Update modeling file
Browse files- modeling_llava.py +144 -11
modeling_llava.py
CHANGED
|
@@ -6,8 +6,6 @@ from typing import List, Optional, Tuple, Union
|
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import torch.utils.checkpoint
|
| 9 |
-
from configuration_llava import LlavaConfig
|
| 10 |
-
from configuration_phi import PhiConfig
|
| 11 |
from torch import nn
|
| 12 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 13 |
from transformers import PreTrainedModel, SiglipVisionModel
|
|
@@ -34,9 +32,138 @@ except Exception as exp:
|
|
| 34 |
print(exp)
|
| 35 |
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
logger = logging.get_logger(__name__)
|
| 38 |
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 41 |
def _get_unpad_data(attention_mask):
|
| 42 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
@@ -1324,7 +1451,7 @@ class SiglipVisionEncoder(nn.Module):
|
|
| 1324 |
|
| 1325 |
self.num_tokens = 728
|
| 1326 |
|
| 1327 |
-
def feature_select(self, image_forward_outs, coord_feature, num_tokens
|
| 1328 |
image_features = image_forward_outs
|
| 1329 |
image_features = image_features[:, 1:]
|
| 1330 |
if num_tokens is None:
|
|
@@ -1344,24 +1471,30 @@ class SiglipVisionEncoder(nn.Module):
|
|
| 1344 |
image_features = torch.cat(output_list)
|
| 1345 |
return image_features
|
| 1346 |
|
| 1347 |
-
def process_image_chunks(self, image_tensor, coord_tensor, num_tokens
|
| 1348 |
if image_tensor.shape[0] > 50:
|
| 1349 |
image_forward_out = []
|
| 1350 |
-
for i in range(0,image_tensor.shape[0],50):
|
| 1351 |
-
part_forward_out = self.vision_tower(
|
|
|
|
|
|
|
| 1352 |
image_forward_out.append(part_forward_out)
|
| 1353 |
image_forward_out = torch.cat(image_forward_out, dim=0)
|
| 1354 |
else:
|
| 1355 |
-
image_forward_out = self.vision_tower(
|
|
|
|
|
|
|
| 1356 |
coord_feature = self.coord_embed(coord_tensor)
|
| 1357 |
if len(coord_feature.shape) == 1:
|
| 1358 |
coord_feature = coord_feature.unsqueeze(0)
|
| 1359 |
-
image_feature = self.feature_select(
|
| 1360 |
-
|
| 1361 |
-
)
|
| 1362 |
return image_feature
|
| 1363 |
|
| 1364 |
-
def forward(
|
|
|
|
|
|
|
| 1365 |
image_features = []
|
| 1366 |
for i, image in enumerate(images):
|
| 1367 |
image_feature = self.process_image_chunks(image, coords[i], num_tokens)
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import torch.utils.checkpoint
|
|
|
|
|
|
|
| 9 |
from torch import nn
|
| 10 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 11 |
from transformers import PreTrainedModel, SiglipVisionModel
|
|
|
|
| 32 |
print(exp)
|
| 33 |
|
| 34 |
|
| 35 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 36 |
+
from transformers import SiglipVisionConfig
|
| 37 |
+
|
| 38 |
+
|
| 39 |
logger = logging.get_logger(__name__)
|
| 40 |
|
| 41 |
|
| 42 |
+
class PhiConfig(PretrainedConfig):
|
| 43 |
+
model_type = "phi"
|
| 44 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 45 |
+
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
vocab_size=51200,
|
| 49 |
+
hidden_size=2048,
|
| 50 |
+
intermediate_size=8192,
|
| 51 |
+
num_hidden_layers=24,
|
| 52 |
+
num_attention_heads=32,
|
| 53 |
+
num_key_value_heads=None,
|
| 54 |
+
resid_pdrop=0.0,
|
| 55 |
+
embd_pdrop=0.0,
|
| 56 |
+
attention_dropout=0.0,
|
| 57 |
+
hidden_act="gelu_new",
|
| 58 |
+
max_position_embeddings=2048,
|
| 59 |
+
initializer_range=0.02,
|
| 60 |
+
layer_norm_eps=1e-5,
|
| 61 |
+
use_cache=True,
|
| 62 |
+
tie_word_embeddings=False,
|
| 63 |
+
rope_theta=10000.0,
|
| 64 |
+
rope_scaling=None,
|
| 65 |
+
partial_rotary_factor=0.5,
|
| 66 |
+
qk_layernorm=False,
|
| 67 |
+
bos_token_id=1,
|
| 68 |
+
eos_token_id=2,
|
| 69 |
+
**kwargs,
|
| 70 |
+
):
|
| 71 |
+
self.vocab_size = vocab_size
|
| 72 |
+
self.hidden_size = hidden_size
|
| 73 |
+
self.intermediate_size = intermediate_size
|
| 74 |
+
self.num_hidden_layers = num_hidden_layers
|
| 75 |
+
self.num_attention_heads = num_attention_heads
|
| 76 |
+
|
| 77 |
+
if num_key_value_heads is None:
|
| 78 |
+
num_key_value_heads = num_attention_heads
|
| 79 |
+
|
| 80 |
+
self.num_key_value_heads = num_key_value_heads
|
| 81 |
+
self.resid_pdrop = resid_pdrop
|
| 82 |
+
self.embd_pdrop = embd_pdrop
|
| 83 |
+
self.attention_dropout = attention_dropout
|
| 84 |
+
self.hidden_act = hidden_act
|
| 85 |
+
self.max_position_embeddings = max_position_embeddings
|
| 86 |
+
self.initializer_range = initializer_range
|
| 87 |
+
self.layer_norm_eps = layer_norm_eps
|
| 88 |
+
self.use_cache = use_cache
|
| 89 |
+
self.rope_theta = rope_theta
|
| 90 |
+
self.rope_scaling = rope_scaling
|
| 91 |
+
self.partial_rotary_factor = partial_rotary_factor
|
| 92 |
+
self.qk_layernorm = qk_layernorm
|
| 93 |
+
self._rope_scaling_validation()
|
| 94 |
+
|
| 95 |
+
super().__init__(
|
| 96 |
+
bos_token_id=bos_token_id,
|
| 97 |
+
eos_token_id=eos_token_id,
|
| 98 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 99 |
+
**kwargs,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def _rope_scaling_validation(self):
|
| 103 |
+
"""
|
| 104 |
+
Validate the `rope_scaling` configuration.
