Upload folder using huggingface_hub
Browse files- README.md +28 -0
- tokenizer.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
Upstage `solar-pro` tokenizer
|
| 6 |
+
- Vocab size: 64,000
|
| 7 |
+
|
| 8 |
+
Please use this tokenizer for tokenizing inputs for the Upstage [solar-pro](https://developers.upstage.ai/docs/apis/chat) model.
|
| 9 |
+
|
| 10 |
+
You can load it with the tokenizer library like this:
|
| 11 |
+
|
| 12 |
+
```python
|
| 13 |
+
from tokenizers import Tokenizer
|
| 14 |
+
|
| 15 |
+
tokenizer = Tokenizer.from_pretrained("upstage/solar-pro-tokenizer")
|
| 16 |
+
text = "Hi, how are you?"
|
| 17 |
+
enc = tokenizer.encode(text)
|
| 18 |
+
print("Encoded input:")
|
| 19 |
+
print(enc)
|
| 20 |
+
|
| 21 |
+
inv_vocab = {v: k for k, v in tokenizer.get_vocab().items()}
|
| 22 |
+
tokens = [inv_vocab[token_id] for token_id in enc.ids]
|
| 23 |
+
print("Tokens:")
|
| 24 |
+
print(tokens)
|
| 25 |
+
|
| 26 |
+
number_of_tokens = len(enc.ids)
|
| 27 |
+
print("Number of tokens:", number_of_tokens)
|
| 28 |
+
```
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|