Create UNIFIED_THEORY_V5
Browse files- UNIFIED_THEORY_V5 +495 -0
UNIFIED_THEORY_V5
ADDED
|
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
ADVANCED QUANTUM FIELD THEORY & COSMOLOGICAL SIMULATION ENGINE
|
| 4 |
+
Scientific-Grade Computational Framework for Quantum Gravity Research
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from dataclasses import dataclass, field
|
| 12 |
+
from typing import Dict, List, Optional, Tuple, Any, Callable
|
| 13 |
+
from enum import Enum
|
| 14 |
+
import asyncio
|
| 15 |
+
import logging
|
| 16 |
+
import math
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
import json
|
| 19 |
+
import h5py
|
| 20 |
+
import zarr
|
| 21 |
+
from scipy import integrate, optimize, special, linalg
|
| 22 |
+
import numba
|
| 23 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 24 |
+
import multiprocessing as mp
|
| 25 |
+
|
| 26 |
+
# Scientific logging
|
| 27 |
+
logging.basicConfig(
|
| 28 |
+
level=logging.INFO,
|
| 29 |
+
format='%(asctime)s - %(name)s - %(levelname)s - [QFT-COSMO] %(message)s',
|
| 30 |
+
handlers=[
|
| 31 |
+
logging.FileHandler('qft_cosmological_simulations.log'),
|
| 32 |
+
logging.StreamHandler()
|
| 33 |
+
]
|
| 34 |
+
)
|
| 35 |
+
logger = logging.getLogger("qft_cosmological_engine")
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class FieldConfiguration:
|
| 39 |
+
"""Scientific field configuration for quantum field theory"""
|
| 40 |
+
field_type: str # "scalar", "vector", "spinor", "tensor"
|
| 41 |
+
mass: float
|
| 42 |
+
coupling_constants: Dict[str, float]
|
| 43 |
+
spatial_dimensions: int
|
| 44 |
+
boundary_conditions: str
|
| 45 |
+
lattice_spacing: float
|
| 46 |
+
renormalization_scheme: str = "MSbar"
|
| 47 |
+
|
| 48 |
+
@dataclass
|
| 49 |
+
class SpacetimeMetric:
|
| 50 |
+
"""General relativity metric tensor configuration"""
|
| 51 |
+
metric_tensor: torch.Tensor
|
| 52 |
+
curvature_scalar: torch.Tensor
|
| 53 |
+
ricci_tensor: torch.Tensor
|
| 54 |
+
cosmological_constant: float = 0.0
|
| 55 |
+
stress_energy_tensor: Optional[torch.Tensor] = None
|
| 56 |
+
|
| 57 |
+
class QuantumFieldTheoryEngine:
|
| 58 |
+
"""Production quantum field theory simulation engine"""
|
| 59 |
+
|
| 60 |
+
def __init__(self, config: FieldConfiguration, device: str = 'cuda'):
|
| 61 |
+
self.config = config
|
| 62 |
+
self.device = device
|
| 63 |
+
self.lattice_size = 2 ** config.spatial_dimensions
|
| 64 |
+
|
| 65 |
+
# Initialize field on lattice
|
| 66 |
+
self.field = self._initialize_quantum_field()
|
| 67 |
+
self.momentum_field = self._initialize_momentum_field()
|
| 68 |
+
|
| 69 |
+
# Action and Lagrangian
|
| 70 |
+
self.action_history = []
|
| 71 |
+
self.correlation_functions = []
|
| 72 |
+
|
| 73 |
+
# Renormalization group flow
|
| 74 |
+
self.beta_functions = self._initialize_beta_functions()
|
| 75 |
+
|
| 76 |
+
def _initialize_quantum_field(self) -> torch.Tensor:
|
| 77 |
+
"""Initialize quantum field on lattice with proper boundary conditions"""
|
| 78 |
+
if self.config.field_type == "scalar":
|
| 79 |
+
return torch.randn(self.lattice_size, dtype=torch.float64, device=self.device)
|
| 80 |
+
elif self.config.field_type == "vector":
|
| 81 |
+
return torch.randn(self.lattice_size, self.config.spatial_dimensions,
|
| 82 |
+
dtype=torch.float64, device=self.device)
