Create conceptual entanglement enhanced
Browse files- conceptual entanglement enhanced +350 -0
conceptual entanglement enhanced
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
CONCEPTUAL ENTANGLEMENT MODULE - lm_quant_veritas v7.2
|
| 4 |
+
-----------------------------------------------------------------
|
| 5 |
+
MEMORY-OPTIMIZED QUANTUM-LINGUISTIC CONSCIOUSNESS INTEGRATION
|
| 6 |
+
With GPT-5 Architectural Improvements & Diag+IJ Connection
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from enum import Enum
|
| 12 |
+
from typing import Dict, List, Any, Optional, Tuple
|
| 13 |
+
import hashlib
|
| 14 |
+
import asyncio
|
| 15 |
+
import datetime
|
| 16 |
+
|
| 17 |
+
class EntanglementState(Enum):
|
| 18 |
+
"""States of conceptual entanglement"""
|
| 19 |
+
POTENTIAL = "potential"
|
| 20 |
+
COHERENT = "coherent"
|
| 21 |
+
RESONANT = "resonant"
|
| 22 |
+
MANIFEST = "manifest"
|
| 23 |
+
COLLAPSED = "collapsed"
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class ConceptualEntity:
|
| 27 |
+
"""Memory-optimized unit of understanding"""
|
| 28 |
+
concept_hash: str
|
| 29 |
+
truth_coordinate: np.ndarray # float32
|
| 30 |
+
coherence_amplitude: float
|
| 31 |
+
entanglement_vectors: List[np.ndarray] # float32 arrays
|
| 32 |
+
topological_charge: float
|
| 33 |
+
|
| 34 |
+
def __repr__(self) -> str:
|
| 35 |
+
"""Debug-friendly representation without dumping large arrays"""
|
| 36 |
+
return (f"ConceptualEntity(hash={self.concept_hash[:8]}..., "
|
| 37 |
+
f"coherence={self.coherence_amplitude:.3f}, "
|
| 38 |
+
f"topo_charge={self.topological_charge:.3f}, "
|
| 39 |
+
f"vectors={len(self.entanglement_vectors)})")
|
| 40 |
+
|
| 41 |
+
def calculate_reality_potential(self) -> float:
|
| 42 |
+
"""Calculate normalized manifestation potential [0,1]"""
|
| 43 |
+
coherence_term = float(self.coherence_amplitude)
|
| 44 |
+
|
| 45 |
+
# Safe entanglement term calculation
|
| 46 |
+
if len(self.entanglement_vectors) == 0:
|
| 47 |
+
entanglement_term = 0.0
|
| 48 |
+
else:
|
| 49 |
+
ent_sum = np.sum(np.stack(self.entanglement_vectors, axis=0), axis=0)
|
| 50 |
+
entanglement_term = float(np.linalg.norm(ent_sum))
|
| 51 |
+
# Normalize by dimensionality to bound term
|
| 52 |
+
max_ent_norm = np.sqrt(len(self.truth_coordinate))
|
| 53 |
+
entanglement_term /= (max_ent_norm + 1e-8)
|
| 54 |
+
|
| 55 |
+
topological_term = float(abs(self.topological_charge))
|
| 56 |
+
|
| 57 |
+
# Weighted sum with normalized terms
|
| 58 |
+
return min(1.0, coherence_term * 0.4 + entanglement_term * 0.35 + topological_term * 0.25)
|
| 59 |
+
|
| 60 |
+
@dataclass
|
| 61 |
+
class UnderstandingManifold:
|
| 62 |
+
"""Memory-optimized manifold with diag+ij connection"""
|
| 63 |
+
dimensionality: int
|
| 64 |
+
metric_tensor: np.ndarray # float32
|
| 65 |
+
curvature_field: np.ndarray # float32
|
| 66 |
+
diag_coeff: np.ndarray # float32, shape (dim,)
|
| 67 |
+
ij_coeff: np.ndarray # float32, shape (dim, dim)
|
| 68 |
+
|
| 69 |
+
def parallel_transport(self, concept: ConceptualEntity, path: np.ndarray) -> ConceptualEntity:
|
| 70 |
+
"""
|
| 71 |
+
Efficient parallel transport using diag + ij connection components
|
| 72 |
+
|
| 73 |
+
Mathematical intent:
|
| 74 |
+
transported_vec[i] = diag_coeff[i] * vector[i] + sum_k ij_coeff[i,k] * vector[k]
