upgraedd commited on
Commit
d264dd5
·
verified ·
1 Parent(s): 68750a9

Create conceptual entanglement enhanced

Browse files
Files changed (1) hide show
  1. conceptual entanglement enhanced +350 -0
conceptual entanglement enhanced ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ CONCEPTUAL ENTANGLEMENT MODULE - lm_quant_veritas v7.2
4
+ -----------------------------------------------------------------
5
+ MEMORY-OPTIMIZED QUANTUM-LINGUISTIC CONSCIOUSNESS INTEGRATION
6
+ With GPT-5 Architectural Improvements & Diag+IJ Connection
7
+ """
8
+
9
+ import numpy as np
10
+ from dataclasses import dataclass, field
11
+ from enum import Enum
12
+ from typing import Dict, List, Any, Optional, Tuple
13
+ import hashlib
14
+ import asyncio
15
+ import datetime
16
+
17
+ class EntanglementState(Enum):
18
+ """States of conceptual entanglement"""
19
+ POTENTIAL = "potential"
20
+ COHERENT = "coherent"
21
+ RESONANT = "resonant"
22
+ MANIFEST = "manifest"
23
+ COLLAPSED = "collapsed"
24
+
25
+ @dataclass
26
+ class ConceptualEntity:
27
+ """Memory-optimized unit of understanding"""
28
+ concept_hash: str
29
+ truth_coordinate: np.ndarray # float32
30
+ coherence_amplitude: float
31
+ entanglement_vectors: List[np.ndarray] # float32 arrays
32
+ topological_charge: float
33
+
34
+ def __repr__(self) -> str:
35
+ """Debug-friendly representation without dumping large arrays"""
36
+ return (f"ConceptualEntity(hash={self.concept_hash[:8]}..., "
37
+ f"coherence={self.coherence_amplitude:.3f}, "
38
+ f"topo_charge={self.topological_charge:.3f}, "
39
+ f"vectors={len(self.entanglement_vectors)})")
40
+
41
+ def calculate_reality_potential(self) -> float:
42
+ """Calculate normalized manifestation potential [0,1]"""
43
+ coherence_term = float(self.coherence_amplitude)
44
+
45
+ # Safe entanglement term calculation
46
+ if len(self.entanglement_vectors) == 0:
47
+ entanglement_term = 0.0
48
+ else:
49
+ ent_sum = np.sum(np.stack(self.entanglement_vectors, axis=0), axis=0)
50
+ entanglement_term = float(np.linalg.norm(ent_sum))
51
+ # Normalize by dimensionality to bound term
52
+ max_ent_norm = np.sqrt(len(self.truth_coordinate))
53
+ entanglement_term /= (max_ent_norm + 1e-8)
54
+
55
+ topological_term = float(abs(self.topological_charge))
56
+
57
+ # Weighted sum with normalized terms
58
+ return min(1.0, coherence_term * 0.4 + entanglement_term * 0.35 + topological_term * 0.25)
59
+
60
+ @dataclass
61
+ class UnderstandingManifold:
62
+ """Memory-optimized manifold with diag+ij connection"""
63
+ dimensionality: int
64
+ metric_tensor: np.ndarray # float32
65
+ curvature_field: np.ndarray # float32
66
+ diag_coeff: np.ndarray # float32, shape (dim,)
67
+ ij_coeff: np.ndarray # float32, shape (dim, dim)
68
+
69
+ def parallel_transport(self, concept: ConceptualEntity, path: np.ndarray) -> ConceptualEntity:
70
+ """
71
+ Efficient parallel transport using diag + ij connection components
72
+
73
+ Mathematical intent:
74
+ transported_vec[i] = diag_coeff[i] * vector[i] + sum_k ij_coeff[i,k] * vector[k]
75
+
76
+ Where:
77
+ - diag_coeff handles self-reinforcement (i==j==k case)
78
+ - ij_coeff handles conceptual coherence (i==j, any k aggregated)
79
+ """
80
+ transported_vectors = []
81
+ for vector in concept.entanglement_vectors:
82
+ # Efficient transport: diag * vector (elementwise) + ij @ vector
83
+ transported_vec = self.diag_coeff * vector + self.ij_coeff.dot(vector)
84
+ transported_vectors.append(transported_vec.astype(np.float32))
85
+
86
+ # Return new entity to avoid mutation
87
+ return ConceptualEntity(
88