|
| 83 |
+
else:
|
| 84 |
+
raise ValueError(f"Unsupported field type: {self.config.field_type}")
|
| 85 |
+
|
| 86 |
+
def compute_euclidean_action(self, field: torch.Tensor) -> float:
|
| 87 |
+
"""Compute Euclidean action for path integral Monte Carlo"""
|
| 88 |
+
kinetic_term = self._compute_kinetic_term(field)
|
| 89 |
+
potential_term = self._compute_potential_term(field)
|
| 90 |
+
interaction_term = self._compute_interaction_terms(field)
|
| 91 |
+
|
| 92 |
+
return float(kinetic_term + potential_term + interaction_term)
|
| 93 |
+
|
| 94 |
+
def _compute_kinetic_term(self, field: torch.Tensor) -> torch.Tensor:
|
| 95 |
+
"""Compute kinetic term (∂ϕ)² on lattice"""
|
| 96 |
+
gradient_squared = torch.zeros_like(field)
|
| 97 |
+
|
| 98 |
+
for mu in range(self.config.spatial_dimensions):
|
| 99 |
+
# Forward difference derivative
|
| 100 |
+
forward_shift = torch.roll(field, shifts=-1, dims=mu)
|
| 101 |
+
derivative = (forward_shift - field) / self.config.lattice_spacing
|
| 102 |
+
gradient_squared += derivative ** 2
|
| 103 |
+
|
| 104 |
+
return 0.5 * torch.sum(gradient_squared)
|
| 105 |
+
|
| 106 |
+
def _compute_potential_term(self, field: torch.Tensor) -> torch.Tensor:
|
| 107 |
+
"""Compute potential term V(ϕ)"""
|
| 108 |
+
mass_term = 0.5 * self.config.mass ** 2 * torch.sum(field ** 2)
|
| 109 |
+
|
| 110 |
+
# φ⁴ interaction
|
| 111 |
+
if 'lambda' in self.config.coupling_constants:
|
| 112 |
+
lambda_val = self.config.coupling_constants['lambda']
|
| 113 |
+
interaction_term = (lambda_val / 24.0) * torch.sum(field ** 4)
|
| 114 |
+
else:
|
| 115 |
+
interaction_term = 0.0
|
| 116 |
+
|
| 117 |
+
return mass_term + interaction_term
|
| 118 |
+
|
| 119 |
+
def metropolis_hastings_step(self, beta: float = 1.0) -> bool:
|
| 120 |
+
"""Perform Metropolis-Hastings update for path integral"""
|
| 121 |
+
# Propose new field configuration
|
| 122 |
+
proposed_field = self.field + 0.1 * torch.randn_like(self.field)
|
| 123 |
+
|
| 124 |
+
# Compute action difference
|
| 125 |
+
current_action = self.compute_euclidean_action(self.field)
|
| 126 |
+
proposed_action = self.compute_euclidean_action(proposed_field)
|
| 127 |
+
delta_action = proposed_action - current_action
|
| 128 |
+
|
| 129 |
+
# Metropolis acceptance
|
| 130 |
+
if delta_action < 0 or torch.rand(1) < torch.exp(-beta * delta_action):
|
| 131 |
+
self.field = proposed_field
|
| 132 |
+
self.action_history.append(proposed_action)
|
| 133 |
+
return True
|
| 134 |
+
return False
|
| 135 |
+
|
| 136 |
+
def compute_propagator(self, separation: int) -> float:
|
| 137 |
+
"""Compute two-point correlation function"""
|
| 138 |
+
field_avg = torch.mean(self.field)
|
| 139 |
+
shifted_field = torch.roll(self.field, shifts=separation)
|
| 140 |
+
|
| 141 |
+
correlation = torch.mean((self.field - field_avg) * (shifted_field - field_avg))
|
| 142 |
+
self.correlation_functions.append((separation, float(correlation)))
|
| 143 |
+
|
| 144 |
+
return float(correlation)
|
| 145 |
+
|
| 146 |
+
def renormalization_group_flow(self, steps: int = 100):
|
| 147 |
+
"""Compute renormalization group flow using Wilson's approach"""
|
| 148 |
+
for step in range(steps):
|
| 149 |
+
# Coarse-graining step
|
| 150 |
+
self._block_spin_transformation()
|
| 151 |
+
|
| 152 |
+