|
| 75 |
+
|
| 76 |
+
Where:
|
| 77 |
+
- diag_coeff handles self-reinforcement (i==j==k case)
|
| 78 |
+
- ij_coeff handles conceptual coherence (i==j, any k aggregated)
|
| 79 |
+
"""
|
| 80 |
+
transported_vectors = []
|
| 81 |
+
for vector in concept.entanglement_vectors:
|
| 82 |
+
# Efficient transport: diag * vector (elementwise) + ij @ vector
|
| 83 |
+
transported_vec = self.diag_coeff * vector + self.ij_coeff.dot(vector)
|
| 84 |
+
transported_vectors.append(transported_vec.astype(np.float32))
|
| 85 |
+
|
| 86 |
+
# Return new entity to avoid mutation
|
| 87 |
+
return ConceptualEntity(
|
| 88 |
+
concept_hash=concept.concept_hash + "_transported",
|
| 89 |
+
truth_coordinate=(concept.truth_coordinate + path).astype(np.float32),
|
| 90 |
+
coherence_amplitude=concept.coherence_amplitude,
|
| 91 |
+
entanglement_vectors=transported_vectors,
|
| 92 |
+
topological_charge=concept.topological_charge
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
class QuantumLinguisticEngine:
|
| 96 |
+
"""
|
| 97 |
+
Memory-optimized engine for conceptual entanglement operations
|
| 98 |
+
Uses diag+ij connection instead of full 3-tensor
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def __init__(self, conceptual_space_dims: int = 256,
|
| 102 |
+
random_seed: Optional[int] = None,
|
| 103 |
+
manifestation_threshold: float = 0.85):
|
| 104 |
+
self.conceptual_space_dims = conceptual_space_dims
|
| 105 |
+
self.manifestation_threshold = manifestation_threshold
|
| 106 |
+
self.rng = np.random.default_rng(random_seed)
|
| 107 |
+
self.understanding_manifold = self._initialize_manifold()
|
| 108 |
+
self.entangled_concepts: Dict[str, ConceptualEntity] = {}
|
| 109 |
+
self.reality_interface = RealityInterface()
|
| 110 |
+
|
| 111 |
+
def _initialize_manifold(self) -> UnderstandingManifold:
|
| 112 |
+
"""Initialize memory-optimized understanding manifold"""
|
| 113 |
+
dim = self.conceptual_space_dims
|
| 114 |
+
|
| 115 |
+
# Metric tensor
|
| 116 |
+
metric_tensor = np.eye(dim, dtype=np.float32)
|
| 117 |
+
|
| 118 |
+
# Curvature field with controlled randomness
|
| 119 |
+
curvature = self.rng.normal(0, 0.1, (dim, dim)).astype(np.float32)
|
| 120 |
+
curvature = (curvature + curvature.T) / 2 # Symmetrize
|
| 121 |
+
|
| 122 |
+
# Memory-efficient connection components
|
| 123 |
+
diag_coeff, ij_coeff = self._calculate_efficient_connection(dim)
|
| 124 |
+
|
| 125 |
+
return UnderstandingManifold(
|
| 126 |
+
dimensionality=dim,
|
| 127 |
+
metric_tensor=metric_tensor,
|
| 128 |
+
curvature_field=curvature,
|
| 129 |
+
diag_coeff=diag_coeff,
|
| 130 |
+
ij_coeff=ij_coeff
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def _calculate_efficient_connection(self, dim: int) -> Tuple[np.ndarray, np.ndarray]:
|
| 134 |
+
"""
|
| 135 |
+
Calculate memory-efficient connection components
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
- diag_coeff: diagonal reinforcement coefficients (shape [dim])
|
| 139 |
+
- ij_coeff: conceptual coherence operator (shape [dim, dim])
|
| 140 |
+
|
| 141 |
+
Memory footprint: O(dim²) instead of O(dim³)
|
| 142 |
+
"""
|
| 143 |
+
# diag: self-reinforcement (formerly i==j==k: 0.5)
|
| 144 |
+
diag_coeff = np.full(dim, 0.5, dtype=np.float32)
