825141907,
|
| 111 |
+
0.29895859956741333,
|
| 112 |
+
0.8248940706253052,
|
| 113 |
+
1.6935325860977173,
|
| 114 |
+
0.2645518183708191,
|
| 115 |
+
5.0,
|
| 116 |
+
0.3766576051712036,
|
| 117 |
+
4.585565090179443,
|
| 118 |
+
4.609201908111572,
|
| 119 |
+
5.0,
|
| 120 |
+
5.0
|
| 121 |
+
]
|
| 122 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ViTForImageClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"encoder_stride": 16,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.0,
|
| 9 |
+
"hidden_size": 768,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0",
|
| 12 |
+
"1": "LABEL_1",
|
| 13 |
+
"2": "LABEL_2",
|
| 14 |
+
"3": "LABEL_3",
|
| 15 |
+
"4": "LABEL_4",
|
| 16 |
+
"5": "LABEL_5",
|
| 17 |
+
"6": "LABEL_6",
|
| 18 |
+
"7": "LABEL_7",
|
| 19 |
+
"8": "LABEL_8",
|
| 20 |
+
"9": "LABEL_9",
|
| 21 |
+
"10": "LABEL_10",
|
| 22 |
+
"11": "LABEL_11",
|
| 23 |
+
"12": "LABEL_12",
|
| 24 |
+
"13": "LABEL_13",
|
| 25 |
+
"14": "LABEL_14",
|
| 26 |
+
"15": "LABEL_15",
|
| 27 |
+
"16": "LABEL_16",
|
| 28 |
+
"17": "LABEL_17",
|
| 29 |
+
"18": "LABEL_18",
|
| 30 |
+
"19": "LABEL_19",
|
| 31 |
+
"20": "LABEL_20",
|
| 32 |
+
"21": "LABEL_21",
|
| 33 |
+
"22": "LABEL_22",
|
| 34 |
+
"23": "LABEL_23",
|
| 35 |
+
"24": "LABEL_24",
|
| 36 |
+
"25": "LABEL_25",
|
| 37 |
+
"26": "LABEL_26"
|
| 38 |
+
},
|
| 39 |
+
"image_size": 224,
|
| 40 |
+
"initializer_range": 0.02,
|
| 41 |
+
"intermediate_size": 3072,
|
| 42 |
+
"label2id": {
|
| 43 |
+
"LABEL_0": 0,
|
| 44 |
+
"LABEL_1": 1,
|
| 45 |
+
"LABEL_10": 10,
|
| 46 |
+
"LABEL_11": 11,
|
| 47 |
+
"LABEL_12": 12,
|
| 48 |
+
"LABEL_13": 13,
|
| 49 |
+
"LABEL_14": 14,
|
| 50 |
+
"LABEL_15": 15,
|
| 51 |
+
"LABEL_16": 16,
|
| 52 |
+
"LABEL_17": 17,
|
| 53 |
+
"LABEL_18": 18,
|
| 54 |
+
"LABEL_19": 19,
|
| 55 |
+
"LABEL_2": 2,
|
| 56 |
+
"LABEL_20": 20,
|
| 57 |
+
"LABEL_21": 21,
|
| 58 |
+
"LABEL_22": 22,
|
| 59 |
+
"LABEL_23": 23,
|
| 60 |
+
"LABEL_24": 24,
|
| 61 |
+
"LABEL_25": 25,
|
| 62 |
+
"LABEL_26": 26,
|
| 63 |
+
"LABEL_3": 3,
|
| 64 |
+
"LABEL_4": 4,
|
| 65 |
+
"LABEL_5": 5,
|
| 66 |
+
"LABEL_6": 6,
|
| 67 |
+
"LABEL_7": 7,
|
| 68 |
+
"LABEL_8": 8,
|
| 69 |
+
"LABEL_9": 9
|
| 70 |
+
},
|
| 71 |
+
"layer_norm_eps": 1e-12,
|
| 72 |
+
"model_type": "vit",
|
| 73 |
+
"num_attention_heads": 12,
|
| 74 |
+
"num_channels": 3,
|
| 75 |
+
"num_hidden_layers": 12,
|
| 76 |
+
"patch_size": 16,
|
| 77 |
+
"pooler_act": "tanh",
|
| 78 |
+
"pooler_output_size": 768,
|
| 79 |
+
"problem_type": "single_label_classification",
|
| 80 |
+
"qkv_bias": true,
|
| 81 |
+
"torch_dtype": "float32",
|
| 82 |
+
"transformers_version": "4.55.3"
|
| 83 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e24861295646225ec60be0f8e195e01bc20144fc20cf637fcd92acde23d5bea
|
| 3 |
+
size 343300876
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": null,
|
| 3 |
+
"data_format": "channels_first",
|
| 4 |
+
"default_to_square": true,
|
| 5 |
+
"device": null,
|
| 6 |
+
"disable_grouping": null,
|
| 7 |
+
"do_center_crop": null,
|
| 8 |
+
"do_convert_rgb": null,
|
| 9 |
+
"do_normalize": true,
|
| 10 |
+
"do_rescale": true,
|
| 11 |
+
"do_resize": true,
|
| 12 |
+
"image_mean": [
|
| 13 |
+
0.5,
|
| 14 |
+
0.5,
|
| 15 |
+
0.5
|
| 16 |
+
],
|
| 17 |
+
"image_processor_type": "ViTImageProcessorFast",
|
| 18 |
+
"image_std": [
|
| 19 |
+
0.5,
|
| 20 |
+
0.5,
|
| 21 |
+
0.5
|
| 22 |
+
],
|
| 23 |
+
"input_data_format": null,
|
| 24 |
+
"resample": 2,
|
| 25 |
+
"rescale_factor": 0.00392156862745098,
|
| 26 |
+
"return_tensors": null,
|
| 27 |
+
"size": {
|
| 28 |
+
"height": 224,
|
| 29 |
+
"width": 224
|
| 30 |
+
}
|
| 31 |
+
}
|