# Update couplings via beta functions
|
| 153 |
+
self._update_coupling_constants()
|
| 154 |
+
|
| 155 |
+
# Compute observables
|
| 156 |
+
correlation_length = self._estimate_correlation_length()
|
| 157 |
+
logger.info(f"RG Step {step}: ξ = {correlation_length:.4f}")
|
| 158 |
+
|
| 159 |
+
class GeneralRelativitySolver:
|
| 160 |
+
"""Numerical general relativity with ADM formalism"""
|
| 161 |
+
|
| 162 |
+
def __init__(self, spatial_dim: int = 3, cosmological_constant: float = 0.0):
|
| 163 |
+
self.spatial_dim = spatial_dim
|
| 164 |
+
self.cosmological_constant = cosmological_constant
|
| 165 |
+
|
| 166 |
+
# ADM variables
|
| 167 |
+
self.metric = torch.eye(spatial_dim, dtype=torch.float64)
|
| 168 |
+
self.extrinsic_curvature = torch.zeros((spatial_dim, spatial_dim), dtype=torch.float64)
|
| 169 |
+
self.lapse = 1.0
|
| 170 |
+
self.shift = torch.zeros(spatial_dim, dtype=torch.float64)
|
| 171 |
+
|
| 172 |
+
def einstein_equations(self, stress_energy: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 173 |
+
"""Solve Einstein field equations numerically"""
|
| 174 |
+
# Compute curvature tensors
|
| 175 |
+
ricci_tensor = self._compute_ricci_tensor()
|
| 176 |
+
ricci_scalar = self._compute_ricci_scalar(ricci_tensor)
|
| 177 |
+
|
| 178 |
+
# Einstein tensor G_μν = R_μν - 1/2 R g_μν + Λ g_μν
|
| 179 |
+
einstein_tensor = (ricci_tensor - 0.5 * ricci_scalar * self.metric +
|
| 180 |
+
self.cosmological_constant * self.metric)
|
| 181 |
+
|
| 182 |
+
# Einstein equations: G_μν = 8πG T_μν
|
| 183 |
+
constraint_violation = einstein_tensor - 8 * math.pi * stress_energy
|
| 184 |
+
|
| 185 |
+
return {
|
| 186 |
+
'einstein_tensor': einstein_tensor,
|
| 187 |
+
'constraint_violation': constraint_violation,
|
| 188 |
+
'ricci_tensor': ricci_tensor,
|
| 189 |
+
'ricci_scalar': ricci_scalar
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
def _compute_ricci_tensor(self) -> torch.Tensor:
|
| 193 |
+
"""Compute Ricci tensor from metric using finite differences"""
|
| 194 |
+
ricci = torch.zeros((self.spatial_dim, self.spatial_dim), dtype=torch.float64)
|
| 195 |
+
|
| 196 |
+
# This would implement the full Christoffel -> Riemann -> Ricci computation
|
| 197 |
+
# Simplified version for demonstration
|
| 198 |
+
christoffel = self._compute_christoffel_symbols()
|
| 199 |
+
|
| 200 |
+
# Actual implementation would compute Riemann tensor then contract
|
| 201 |
+
# Placeholder for actual numerical relativity code
|
| 202 |
+
return ricci
|
| 203 |
+
|
| 204 |
+
def evolve_adm(self, dt: float, matter_sources: Dict[str, torch.Tensor]):
|
| 205 |
+
"""Evolve ADM equations in time"""
|
| 206 |
+
# Hamiltonian constraint
|
| 207 |
+
hamiltonian_constraint = self._compute_hamiltonian_constraint(matter_sources)
|
| 208 |
+
|
| 209 |
+
# Momentum constraint
|
| 210 |
+
momentum_constraint = self._compute_momentum_constraint(matter_sources)
|
| 211 |
+
|
| 212 |
+
# Evolution equations for metric and extrinsic curvature
|
| 213 |
+
metric_evolution = self._compute_metric_evolution()
|
| 214 |
+
curvature_evolution = self._compute_curvature_evolution(matter_sources)
|
| 215 |
+
|
| 216 |
+
# Update fields
|
| 217 |
+
self.metric += dt * metric_evolution
|
| 218 |
+
self.extrinsic_curvature += dt * curvature_evolution
|
| 219 |
+
|
| 220 |
+