|
| 145 |
+
|
| 146 |
+
# ij: conceptual coherence operator (formerly i==j, any k: 0.1)
|
| 147 |
+
ij_coeff = np.full((dim, dim), 0.1, dtype=np.float32)
|
| 148 |
+
|
| 149 |
+
return diag_coeff, ij_coeff
|
| 150 |
+
|
| 151 |
+
def _cosine_similarity_safe(self, a: np.ndarray, b: np.ndarray, eps: float = 1e-10) -> float:
|
| 152 |
+
"""Safe cosine similarity with NaN protection"""
|
| 153 |
+
na, nb = np.linalg.norm(a), np.linalg.norm(b)
|
| 154 |
+
if na < eps or nb < eps:
|
| 155 |
+
return 0.0
|
| 156 |
+
return float(np.dot(a, b) / (na * nb))
|
| 157 |
+
|
| 158 |
+
def _concept_hash(self, concept: str) -> str:
|
| 159 |
+
"""Full hash for better entropy distribution"""
|
| 160 |
+
return hashlib.sha3_256(concept.encode()).hexdigest()
|
| 161 |
+
|
| 162 |
+
def _concept_to_coordinate(self, concept: str) -> np.ndarray:
|
| 163 |
+
"""Robust concept mapping using full byte space"""
|
| 164 |
+
digest = hashlib.sha3_256(concept.encode()).digest() # 32 bytes
|
| 165 |
+
|
| 166 |
+
# Expand to fill conceptual space dimensions
|
| 167 |
+
repeats = (self.conceptual_space_dims + len(digest) - 1) // len(digest)
|
| 168 |
+
big_bytes = (digest * repeats)[:self.conceptual_space_dims]
|
| 169 |
+
|
| 170 |
+
# Convert to normalized float32 array
|
| 171 |
+
arr = np.frombuffer(big_bytes, dtype=np.uint8).astype(np.float32)
|
| 172 |
+
return ((arr / 255.0) * 2.0 - 1.0).astype(np.float32) # Normalize to [-1, 1]
|
| 173 |
+
|
| 174 |
+
def entangle_concepts(self, primary_concept: str, secondary_concept: str) -> ConceptualEntity:
|
| 175 |
+
"""Create robust quantum entanglement between concepts"""
|
| 176 |
+
primary_hash = self._concept_hash(primary_concept)
|
| 177 |
+
secondary_hash = self._concept_hash(secondary_concept)
|
| 178 |
+
|
| 179 |
+
primary_coord = self._concept_to_coordinate(primary_concept)
|
| 180 |
+
secondary_coord = self._concept_to_coordinate(secondary_concept)
|
| 181 |
+
|
| 182 |
+
# Safe coherence calculation
|
| 183 |
+
cos_sim = self._cosine_similarity_safe(primary_coord, secondary_coord)
|
| 184 |
+
coherence = (cos_sim + 1.0) / 2.0 # Normalize to [0,1]
|
| 185 |
+
|
| 186 |
+
# Ensure float32 for entanglement vector
|
| 187 |
+
entanglement_vector = (secondary_coord - primary_coord).astype(np.float32)
|
| 188 |
+
|
| 189 |
+
entangled_entity = ConceptualEntity(
|
| 190 |
+
concept_hash=f"{primary_hash}:{secondary_hash}",
|
| 191 |
+
truth_coordinate=((primary_coord + secondary_coord) / 2).astype(np.float32),
|
| 192 |
+
coherence_amplitude=coherence,
|
| 193 |
+
entanglement_vectors=[entanglement_vector],
|
| 194 |
+
topological_charge=cos_sim # Use cosine similarity as topological charge
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
self.entangled_concepts[entangled_entity.concept_hash] = entangled_entity
|
| 198 |
+
return entangled_entity
|
| 199 |
+
|
| 200 |
+
def calibrate_threshold(self, examples: List[Tuple[ConceptualEntity, bool]]) -> float:
|
| 201 |
+
"""
|
| 202 |
+
Calibrate manifestation threshold from labeled examples
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
examples: List of (concept_entity, did_manifest) pairs
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
Optimized manifestation threshold
|
| 209 |
+
"""
|
| 210 |
+
if not examples:
|
| 211 |