|
| 105 |
+
"""
|
| 106 |
+
if self.rope_scaling is None:
|
| 107 |
+
return
|
| 108 |
+
|
| 109 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 110 |
+
raise ValueError(
|
| 111 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
| 112 |
+
f"got {self.rope_scaling}"
|
| 113 |
+
)
|
| 114 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 115 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 116 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 117 |
+
raise ValueError(
|
| 118 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 119 |
+
)
|
| 120 |
+
if (
|
| 121 |
+
rope_scaling_factor is None
|
| 122 |
+
or not isinstance(rope_scaling_factor, float)
|
| 123 |
+
or rope_scaling_factor <= 1.0
|
| 124 |
+
):
|
| 125 |
+
raise ValueError(
|
| 126 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class LlavaConfig(PretrainedConfig):
|
| 131 |
+
model_type = "mc-llava"
|
| 132 |
+
is_composition = False
|
| 133 |
+
|
| 134 |
+
def __init__(
|
| 135 |
+
self,
|
| 136 |
+
text_config=None,
|
| 137 |
+
vision_config=None,
|
| 138 |
+
ignore_index=-100,
|
| 139 |
+
image_token_index=50297,
|
| 140 |
+
projector_hidden_act="gelu",
|
| 141 |
+
projector_tokens_num=1,
|
| 142 |
+
vocab_size=51200,
|
| 143 |
+
**kwargs,
|
| 144 |
+
):
|
| 145 |
+
self.ignore_index = ignore_index
|
| 146 |
+
self.image_token_index = image_token_index
|
| 147 |
+
self.projector_hidden_act = projector_hidden_act
|
| 148 |
+
self.projector_tokens_num = projector_tokens_num
|
| 149 |
+
self.vocab_size = vocab_size
|
| 150 |
+
|
| 151 |
+
self.text_config = text_config
|
| 152 |
+
if isinstance(self.text_config, dict):
|
| 153 |
+
text_config["model_type"] = (
|
| 154 |
+
text_config["model_type"] if "model_type" in text_config else "phi"
|
| 155 |
+
)
|
| 156 |
+
self.text_config = PhiConfig(**text_config)
|
| 157 |
+
self.vocab_size = self.text_config.vocab_size
|
| 158 |
+
|
| 159 |
+
self.vision_config = vision_config
|
| 160 |
+
if isinstance(self.vision_config, dict):
|
| 161 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
| 162 |
+
self.vision_embed_dim = self.vision_config.hidden_size
|
| 163 |
+
|
| 164 |
+
super().__init__(**kwargs)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 168 |
def _get_unpad_data(attention_mask):
|
| 169 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
|
|
| 1451 |
|
| 1452 |
self.num_tokens = 728
|
| 1453 |
|
| 1454 |
+
def feature_select(self, image_forward_outs, coord_feature, num_tokens=None):
|
| 1455 |
image_features = image_forward_outs
|
| 1456 |
image_features = image_features[:, 1:]
|
| 1457 |
if num_tokens is None:
|
|
|
|
| 1471 |
image_features = torch.cat(output_list)
|
| 1472 |
return image_features
|
| 1473 |
|
| 1474 |
+
def process_image_chunks(self, image_tensor, coord_tensor, num_tokens=None):
|
| 1475 |
if image_tensor.shape[0] > 50:
|
| 1476 |
image_forward_out = []
|
| 1477 |
+
for i in range(0, image_tensor.shape[0], 50):
|
| 1478 |
+
part_forward_out = self.vision_tower(
|
| 1479 |
+
image_tensor[i : i + 50], output_hidden_states=True
|
| 1480 |
+
).hidden_states[-1]
|
| 1481 |
image_forward_out.append(part_forward_out)
|
| 1482 |
image_forward_out = torch.cat(image_forward_out, dim=0)
|
| 1483 |
else:
|
| 1484 |
+
image_forward_out = self.vision_tower(
|
| 1485 |
+
image_tensor, output_hidden_states=True
|
| 1486 |
+
).hidden_states[-1]
|
| 1487 |
coord_feature = self.coord_embed(coord_tensor)
|
| 1488 |
if len(coord_feature.shape) == 1:
|
| 1489 |
coord_feature = coord_feature.unsqueeze(0)
|
| 1490 |
+
image_feature = self.feature_select(
|
| 1491 |
+
image_forward_out, coord_feature, num_tokens
|
| 1492 |
+
).to(image_tensor.dtype)
|
| 1493 |
return image_feature
|
| 1494 |
|
| 1495 |
+
def forward(
|
| 1496 |
+
self, images: List[torch.Tensor], coords: List[torch.Tensor], num_tokens=None
|
| 1497 |
+
):
|
| 1498 |
image_features = []
|
| 1499 |
for i, image in enumerate(images):
|
| 1500 |
image_feature = self.process_image_chunks(image, coords[i], num_tokens)
|