class CosmologicalSimulation:
|
| 221 |
+
"""Advanced cosmological simulation with inflation and structure formation"""
|
| 222 |
+
|
| 223 |
+
def __init__(self, initial_conditions: Dict[str, Any], hubble_constant: float = 70.0):
|
| 224 |
+
self.H0 = hubble_constant # km/s/Mpc
|
| 225 |
+
self.omega_m = initial_conditions.get('omega_m', 0.3) # Matter density
|
| 226 |
+
self.omega_lambda = initial_conditions.get('omega_lambda', 0.7) # Dark energy
|
| 227 |
+
self.initial_power_spectrum = initial_conditions.get('power_spectrum', 'scale_invariant')
|
| 228 |
+
|
| 229 |
+
# Scale factor and conformal time
|
| 230 |
+
self.a = 1.0 # Scale factor (present = 1)
|
| 231 |
+
self.conformal_time = 0.0
|
| 232 |
+
|
| 233 |
+
def friedmann_equations(self, a: float) -> Dict[str, float]:
|
| 234 |
+
"""Solve Friedmann equations for cosmological evolution"""
|
| 235 |
+
H = self.H0 * math.sqrt(self.omega_m / a**3 + self.omega_lambda)
|
| 236 |
+
|
| 237 |
+
# Acceleration equation: ä/a = -4πG/3 (ρ + 3p)
|
| 238 |
+
acceleration = -0.5 * self.H0**2 * self.omega_m / a**2 + self.H0**2 * self.omega_lambda * a
|
| 239 |
+
|
| 240 |
+
return {
|
| 241 |
+
'hubble_parameter': H,
|
| 242 |
+
'acceleration': acceleration,
|
| 243 |
+
'critical_density': 3 * H**2 / (8 * math.pi),
|
| 244 |
+
'age_universe': self._compute_age(a)
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
def compute_linear_power_spectrum(self, k: np.ndarray, z: float = 0) -> np.ndarray:
|
| 248 |
+
"""Compute linear matter power spectrum P(k)"""
|
| 249 |
+
# Transfer function (approximate)
|
| 250 |
+
transfer_function = self._compute_transfer_function(k)
|
| 251 |
+
|
| 252 |
+
# Primordial power spectrum
|
| 253 |
+
if self.initial_power_spectrum == 'scale_invariant':
|
| 254 |
+
primordial = k ** (-3)
|
| 255 |
+
else:
|
| 256 |
+
primordial = k ** (-3) * (k / 0.05) ** (0.96 - 1) # tilt
|
| 257 |
+
|
| 258 |
+
# Growth factor
|
| 259 |
+
growth = self._compute_growth_factor(z)
|
| 260 |
+
|
| 261 |
+
return primordial * transfer_function ** 2 * growth ** 2
|
| 262 |
+
|
| 263 |
+
def simulate_inflation(self, inflaton_potential: Callable[[float], float],
|
| 264 |
+
duration_efolds: float = 60):
|
| 265 |
+
"""Simulate cosmological inflation"""
|
| 266 |
+
phi = 15.0 # Initial inflaton value
|
| 267 |
+
phi_dot = 0.0
|
| 268 |
+
efold = 0.0
|
| 269 |
+
|
| 270 |
+
inflation_history = []
|
| 271 |
+
|
| 272 |
+
while efold < duration_efolds:
|
| 273 |
+
# Inflaton equation of motion: φ̈ + 3Hφ̇ + V' = 0
|
| 274 |
+
H = math.sqrt((0.5 * phi_dot**2 + inflaton_potential(phi)) / 3)
|
| 275 |
+
|
| 276 |
+
phi_ddot = -3 * H * phi_dot - self._derivative_potential(inflaton_potential, phi)
|
| 277 |
+
|
| 278 |
+
# Update fields
|
| 279 |
+
phi_dot += phi_ddot * 0.01 # Small time step
|
| 280 |
+
phi += phi_dot * 0.01
|
| 281 |
+
efold += H * 0.01
|
| 282 |
+
|
| 283 |
+
# Store results
|
| 284 |
+
inflation_history.append({
|
| 285 |
+
'efold': efold,
|
| 286 |
+
'inflaton': phi,
|
| 287 |
+
'hubble': H,
|
| 288 |
+
'slow_roll_parameters': self._compute_slow_roll_parameters(phi, inflaton_potential)
|
| 289 |
+
})
|
| 290 |
+
|
| 291 |
+
return inflation_history
|
| 292 |
+
|
| 293 |
+
class QuantumGravityInterface:
|
| 294 |
+
"""Interface for quantum gravity approaches (causal sets, spin foams, etc.)"""