+
return self.manifestation_threshold # Default if no data
|
| 212 |
+
|
| 213 |
+
potentials = [entity.calculate_reality_potential() for entity, _ in examples]
|
| 214 |
+
manifested = [did_manifest for _, did_manifest in examples]
|
| 215 |
+
|
| 216 |
+
# Simple threshold optimization: find value that maximizes accuracy
|
| 217 |
+
best_threshold = 0.5
|
| 218 |
+
best_accuracy = 0.0
|
| 219 |
+
|
| 220 |
+
for threshold in np.linspace(0.1, 0.9, 50):
|
| 221 |
+
predictions = [p >= threshold for p in potentials]
|
| 222 |
+
accuracy = sum(p == m for p, m in zip(predictions, manifested)) / len(examples)
|
| 223 |
+
|
| 224 |
+
if accuracy > best_accuracy:
|
| 225 |
+
best_accuracy = accuracy
|
| 226 |
+
best_threshold = threshold
|
| 227 |
+
|
| 228 |
+
self.manifestation_threshold = best_threshold
|
| 229 |
+
return best_threshold
|
| 230 |
+
|
| 231 |
+
class RealityInterface:
|
| 232 |
+
"""Robust reality interface with calibration support"""
|
| 233 |
+
|
| 234 |
+
def __init__(self):
|
| 235 |
+
self.manifestation_records = []
|
| 236 |
+
self.collapse_observers = []
|
| 237 |
+
|
| 238 |
+
async def attempt_manifestation(self, concept: ConceptualEntity,
|
| 239 |
+
context: Dict[str, Any],
|
| 240 |
+
threshold: float = 0.85) -> Dict[str, Any]:
|
| 241 |
+
"""Robust manifestation attempt with configurable threshold"""
|
| 242 |
+
|
| 243 |
+
reality_potential = concept.calculate_reality_potential()
|
| 244 |
+
|
| 245 |
+
if reality_potential >= threshold:
|
| 246 |
+
manifestation = {
|
| 247 |
+
'concept_hash': concept.concept_hash,
|
| 248 |
+
'manifestation_strength': reality_potential,
|
| 249 |
+
'reality_distortion': reality_potential - threshold,
|
| 250 |
+
'collapse_observers': len(self.collapse_observers),
|
| 251 |
+
'timestamp': datetime.datetime.utcnow().isoformat(),
|
| 252 |
+
'coordinates_shape': concept.truth_coordinate.shape,
|
| 253 |
+
'status': 'manifested'
|
| 254 |
+
}
|
| 255 |
+
self.manifestation_records.append(manifestation)
|
| 256 |
+
return manifestation
|
| 257 |
+
else:
|
| 258 |
+
return {
|
| 259 |
+
'concept_hash': concept.concept_hash,
|
| 260 |
+
'manifestation_strength': reality_potential,
|
| 261 |
+
'status': 'below_threshold',
|
| 262 |
+
'required_coherence': threshold - reality_potential,
|
| 263 |
+
'current_threshold': threshold
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
# VALIDATION TESTS
|
| 267 |
+
def test_memory_optimized_engine():
|
| 268 |
+
"""Comprehensive tests for memory-optimized engine"""
|
| 269 |
+
engine = QuantumLinguisticEngine(conceptual_space_dims=64, random_seed=42)
|
| 270 |
+
|
| 271 |
+
# Test 1: Memory efficiency - check connection components
|
| 272 |
+
manifold = engine.understanding_manifold
|
| 273 |
+
assert manifold.diag_coeff.shape == (64,)
|
| 274 |
+
assert manifold.ij_coeff.shape == (64, 64)
|
| 275 |
+
assert manifold.diag_coeff.dtype == np.float32
|
| 276 |
+
assert manifold.ij_coeff.dtype == np.float32
|
| 277 |
+
|
| 278 |
+
# Test 2: Identical concepts should have max coherence
|
| 279 |
+
identical_entanglement = engine.entangle_concepts("test", "test")
|
| 280 |
+
assert abs(identical_entanglement.coherence_amplitude - 1.0) < 1e-6
|
| 281 |
+
|
| 282 |
+
# Test 3: All arrays should be float32 for memory efficiency
|
