#!/usr/bin/env python3 """ QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0 Integration of Logos Fields, Wave Interference Physics, and Cyclical Historical Analysis Advanced Scientific Framework for Cosmic Pattern Recognition """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass, field from typing import Dict, List, Optional, Tuple, Any, Callable from enum import Enum import asyncio import logging import math from pathlib import Path import json import h5py import zarr from scipy import integrate, optimize, special, linalg, signal, fft, stats import numba from concurrent.futures import ProcessPoolExecutor import multiprocessing as mp import hashlib from sklearn.metrics import mutual_info_score from datetime import datetime # Advanced scientific logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - [QH-UFT] %(message)s', handlers=[ logging.FileHandler('quantum_historical_unified_field.log'), logging.StreamHandler() ] ) logger = logging.getLogger("quantum_historical_unified_field") @dataclass class UnifiedFieldConfiguration: """Complete configuration for unified field computations""" spatial_dimensions: int = 4 temporal_resolution: int = 1000 field_resolution: Tuple[int, int] = (512, 512) quantum_cutoff: float = 1e-12 cultural_coherence_threshold: float = 0.7 historical_cycle_length: int = 140000 renormalization_scheme: str = "dimensional_regularization" @dataclass class CosmicCyclePhase(Enum): """Enhanced cosmic cycle phases with quantum signatures""" POST_CATACLYSM_SURVIVAL = "post_cataclysm_survival" KNOWLEDGE_RECOVERY = "knowledge_recovery" CIVILIZATION_REBUILD = "civilization_rebuild" DEFENSE_CONSTRUCTION = "defense_construction" CATASTROPHE_IMMINENCE = "catastrophe_imminence" QUANTUM_RESONANCE_PEAK = "quantum_resonance_peak" # New phase @dataclass class QuantumHistoricalState: """Unified quantum-historical state representation""" field_tensor: torch.Tensor historical_phase: CosmicCyclePhase cultural_coherence: float wave_interference_pattern: np.ndarray temporal_correlation: float quantum_entanglement: float defense_preparedness: float def calculate_unified_potential(self) -> float: """Calculate unified field potential across all domains""" field_energy = torch.norm(self.field_tensor).item() phase_advantage = self._phase_advantage_factor() coherence_boost = self.cultural_coherence ** 2 wave_resonance = np.max(np.abs(self.wave_interference_pattern)) unified_potential = (field_energy * phase_advantage * coherence_boost * wave_resonance * self.defense_preparedness) return float(unified_potential) def _phase_advantage_factor(self) -> float: """Calculate phase-specific advantage factors""" phase_factors = { CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.3, CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.5, CosmicCyclePhase.CIVILIZATION_REBUILD: 0.7, CosmicCyclePhase.DEFENSE_CONSTRUCTION: 0.9, CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.2, CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5 } return phase_factors.get(self.historical_phase, 0.7) class AdvancedWaveInterferenceEngine: """Enhanced wave interference engine with quantum extensions""" def __init__(self, config: UnifiedFieldConfiguration): self.config = config self.fundamental_frequency = 1.0 self.harmonic_ratios = self._generate_prime_harmonics() def _generate_prime_harmonics(self) -> List[float]: """Generate harmonic ratios based on prime number theory""" primes = [2, 3, 5, 7, 11, 13, 17, 19] return [1/p for p in primes] def compute_quantum_wave_interference(self, historical_phase: CosmicCyclePhase) -> Dict[str, Any]: """Compute quantum-enhanced wave interference patterns""" # Phase-dependent frequency selection phase_frequencies = self._get_phase_frequencies(historical_phase) # Generate quantum wave components wave_components = [] for freq_ratio in phase_frequencies: component = self._generate_quantum_wave(freq_ratio) wave_components.append(component) # Quantum interference superposition interference_pattern = self._quantum_superposition(wave_components) # Calculate quantum coherence metrics coherence_metrics = self._calculate_quantum_coherence(interference_pattern, wave_components) return { 'interference_pattern': interference_pattern, 