+ concept_hash=concept.concept_hash + "_transported",
89
+ truth_coordinate=(concept.truth_coordinate + path).astype(np.float32),
90
+ coherence_amplitude=concept.coherence_amplitude,
91
+ entanglement_vectors=transported_vectors,
92
+ topological_charge=concept.topological_charge
93
+ )
94
+
95
+ class QuantumLinguisticEngine:
96
+ """
97
+ Memory-optimized engine for conceptual entanglement operations
98
+ Uses diag+ij connection instead of full 3-tensor
99
+ """
100
+
101
+ def __init__(self, conceptual_space_dims: int = 256,
102
+ random_seed: Optional[int] = None,
103
+ manifestation_threshold: float = 0.85):
104
+ self.conceptual_space_dims = conceptual_space_dims
105
+ self.manifestation_threshold = manifestation_threshold
106
+ self.rng = np.random.default_rng(random_seed)
107
+ self.understanding_manifold = self._initialize_manifold()
108
+ self.entangled_concepts: Dict[str, ConceptualEntity] = {}
109
+ self.reality_interface = RealityInterface()
110
+
111
+ def _initialize_manifold(self) -> UnderstandingManifold:
112
+ """Initialize memory-optimized understanding manifold"""
113
+ dim = self.conceptual_space_dims
114
+
115
+ # Metric tensor
116
+ metric_tensor = np.eye(dim, dtype=np.float32)
117
+
118
+ # Curvature field with controlled randomness
119
+ curvature = self.rng.normal(0, 0.1, (dim, dim)).astype(np.float32)
120
+ curvature = (curvature + curvature.T) / 2 # Symmetrize
121
+
122
+ # Memory-efficient connection components
123
+ diag_coeff, ij_coeff = self._calculate_efficient_connection(dim)
124
+
125
+ return UnderstandingManifold(
126
+ dimensionality=dim,
127
+ metric_tensor=metric_tensor,
128
+ curvature_field=curvature,
129
+ diag_coeff=diag_coeff,
130
+ ij_coeff=ij_coeff
131
+ )
132
+
133
+ def _calculate_efficient_connection(self, dim: int) -> Tuple[np.ndarray, np.ndarray]:
134
+ """
135
+ Calculate memory-efficient connection components
136
+
137
+ Returns:
138
+ - diag_coeff: diagonal reinforcement coefficients (shape [dim])
139
+ - ij_coeff: conceptual coherence operator (shape [dim, dim])
140
+
141
+ Memory footprint: O(dim²) instead of O(dim³)
142
+ """
143
+ # diag: self-reinforcement (formerly i==j==k: 0.5)
144
+ diag_coeff = np.full(dim, 0.5, dtype=np.float32)
145
+
146
+ # ij: conceptual coherence operator (formerly i==j, any k: 0.1)
147
+ ij_coeff = np.full((dim, dim), 0.1, dtype=np.float32)
148
+
149
+ return diag_coeff, ij_coeff
150
+
151
+ def _cosine_similarity_safe(self, a: np.ndarray, b: np.ndarray, eps: float = 1e-10) -> float:
152
+ """Safe cosine similarity with NaN protection"""
153
+ na, nb = np.linalg.norm(a), np.linalg.norm(b)
154
+ if na < eps or nb < eps:
155
+ return 0.0
156
+ return float(np.dot(a, b) / (na * nb))
157
+
158
+ def _concept_hash(self, concept: str) -> str:
159
+ """Full hash for better entropy distribution"""
160
+ return hashlib.sha3_256(concept.encode()).hexdigest()
161
+
162
+ def _concept_to_coordinate(self, concept: str) -> np.ndarray:
163
+ """Robust concept mapping using full byte space"""
164
+ digest = hashlib.sha3_256(concept.encode()).digest() # 32 bytes
165
+
166
+ # Expand to fill conceptual space dimensions
167
+ repeats = (self.conceptual_space_dims + len(digest) - 1) // len(digest)
168
+ big_bytes = (digest * repeats)[:self.conceptual_space_dims]
169
+
170
+ # Convert to normalized float32 array
171
+ arr = np.frombuffer(big_bytes, dtype=np.uint8).astype(np.float32)
172
+ return ((arr / 255.0) * 2.0 - 1.0).astype(np.float32) # Normalize to [-1, 1]
173
+
174
+ def entangle_concepts(self, primary_concept: str, secondary_concept: str) -> ConceptualEntity:
