File size: 5,160 Bytes
a3d9fd9 f9479fc e96e7cf f9479fc e96e7cf a3d9fd9 f9479fc 4109ef2 501b1ee 471161c f9479fc 471161c f9479fc 471161c f9479fc 34f015e f9479fc e96e7cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
language:
- en
license: apache-2.0
library_name: transformers
datasets:
- yahma/alpaca-cleaned
pipeline_tag: text-generation
model-index:
- name: speechless-mistral-moloras-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-mistral-moloras-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-mistral-moloras-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-mistral-moloras-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.15
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-mistral-moloras-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-mistral-moloras-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-mistral-moloras-7b
name: Open LLM Leaderboard
---
<p><h1> speechless-mistral-moloras-7b </h1></p>
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GGUF)
[4-bit GGUF models for CPU+GPU inference](https://huggingface.co/uukuguy/speechless-mistral-moloras-7b/tree/main/GGUF)
This model is the static version of moloras (Mixture-of-multi-LoRAs) based on the following 6 Mistral-based LoRa modules.
- Intel/neural-chat-7b-v3-1
- migtissera/SynthIA-7B-v1.3
- jondurbin/airoboros-m-7b-3.1.2
- bhenrym14/mistral-7b-platypus-fp16
- teknium/CollectiveCognition-v1.1-Mistral-7B
- uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b
Totally 6 LoRA modules from [speechless-mistral-7b-dare-0.85](https://huggingface.co/speechlessai/speechless-mistral-7b-dare-0.85)
The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks.
Code: https://github.com/uukuguy/multi_loras?tab=readme-ov-file#mixture-of-multi-loras
## LM-Evaluation-Harness
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
| Metric | Value |
| --- | --- |
| ARC | 59.98 |
| HellaSwag | 83.29 |
| MMLU | 64.12 |
| TruthfulQA | 42.15 |
| Winogrande | 78.37 |
| GSM8K | 37.68 |
| Average | 60.93 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-mistral-moloras-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |60.93|
|AI2 Reasoning Challenge (25-Shot)|59.98|
|HellaSwag (10-Shot) |83.29|
|MMLU (5-Shot) |64.12|
|TruthfulQA (0-shot) |42.15|
|Winogrande (5-shot) |78.37|
|GSM8k (5-shot) |37.68|
|