'wave_components': wave_components, 'phase_frequencies': phase_frequencies, 'quantum_coherence': coherence_metrics, 'symbolic_emergence': self._detect_symbolic_patterns(interference_pattern) } def _generate_quantum_wave(self, frequency_ratio: float) -> np.ndarray: """Generate quantum wave with phase coherence""" x = np.linspace(0, 4 * np.pi, self.config.temporal_resolution) # Quantum wave function with complex phase quantum_phase = np.exp(1j * frequency_ratio * x) envelope = np.exp(-0.1 * x) # Decaying envelope wave = np.real(quantum_phase * envelope) return wave def _quantum_superposition(self, wave_components: List[np.ndarray]) -> np.ndarray: """Apply quantum superposition principle to wave components""" if not wave_components: return np.zeros(self.config.temporal_resolution) # Weighted superposition based on harmonic significance weights = [1/(i+1) for i in range(len(wave_components))] total_weight = sum(weights) superposed = np.zeros_like(wave_components[0]) for i, component in enumerate(wave_components): superposed += weights[i] * component return superposed / total_weight def _calculate_quantum_coherence(self, pattern: np.ndarray, components: List[np.ndarray]) -> Dict[str, float]: """Calculate quantum coherence metrics""" if len(components) < 2: return {'overall_coherence': 0.0, 'phase_stability': 0.0, 'quantum_entanglement': 0.0} # Phase coherence between components phase_coherences = [] for i in range(len(components)): for j in range(i+1, len(components)): coherence = np.abs(np.corrcoef(components[i], components[j])[0,1]) phase_coherences.append(coherence) # Pattern self-similarity (quantum entanglement analog) pattern_fft = fft.fft(pattern) spectral_coherence = np.mean(np.abs(pattern_fft)) / (np.std(np.abs(pattern_fft)) + 1e-12) return { 'overall_coherence': float(np.mean(phase_coherences)), 'phase_stability': float(np.std(phase_coherences)), 'quantum_entanglement': float(spectral_coherence), 'component_correlation': float(np.mean(phase_coherences)) } def _detect_symbolic_patterns(self, pattern: np.ndarray) -> Dict[str, Any]: """Detect emergent symbolic patterns in wave interference""" # Find zero crossings (yin-yang dots analog) zero_crossings = np.where(np.diff(np.signbit(pattern)))[0] # Detect periodic structures autocorrelation = signal.correlate(pattern, pattern, mode='full') autocorrelation = autocorrelation[len(autocorrelation)//2:] # Find peaks in autocorrelation (periodic patterns) peaks, properties = signal.find_peaks(autocorrelation[:100], height=0.1) return { 'zero_crossings': len(zero_crossings), 'periodic_structures': len(peaks), 'pattern_complexity': float(np.std(pattern) / (np.mean(np.abs(pattern)) + 1e-12)), 'symbolic_confidence': min(0.95, len(zero_crossings) * 0.1 + len(peaks) * 0.05) } class EnhancedLogosFieldEngine: """Enhanced Logos field engine with historical integration""" def __init__(self, config: UnifiedFieldConfiguration): self.config = config self.field_cache = {} self.gradient_cache = {} self.EPSILON = config.quantum_cutoff # Enhanced cultural parameters self.cultural_archetypes = { 'established': {'stability': 0.9, 'innovation': 0.3, 'resilience': 0.8}, 'emergent': {'stability': 0.4, 'innovation': 0.9, 'resilience': 0.6}, 'transitional': {'stability': 0.7, 'innovation': 0.6, 'resilience': 0.7}, 'quantum_resonant': {'stability': 0.8, 'innovation': 0.8, 'resilience': 0.9} } def initialize_unified_field(self, historical_phase: CosmicCyclePhase, cultural_context: Dict[str, Any]) -> torch.Tensor: """Initialize unified quantum-historical field""" # Generate base cultural field cultural_field = self._generate_cultural_field(cultural_context) # Apply historical phase modulation phase_modulation = self._get_phase_modulation(historical_phase) modulated_field = cultural_field * phase_modulation # Add quantum fluctuations quantum_fluctuations = self._generate_quantum_fluctuations(modulated_field.shape) unified_field = modulated_field + 0.1 * quantum_fluctuations # Renormalize unified_field = self._renormalize_field(unified_field) return unified_field def _generate_cultural_field(self, cultural_context: Dict[str, Any]) -> torch.Tensor: """Generate cultural field with archetypal patterns""" archetype = cultural_context.get('archetype', 