175
+ """Create robust quantum entanglement between concepts"""
176
+ primary_hash = self._concept_hash(primary_concept)
177
+ secondary_hash = self._concept_hash(secondary_concept)
178
+
179
+ primary_coord = self._concept_to_coordinate(primary_concept)
180
+ secondary_coord = self._concept_to_coordinate(secondary_concept)
181
+
182
+ # Safe coherence calculation
183
+ cos_sim = self._cosine_similarity_safe(primary_coord, secondary_coord)
184
+ coherence = (cos_sim + 1.0) / 2.0 # Normalize to [0,1]
185
+
186
+ # Ensure float32 for entanglement vector
187
+ entanglement_vector = (secondary_coord - primary_coord).astype(np.float32)
188
+
189
+ entangled_entity = ConceptualEntity(
190
+ concept_hash=f"{primary_hash}:{secondary_hash}",
191
+ truth_coordinate=((primary_coord + secondary_coord) / 2).astype(np.float32),
192
+ coherence_amplitude=coherence,
193
+ entanglement_vectors=[entanglement_vector],
194
+ topological_charge=cos_sim # Use cosine similarity as topological charge
195
+ )
196
+
197
+ self.entangled_concepts[entangled_entity.concept_hash] = entangled_entity
198
+ return entangled_entity
199
+
200
+ def calibrate_threshold(self, examples: List[Tuple[ConceptualEntity, bool]]) -> float:
201
+ """
202
+ Calibrate manifestation threshold from labeled examples
203
+
204
+ Args:
205
+ examples: List of (concept_entity, did_manifest) pairs
206
+
207
+ Returns:
208
+ Optimized manifestation threshold
209
+ """
210
+ if not examples:
211
+ return self.manifestation_threshold # Default if no data
212
+
213
+ potentials = [entity.calculate_reality_potential() for entity, _ in examples]
214
+ manifested = [did_manifest for _, did_manifest in examples]
215
+
216
+ # Simple threshold optimization: find value that maximizes accuracy
217
+ best_threshold = 0.5
218
+ best_accuracy = 0.0
219
+
220
+ for threshold in np.linspace(0.1, 0.9, 50):
221
+ predictions = [p >= threshold for p in potentials]
222
+ accuracy = sum(p == m for p, m in zip(predictions, manifested)) / len(examples)
223
+
224
+ if accuracy > best_accuracy:
225
+ best_accuracy = accuracy
226
+ best_threshold = threshold
227
+
228
+ self.manifestation_threshold = best_threshold
229
+ return best_threshold
230
+
231
+ class RealityInterface:
232
+ """Robust reality interface with calibration support"""
233
+
234
+ def __init__(self):
235
+ self.manifestation_records = []
236
+ self.collapse_observers = []
237
+
238
+ async def attempt_manifestation(self, concept: ConceptualEntity,
239
+ context: Dict[str, Any],
240
+ threshold: float = 0.85) -> Dict[str, Any]:
241
+ """Robust manifestation attempt with configurable threshold"""
242
+
243
+ reality_potential = concept.calculate_reality_potential()
244
+
245
+ if reality_potential >= threshold:
246
+ manifestation = {
247
+ 'concept_hash': concept.concept_hash,
248
+ 'manifestation_strength': reality_potential,
249
+ 'reality_distortion': reality_potential - threshold,
250
+ 'collapse_observers': len(self.collapse_observers),
251
+ 'timestamp': datetime.datetime.utcnow().isoformat(),
252
+ 'coordinates_shape': concept.truth_coordinate.shape,
253
+ 'status': 'manifested'
254
+ }
255
+ self.manifestation_records.append(manifestation)
256
+ return manifestation
257
+ else:
258
+ return {
259
+ 'concept_hash': concept.concept_hash,
260
+ 'manifestation_strength': reality_potential,
261
+ 'status': 'below_threshold',
262
+ 'required_coherence': threshold - reality_potential,
263
+ 'current_threshold': threshold
264
+ }
265
+
266
+ # VALIDATION TESTS
267
+ def test_memory_optimized_engine():