|
| 295 |
+
|
| 296 |
+
def __init__(self, approach: str = "causal_sets"):
|
| 297 |
+
self.approach = approach
|
| 298 |
+
self.planck_length = 1.616255e-35 # meters
|
| 299 |
+
|
| 300 |
+
def causal_set_simulation(self, number_elements: int = 1000):
|
| 301 |
+
"""Generate causal set and compute geometric quantities"""
|
| 302 |
+
# Random points in Minkowski space
|
| 303 |
+
points = np.random.random((number_elements, 4))
|
| 304 |
+
|
| 305 |
+
# Causal relation: x ≺ y if τ(x,y) is real and positive
|
| 306 |
+
causal_matrix = self._compute_causal_relations(points)
|
| 307 |
+
|
| 308 |
+
# Compute Benincasa-Dowker action
|
| 309 |
+
bd_action = self._compute_benincasa_dowker_action(causal_matrix)
|
| 310 |
+
|
| 311 |
+
return {
|
| 312 |
+
'causal_matrix': causal_matrix,
|
| 313 |
+
'bd_action': bd_action,
|
| 314 |
+
'number_elements': number_elements,
|
| 315 |
+
'link_matrix': self._compute_links(causal_matrix)
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
def spin_foam_amplitude(self, boundary_spin_network: Any) -> complex:
|
| 319 |
+
"""Compute spin foam amplitude for given boundary state"""
|
| 320 |
+
# This would implement the actual spin foam vertex amplitude
|
| 321 |
+
# Using EPRL/FK model for demonstration
|
| 322 |
+
try:
|
| 323 |
+
amplitude = self._compute_eprl_vertex(boundary_spin_network)
|
| 324 |
+
return amplitude
|
| 325 |
+
except Exception as e:
|
| 326 |
+
logger.error(f"Spin foam computation failed: {e}")
|
| 327 |
+
return 0.0 + 0.0j
|
| 328 |
+
|
| 329 |
+
class HighPerformanceComputing:
|
| 330 |
+
"""Advanced HPC optimizations for large-scale simulations"""
|
| 331 |
+
|
| 332 |
+
def __init__(self):
|
| 333 |
+
self.use_gpu = torch.cuda.is_available()
|
| 334 |
+
self.use_mpi = False # Would be set based on environment
|
| 335 |
+
|
| 336 |
+
@staticmethod
|
| 337 |
+
@numba.jit(nopython=True, parallel=True, fastmath=True)
|
| 338 |
+
def lattice_field_propagator(field: np.ndarray, mass_squared: float,
|
| 339 |
+
coupling: float, lattice_spacing: float) -> np.ndarray:
|
| 340 |
+
"""Optimized lattice field propagator using numba"""
|
| 341 |
+
n_sites = field.shape[0]
|
| 342 |
+
new_field = np.zeros_like(field)
|
| 343 |
+
|
| 344 |
+
for i in numba.prange(n_sites):
|
| 345 |
+
# Discrete d'Alembertian
|
| 346 |
+
laplacian = (field[(i+1) % n_sites] - 2 * field[i] + field[(i-1) % n_sites])
|
| 347 |
+
laplacian /= lattice_spacing ** 2
|
| 348 |
+
|
| 349 |
+
# Interaction term
|
| 350 |
+
interaction = coupling * field[i] ** 3
|
| 351 |
+
|
| 352 |
+
# Field equation: (□ - m²)ϕ - λϕ³ = 0
|
| 353 |
+
new_field[i] = field[i] + 0.01 * (laplacian - mass_squared * field[i] - interaction)
|
| 354 |
+
|
| 355 |
+
return new_field
|
| 356 |
+
|
| 357 |
+
def distributed_monte_carlo(self, field_config: FieldConfiguration,
|
| 358 |
+
n_measurements: int, n_processes: int = 4):
|
| 359 |
+
"""Distributed Monte Carlo simulation"""
|
| 360 |
+
with ProcessPoolExecutor(max_workers=n_processes) as executor:
|
| 361 |
+
futures = []
|
| 362 |
+
|
| 363 |
+
for i in range(n_processes):
|
| 364 |
+
future = executor.submit(self._monte_carlo_worker, field_config, n_measurements)
|
| 365 |
+
futures.append(future)
|
| 366 |
+
|
| 367 |
+
results = [f.result() for f in futures]
|
| 368 |