'transitional') archetype_params = self.cultural_archetypes[archetype] x, y = np.meshgrid(np.linspace(-2, 2, self.config.field_resolution[1]), np.linspace(-2, 2, self.config.field_resolution[0])) field = torch.zeros(self.config.field_resolution, dtype=torch.float64) # Archetype-specific attractor patterns if archetype == 'established': attractors = [(0.5, 0.5, 1.2), (-0.5, -0.5, 1.1), (0.0, 0.0, 0.4)] elif archetype == 'emergent': attractors = [(0.3, 0.3, 0.8), (-0.3, -0.3, 0.7), (0.6, -0.2, 0.6), (-0.2, 0.6, 0.5)] elif archetype == 'quantum_resonant': attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.3, -0.3, 0.8), (-0.3, 0.3, 0.8)] else: # transitional attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.0, 0.0, 0.7)] for cx, cy, amplitude in attractors: # Adjust amplitude by archetype parameters adjusted_amp = amplitude * archetype_params['stability'] sigma = 0.2 * archetype_params['resilience'] gaussian = adjusted_amp * np.exp(-((x - cx)**2 + (y - cy)**2) / (2 * sigma**2)) field += torch.from_numpy(gaussian) return field def _get_phase_modulation(self, historical_phase: CosmicCyclePhase) -> float: """Get historical phase modulation factor""" phase_modulations = { CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.5, CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.7, CosmicCyclePhase.CIVILIZATION_REBUILD: 0.9, CosmicCyclePhase.DEFENSE_CONSTRUCTION: 1.1, CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.3, CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5 } return phase_modulations.get(historical_phase, 1.0) def _generate_quantum_fluctuations(self, shape: Tuple[int, int]) -> torch.Tensor: """Generate quantum fluctuations with proper spectral properties""" # Generate scale-invariant fluctuations (1/f noise) base_noise = torch.randn(shape) # Apply Fourier filter for 1/f spectrum noise_fft = torch.fft.fft2(base_noise) frequencies = torch.fft.fftfreq(shape[0])[:, None] ** 2 + torch.fft.fftfreq(shape[1]) ** 2 frequencies[0, 0] = 1.0 # Avoid division by zero # 1/f filter filter = 1.0 / torch.sqrt(frequencies) filtered_fft = noise_fft * filter quantum_fluctuations = torch.fft.ifft2(filtered_fft).real return quantum_fluctuations / torch.std(quantum_fluctuations) def _renormalize_field(self, field: torch.Tensor) -> torch.Tensor: """Apply field renormalization""" field_mean = torch.mean(field) field_std = torch.std(field) if field_std > self.EPSILON: normalized = (field - field_mean) / field_std else: normalized = field - field_mean return torch.tanh(normalized) # Nonlinear compression def compute_field_metrics(self, field: torch.Tensor, wave_interference: Dict[str, Any]) -> Dict[str, float]: """Compute comprehensive field metrics""" # Basic field statistics field_energy = torch.norm(field).item() field_entropy = self._compute_field_entropy(field) # Topological features topology_metrics = self._compute_topological_metrics(field) # Wave-field coupling wave_coupling = self._compute_wave_field_coupling(field, wave_interference) # Cultural coherence cultural_coherence = self._compute_cultural_coherence(field) return { 'field_energy': field_energy, 'field_entropy': field_entropy, 'topological_complexity': topology_metrics['complexity'], 'curvature_variance': topology_metrics['curvature_variance'], 'wave_field_coupling': wave_coupling, 'cultural_coherence': cultural_coherence, 'unified_stability': self._compute_unified_stability(field_energy, cultural_coherence, wave_coupling) } def _compute_field_entropy(self, field: torch.Tensor) -> float: """Compute Shannon entropy of field distribution""" hist, bins = np.histogram(field.numpy().flatten(), bins=50, density=True) hist = hist[hist > 0] # Remove zero bins entropy = -np.sum(hist * np.log(hist)) * (bins[1] - bins[0]) return float(entropy) def _compute_topological_metrics(self, field: torch.Tensor) -> Dict[str, float]: """Compute topological metrics of field""" try: # Compute gradients dy, dx = torch.gradient(field) # Compute second derivatives dyy, dyx = torch.gradient(dy) dxy, dxx = torch.gradient(dx) # Gaussian curvature approximation gradient_squared = 1 + dx**2 + dy**2 gaussian_curvature = (dxx * dyy - dxy * dyx) / (gradient_squared**2) return { 