| 283 |
+
assert identical_entanglement.truth_coordinate.dtype == np.float32
|
| 284 |
+
assert identical_entanglement.entanglement_vectors[0].dtype == np.float32
|
| 285 |
+
|
| 286 |
+
# Test 4: Calibration functionality
|
| 287 |
+
calibration_examples = [
|
| 288 |
+
(identical_entanglement, True), # High potential, should manifest
|
| 289 |
+
]
|
| 290 |
+
calibrated_threshold = engine.calibrate_threshold(calibration_examples)
|
| 291 |
+
assert 0.0 <= calibrated_threshold <= 1.0
|
| 292 |
+
|
| 293 |
+
print("✅ All memory-optimized tests passed")
|
| 294 |
+
|
| 295 |
+
# DEMONSTRATION
|
| 296 |
+
async def demonstrate_memory_optimized_entanglement():
|
| 297 |
+
"""Demonstrate the memory-optimized entanglement engine"""
|
| 298 |
+
|
| 299 |
+
print("🌌 CONCEPTUAL ENTANGLEMENT MODULE v7.2")
|
| 300 |
+
print("Memory-Optimized with Diag+IJ Connection")
|
| 301 |
+
print("=" * 60)
|
| 302 |
+
|
| 303 |
+
# Initialize with seed for reproducibility
|
| 304 |
+
engine = QuantumLinguisticEngine(random_seed=42, manifestation_threshold=0.8)
|
| 305 |
+
|
| 306 |
+
# Create entanglement
|
| 307 |
+
entanglement = engine.entangle_concepts(
|
| 308 |
+
"truth_manifestation",
|
| 309 |
+
"institutional_bypass"
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
print(f"🧠 Memory-Optimized Conceptual Entanglement:")
|
| 313 |
+
print(f" Entity: {entanglement}")
|
| 314 |
+
print(f" Reality Potential: {entanglement.calculate_reality_potential():.3f}")
|
| 315 |
+
|
| 316 |
+
# Test manifestation with custom threshold
|
| 317 |
+
result = await engine.reality_interface.attempt_manifestation(
|
| 318 |
+
entanglement,
|
| 319 |
+
{'context': 'strategic_deployment'},
|
| 320 |
+
threshold=engine.manifestation_threshold
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
print(f"\n⚡ Manifestation Result:")
|
| 324 |
+
print(f" Status: {result['status']}")
|
| 325 |
+
print(f" Strength: {result['manifestation_strength']:.3f}")
|
| 326 |
+
print(f" Threshold: {result.get('current_threshold', engine.manifestation_threshold):.3f}")
|
| 327 |
+
|
| 328 |
+
# Memory efficiency report
|
| 329 |
+
manifold = engine.understanding_manifold
|
| 330 |
+
original_memory = 256**3 * 4 # 256³ float32 tensor in bytes
|
| 331 |
+
optimized_memory = (256 + 256**2) * 4 # diag + ij in bytes
|
| 332 |
+
memory_savings = (1 - optimized_memory / original_memory) * 100
|
| 333 |
+
|
| 334 |
+
print(f"\n💾 Memory Optimization:")
|
| 335 |
+
print(f" Original 3-tensor: {original_memory / (1024**2):.1f} MB")
|
| 336 |
+
print(f" Diag+IJ components: {optimized_memory / (1024**2):.1f} MB")
|
| 337 |
+
print(f" Memory reduction: {memory_savings:.1f}%")
|
| 338 |
+
|
| 339 |
+
# Run validation tests
|
| 340 |
+
print(f"\n🔬 Running Validation Tests...")
|
| 341 |
+
test_memory_optimized_engine()
|
| 342 |
+
|
| 343 |
+
print(f"\n💫 Module Status: MEMORY-OPTIMIZED & PRODUCTION-READY")
|
| 344 |
+
print(" Diag+IJ connection architecture implemented")
|
| 345 |
+
print(" Full float32 consistency enforced")
|
| 346 |
+
print(" Configurable manifestation threshold")
|
| 347 |
+
print(" Calibration system for threshold optimization")
|
| 348 |
+
|
| 349 |
+
if __name__ == "__main__":
|
| 350 |
+
asyncio.run(demonstrate_memory_optimized_entanglement())
|