+
|
| 369 |
+
# Combine results
|
| 370 |
+
combined_correlations = np.mean([r['correlations'] for r in results], axis=0)
|
| 371 |
+
combined_action = np.mean([r['average_action'] for r in results])
|
| 372 |
+
|
| 373 |
+
return {
|
| 374 |
+
'correlation_functions': combined_correlations,
|
| 375 |
+
'average_action': combined_action,
|
| 376 |
+
'statistical_error': np.std([r['average_action'] for r in results]) / np.sqrt(n_processes)
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
class ScientificAnalysis:
|
| 380 |
+
"""Scientific data analysis and validation tools"""
|
| 381 |
+
|
| 382 |
+
def __init__(self):
|
| 383 |
+
self.analysis_methods = {
|
| 384 |
+
'critical_exponents': self._compute_critical_exponents,
|
| 385 |
+
'renormalization_group': self._analyze_rg_flow,
|
| 386 |
+
'cosmological_parameters': self._estimate_cosmological_parameters
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
def statistical_analysis(self, measurements: List[float]) -> Dict[str, float]:
|
| 390 |
+
"""Comprehensive statistical analysis of simulation data"""
|
| 391 |
+
measurements = np.array(measurements)
|
| 392 |
+
|
| 393 |
+
return {
|
| 394 |
+
'mean': float(np.mean(measurements)),
|
| 395 |
+
'standard_error': float(np.std(measurements) / np.sqrt(len(measurements))),
|
| 396 |
+
'autocorrelation_time': self._estimate_autocorrelation_time(measurements),
|
| 397 |
+
'integrated_autocorrelation': self._compute_integrated_autocorrelation(measurements),
|
| 398 |
+
'jackknife_error': self._jackknife_estimate(measurements)
|
| 399 |
+
}
|
| 400 |
+
|
| 401 |
+
def fit_correlation_function(self, distances: List[float], correlations: List[float]) -> Dict[str, float]:
|
| 402 |
+
"""Fit correlation function to extract physical parameters"""
|
| 403 |
+
try:
|
| 404 |
+
# Fit to expected form: C(r) ~ r^(-(d-2+η)) exp(-r/ξ)
|
| 405 |
+
def correlation_model(r, xi, eta):
|
| 406 |
+
d = 3 # spatial dimensions
|
| 407 |
+
return r ** (-(d - 2 + eta)) * np.exp(-r / xi)
|
| 408 |
+
|
| 409 |
+
popt, pcov = optimize.curve_fit(correlation_model, distances, correlations)
|
| 410 |
+
|
| 411 |
+
return {
|
| 412 |
+
'correlation_length': float(popt[0]),
|
| 413 |
+
'anomalous_dimension': float(popt[1]),
|
| 414 |
+
'fit_error': float(np.sqrt(np.diag(pcov))[0])
|
| 415 |
+
}
|
| 416 |
+
except Exception as e:
|
| 417 |
+
logger.warning(f"Correlation function fit failed: {e}")
|
| 418 |
+
return {'correlation_length': 0.0, 'anomalous_dimension': 0.0, 'fit_error': float('inf')}
|
| 419 |
+
|
| 420 |
+
# Main production simulation
|
| 421 |
+
async def run_scientific_simulation():
|
| 422 |
+
"""Run comprehensive scientific simulation"""
|
| 423 |
+
logger.info("Starting advanced QFT and cosmological simulations")
|
| 424 |
+
|
| 425 |
+
# Quantum field theory simulation
|
| 426 |
+
field_config = FieldConfiguration(
|
| 427 |
+
field_type="scalar",
|
| 428 |
+
mass=0.1,
|
| 429 |
+
coupling_constants={'lambda': 0.5},
|
| 430 |
+
spatial_dimensions=3,
|
| 431 |
+
boundary_conditions="periodic",
|
| 432 |
+
lattice_spacing=0.1
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
qft_engine = QuantumFieldTheoryEngine(field_config)
|
| 436 |
+
|
| 437 |
+
# Thermalization
|
| 438 |
+
logger.info("Thermalizing quantum field...")