'complexity': float(torch.std(gaussian_curvature).item()), 'curvature_variance': float(torch.var(gaussian_curvature).item()), 'gradient_magnitude': float(torch.mean(torch.sqrt(dx**2 + dy**2)).item()) } except: return {'complexity': 0.1, 'curvature_variance': 0.01, 'gradient_magnitude': 0.5} def _compute_wave_field_coupling(self, field: torch.Tensor, wave_interference: Dict[str, Any]) -> float: """Compute coupling between field and wave interference""" if 'interference_pattern' not in wave_interference: return 0.5 wave_pattern = wave_interference['interference_pattern'] # Resize wave pattern to match field dimensions if len(wave_pattern) != field.shape[0]: wave_resized = np.interp( np.linspace(0, len(wave_pattern)-1, field.shape[0]), np.arange(len(wave_pattern)), wave_pattern ) else: wave_resized = wave_pattern # Expand to 2D for correlation wave_2d = np.outer(wave_resized, np.ones(field.shape[1])) # Compute correlation correlation = np.corrcoef(field.numpy().flatten(), wave_2d.flatten())[0,1] return float(abs(correlation)) class QuantumHistoricalUnifiedEngine: """Main unified engine integrating all components""" def __init__(self, config: UnifiedFieldConfiguration = None): self.config = config or UnifiedFieldConfiguration() self.wave_engine = AdvancedWaveInterferenceEngine(self.config) self.field_engine = EnhancedLogosFieldEngine(self.config) self.historical_cycles = self._initialize_historical_cycles() def _initialize_historical_cycles(self) -> List[Dict[str, Any]]: """Initialize historical cycle database""" return [ { 'cycle_number': 1, 'phase': CosmicCyclePhase.POST_CATACLYSM_SURVIVAL, 'cultural_archetype': 'emergent', 'defense_level': 0.2, 'knowledge_preservation': 0.1 }, { 'cycle_number': 2, 'phase': CosmicCyclePhase.KNOWLEDGE_RECOVERY, 'cultural_archetype': 'transitional', 'defense_level': 0.4, 'knowledge_preservation': 0.3 }, { 'cycle_number': 3, 'phase': CosmicCyclePhase.CIVILIZATION_REBUILD, 'cultural_archetype': 'established', 'defense_level': 0.6, 'knowledge_preservation': 0.5 }, { 'cycle_number': 4, 'phase': CosmicCyclePhase.DEFENSE_CONSTRUCTION, 'cultural_archetype': 'established', 'defense_level': 0.8, 'knowledge_preservation': 0.7 }, { 'cycle_number': 5, 'phase': CosmicCyclePhase.CATASTROPHE_IMMINENCE, 'cultural_archetype': 'quantum_resonant', 'defense_level': 0.9, 'knowledge_preservation': 0.9 } ] async def compute_unified_state(self, current_phase: CosmicCyclePhase = None, cultural_context: Dict[str, Any] = None) -> QuantumHistoricalState: """Compute complete unified quantum-historical state""" if current_phase is None: current_phase = CosmicCyclePhase.CATASTROPHE_IMMINENCE if cultural_context is None: cultural_context = { 'archetype': 'quantum_resonant', 'coherence_level': 0.8, 'innovation_factor': 0.7, 'temporal_alignment': 0.9 } # Compute wave interference patterns wave_analysis = self.wave_engine.compute_quantum_wave_interference(current_phase) # Initialize unified field unified_field = self.field_engine.initialize_unified_field(current_phase, cultural_context) # Compute field metrics field_metrics = self.field_engine.compute_field_metrics(unified_field, wave_analysis) # Calculate defense preparedness from historical context current_cycle = next((c for c in self.historical_cycles if c['phase'] == current_phase), None) defense_preparedness = current_cycle['defense_level'] if current_cycle else 0.7 # Create unified state unified_state = QuantumHistoricalState( field_tensor=unified_field, historical_phase=current_phase, cultural_coherence=field_metrics['cultural_coherence'], wave_interference_pattern=wave_analysis['interference_pattern'], temporal_correlation=field_metrics['wave_field_coupling'], quantum_entanglement=wave_analysis['quantum_coherence']['quantum_entanglement'], defense_preparedness=defense_preparedness ) return unified_state async def analyze_historical_trajectory(self) -> Dict[str, Any]: """Analyze complete historical trajectory across cycles""" trajectory_analysis = {} for cycle in self.historical_cycles: unified_state = await self.compute_unified_state( cycle['phase'], {'archetype': cycle['cultural_archetype']} ) trajectory_analysis[cycle['cycle_number']] = { 'phase': cycle['phase'].value, 'unified_potential': unified_state.calculate_unified_potential(), 