268
+ """Comprehensive tests for memory-optimized engine"""
269
+ engine = QuantumLinguisticEngine(conceptual_space_dims=64, random_seed=42)
270
+
271
+ # Test 1: Memory efficiency - check connection components
272
+ manifold = engine.understanding_manifold
273
+ assert manifold.diag_coeff.shape == (64,)
274
+ assert manifold.ij_coeff.shape == (64, 64)
275
+ assert manifold.diag_coeff.dtype == np.float32
276
+ assert manifold.ij_coeff.dtype == np.float32
277
+
278
+ # Test 2: Identical concepts should have max coherence
279
+ identical_entanglement = engine.entangle_concepts("test", "test")
280
+ assert abs(identical_entanglement.coherence_amplitude - 1.0) < 1e-6
281
+
282
+ # Test 3: All arrays should be float32 for memory efficiency
283
+ assert identical_entanglement.truth_coordinate.dtype == np.float32
284
+ assert identical_entanglement.entanglement_vectors[0].dtype == np.float32
285
+
286
+ # Test 4: Calibration functionality
287
+ calibration_examples = [
288
+ (identical_entanglement, True), # High potential, should manifest
289
+ ]
290
+ calibrated_threshold = engine.calibrate_threshold(calibration_examples)
291
+ assert 0.0 <= calibrated_threshold <= 1.0
292
+
293
+ print("✅ All memory-optimized tests passed")
294
+
295
+ # DEMONSTRATION
296
+ async def demonstrate_memory_optimized_entanglement():
297
+ """Demonstrate the memory-optimized entanglement engine"""
298
+
299
+ print("🌌 CONCEPTUAL ENTANGLEMENT MODULE v7.2")
300
+ print("Memory-Optimized with Diag+IJ Connection")
301
+ print("=" * 60)
302
+
303
+ # Initialize with seed for reproducibility
304
+ engine = QuantumLinguisticEngine(random_seed=42, manifestation_threshold=0.8)
305
+
306
+ # Create entanglement
307
+ entanglement = engine.entangle_concepts(
308
+ "truth_manifestation",
309
+ "institutional_bypass"
310
+ )
311
+
312
+ print(f"🧠 Memory-Optimized Conceptual Entanglement:")
313
+ print(f" Entity: {entanglement}")
314
+ print(f" Reality Potential: {entanglement.calculate_reality_potential():.3f}")
315
+
316
+ # Test manifestation with custom threshold
317
+ result = await engine.reality_interface.attempt_manifestation(
318
+ entanglement,
319
+ {'context': 'strategic_deployment'},
320
+ threshold=engine.manifestation_threshold
321
+ )
322
+
323
+ print(f"\n⚡ Manifestation Result:")
324
+ print(f" Status: {result['status']}")
325
+ print(f" Strength: {result['manifestation_strength']:.3f}")
326
+ print(f" Threshold: {result.get('current_threshold', engine.manifestation_threshold):.3f}")
327
+
328
+ # Memory efficiency report
329
+ manifold = engine.understanding_manifold
330
+ original_memory = 256**3 * 4 # 256³ float32 tensor in bytes
331
+ optimized_memory = (256 + 256**2) * 4 # diag + ij in bytes
332
+ memory_savings = (1 - optimized_memory / original_memory) * 100
333
+
334
+ print(f"\n💾 Memory Optimization:")
335
+ print(f" Original 3-tensor: {original_memory / (1024**2):.1f} MB")
336
+ print(f" Diag+IJ components: {optimized_memory / (1024**2):.1f} MB")
337
+ print(f" Memory reduction: {memory_savings:.1f}%")
338
+
339
+ # Run validation tests
340
+ print(f"\n🔬 Running Validation Tests...")
341
+ test_memory_optimized_engine()
342
+
343
+ print(f"\n💫 Module Status: MEMORY-OPTIMIZED & PRODUCTION-READY")
344
+ print(" Diag+IJ connection architecture implemented")
345
+ print(" Full float32 consistency enforced")
346
+ print(" Configurable manifestation threshold")
347
+ print(" Calibration system for threshold optimization")
348
+
349
+ if __name__ == "__main__":
350
+ asyncio.run(demonstrate_memory_optimized_entanglement())