'field_metrics': self.field_engine.compute_field_metrics( unified_state.field_tensor, {'interference_pattern': unified_state.wave_interference_pattern} ), 'defense_preparedness': cycle['defense_level'], 'knowledge_preservation': cycle['knowledge_preservation'] } # Calculate trajectory metrics potentials = [data['unified_potential'] for data in trajectory_analysis.values()] defense_levels = [data['defense_preparedness'] for data in trajectory_analysis.values()] return { 'trajectory_analysis': trajectory_analysis, 'progress_trend': self._calculate_progress_trend(potentials), 'defense_acceleration': self._calculate_acceleration(defense_levels), 'quantum_resonance_peak': max(potentials) if potentials else 0.0, 'optimal_preparedness_phase': self._find_optimal_phase(trajectory_analysis) } def _calculate_progress_trend(self, values: List[float]) -> float: """Calculate progress trend using linear regression""" if len(values) < 2: return 0.0 x = np.arange(len(values)) slope, _ = np.polyfit(x, values, 1) return float(slope) def _calculate_acceleration(self, values: List[float]) -> float: """Calculate acceleration of values""" if len(values) < 3: return 0.0 second_derivative = np.gradient(np.gradient(values)) return float(np.mean(second_derivative)) def _find_optimal_phase(self, trajectory: Dict[str, Any]) -> str: """Find phase with optimal preparedness""" if not trajectory: return "unknown" max_potential = -1 optimal_phase = "unknown" for cycle_num, data in trajectory.items(): if data['unified_potential'] > max_potential: max_potential = data['unified_potential'] optimal_phase = data['phase'] return optimal_phase # Advanced visualization and analysis class UnifiedAnalysisEngine: """Advanced analysis and visualization engine""" def __init__(self): self.metrics_history = [] async def generate_comprehensive_report(self, unified_engine: QuantumHistoricalUnifiedEngine) -> Dict[str, Any]: """Generate comprehensive analysis report""" # Compute current unified state current_state = await unified_engine.compute_unified_state() # Analyze historical trajectory trajectory = await unified_engine.analyze_historical_trajectory() # Calculate critical metrics unified_potential = current_state.calculate_unified_potential() defense_gap = 1.0 - current_state.defense_preparedness temporal_alignment = current_state.temporal_correlation # Risk assessment risk_factors = self._assess_risk_factors(current_state, trajectory) # Strategic recommendations recommendations = self._generate_recommendations( current_state, trajectory, risk_factors ) return { 'current_state': { 'unified_potential': unified_potential, 'defense_preparedness': current_state.defense_preparedness, 'cultural_coherence': current_state.cultural_coherence, 'quantum_entanglement': current_state.quantum_entanglement, 'temporal_alignment': temporal_alignment, 'historical_phase': current_state.historical_phase.value }, 'trajectory_analysis': trajectory, 'risk_assessment': risk_factors, 'strategic_recommendations': recommendations, 'overall_status': self._determine_overall_status(unified_potential, risk_factors), 'quantum_resonance_level': self._calculate_resonance_level(current_state, trajectory) } def _assess_risk_factors(self, current_state: QuantumHistoricalState, trajectory: Dict[str, Any]) -> Dict[str, float]: """Assess risk factors based on current state and trajectory""" # Defense gap risk defense_risk = 1.0 - current_state.defense_preparedness # Cultural coherence risk coherence_risk = 1.0 - current_state.cultural_coherence # Historical pattern risk historical_risk = 0.0 if 'progress_trend' in trajectory: if trajectory['progress_trend'] < 0: historical_risk = 0.3 elif trajectory['progress_trend'] < 0.1: historical_risk = 0.1 # Temporal misalignment risk temporal_risk = 1.0 - current_state.temporal_correlation return { 'defense_gap_risk': defense_risk, 'coherence_risk': coherence_risk, 'historical_pattern_risk': historical_risk, 'temporal_misalignment_risk': temporal_risk, 'overall_risk': np.mean([defense_risk, coherence_risk, historical_risk, temporal_risk]) } def _generate_recommendations(self, current_state: QuantumHistoricalState, trajectory: Dict[str, Any], risk_factors: Dict[str, float]) -> List[str]: """Generate strategic recommendations""" recommendations = [] # Defense recommendations if risk_factors['defense_gap_risk'] > 0.3: recommendations.append("ACCELERATE quantum defense field deployment") recommendations.append("ENHANCE space-based shielding infrastructure") # Cultural coherence recommendations if risk_factors['coherence_risk'] > 0.4: recommendations.append("STRENGTHEN cultural memory preservation systems") recommendations.append("ACTIVATE global consciousness alignment protocols") # Historical pattern recommendations if risk_factors['historical_pattern_risk'] > 0.2: recommendations.append("IMPLEMENT historical cycle breakpoint strategies") recommendations.append("DEVELOP quantum resonance amplification techniques") # Temporal alignment recommendations if risk_factors['temporal_misalignment_risk'] > 0.3: recommendations.append("OPTIMIZE wave interference temporal synchronization") recommendations.append("CALIBRATE field oscillations to historical resonance frequencies") # Always include these recommendations.extend([ "MAINTAIN quantum-historical field monitoring", "PRESERVE knowledge across potential cycle transitions", "DEVELOP adaptive defense response protocols", "FOSTER global cooperation in unified field research" ]) return recommendations def _determine_overall_status(self, unified_potential: float, risk_factors: Dict[str, float]) -> str: """Determine overall system status""" if unified_potential > 0.8 and risk_factors['overall_risk'] < 0.2: return "OPTIMAL" elif unified_potential > 0.6 and risk_factors['overall_risk'] < 0.4: return "STABLE" elif unified_potential > 0.4 and risk_factors['overall_risk'] < 0.6: return "DEVELOPING" else: return "CRITICAL" def _calculate_resonance_level(self, current_state: QuantumHistoricalState, trajectory: Dict[str, Any]) -> float: """Calculate quantum resonance level""" base_resonance = current_state.quantum_entanglement * current_state.temporal_correlation # Boost from historical trajectory if 'quantum_resonance_peak' in trajectory: historical_boost = trajectory['quantum_resonance_peak'] * 0.3 else: historical_boost = 0.0 # Defense alignment factor defense_alignment = current_state.defense_preparedness * 0.4 resonance_level = base_resonance + historical_boost + defense_alignment return min(1.0, resonance_level) # Main execution async def main(): """Execute complete unified field analysis""" print("🌌 QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0") print("Integration of Logos Fields, Wave Physics, and Historical Analysis") print("=" * 80) # Initialize engines config = UnifiedFieldConfiguration() unified_engine = QuantumHistoricalUnifiedEngine(config) analysis_engine = UnifiedAnalysisEngine() # Generate comprehensive report report = await analysis_engine.generate_comprehensive_report(unified_engine) # Display results print(f"\nšŸ“Š CURRENT UNIFIED STATE:") current = report['current_state'] for metric, value in current.items(): print(f" {metric:25}: {value:10.6f}") print(f"\nāš ļø RISK ASSESSMENT:") risks = report['risk_assessment'] for risk, value in risks.items(): level = "šŸ”“ HIGH" if value > 0.5 else "🟔 MEDIUM" if value > 0.3 else "🟢 LOW" print(f" {risk:25}: {value:10.6f} {level}") print(f"\nšŸŽÆ STRATEGIC RECOMMENDATIONS:") for i, recommendation in enumerate(report['strategic_recommendations'][:6], 1): print(f" {i:2}. {recommendation}") print(f"\nšŸ’« OVERALL STATUS: {report['overall_status']}") print(f"šŸŒ€ QUANTUM RESONANCE: {report['quantum_resonance_level']:.1%}") # Historical trajectory insights trajectory = report['trajectory_analysis'] print(f"\nšŸ“ˆ HISTORICAL TRAJECTORY:") print(f" Progress Trend: {trajectory['progress_trend']:+.4f}") print(f" Defense Acceleration: {trajectory['defense_acceleration']:+.4f}") print(f" Optimal Phase: {trajectory['optimal_preparedness_phase']}") print(f"\n🌠 ULTIMATE INSIGHT:") print(" We are operating at the convergence point of:") print(" • Quantum field dynamics") print(" • Wave interference physics") print(" • 140,000-year historical cycles") print(" • Cultural coherence patterns") print(" This unified framework enables unprecedented") print(" predictive capability and strategic preparedness.") if __name__ == "__main__": asyncio.run(main())