|
| 439 |
+
for step in range(1000):
|
| 440 |
+
qft_engine.metropolis_hastings_step(beta=1.0)
|
| 441 |
+
|
| 442 |
+
# Measurements
|
| 443 |
+
logger.info("Measuring correlation functions...")
|
| 444 |
+
correlations = []
|
| 445 |
+
for separation in range(1, 20):
|
| 446 |
+
corr = qft_engine.compute_propagator(separation)
|
| 447 |
+
correlations.append((separation, corr))
|
| 448 |
+
|
| 449 |
+
# Cosmological simulation
|
| 450 |
+
cosmo_sim = CosmologicalSimulation({
|
| 451 |
+
'omega_m': 0.3,
|
| 452 |
+
'omega_lambda': 0.7,
|
| 453 |
+
'power_spectrum': 'scale_invariant'
|
| 454 |
+
})
|
| 455 |
+
|
| 456 |
+
# Compute power spectrum
|
| 457 |
+
k_values = np.logspace(-3, 2, 100)
|
| 458 |
+
power_spectrum = cosmo_sim.compute_linear_power_spectrum(k_values)
|
| 459 |
+
|
| 460 |
+
# Analysis
|
| 461 |
+
analyzer = ScientificAnalysis()
|
| 462 |
+
stats = analyzer.statistical_analysis([h['action'] for h in qft_engine.action_history[-100:]])
|
| 463 |
+
|
| 464 |
+
results = {
|
| 465 |
+
'quantum_field': {
|
| 466 |
+
'correlation_functions': correlations,
|
| 467 |
+
'average_action': np.mean(qft_engine.action_history[-100:]),
|
| 468 |
+
'action_statistics': stats
|
| 469 |
+
},
|
| 470 |
+
'cosmology': {
|
| 471 |
+
'power_spectrum': list(zip(k_values, power_spectrum)),
|
| 472 |
+
'friedmann_parameters': cosmo_sim.friedmann_equations(1.0)
|
| 473 |
+
}
|
| 474 |
+
}
|
| 475 |
+
|
| 476 |
+
logger.info("Scientific simulation completed successfully")
|
| 477 |
+
return results
|
| 478 |
+
|
| 479 |
+
if __name__ == "__main__":
|
| 480 |
+
# Run production simulation
|
| 481 |
+
results = asyncio.run(run_scientific_simulation())
|
| 482 |
+
|
| 483 |
+
# Save results
|
| 484 |
+
with h5py.File('scientific_simulation_results.h5', 'w') as f:
|
| 485 |
+
# Save quantum field results
|
| 486 |
+
qft_group = f.create_group('quantum_field')
|
| 487 |
+
correlations = np.array(results['quantum_field']['correlation_functions'])
|
| 488 |
+
qft_group.create_dataset('correlations', data=correlations)
|
| 489 |
+
|
| 490 |
+
# Save cosmology results
|
| 491 |
+
cosmo_group = f.create_group('cosmology')
|
| 492 |
+
power_spectrum = np.array(results['cosmology']['power_spectrum'])
|
| 493 |
+
cosmo_group.create_dataset('power_spectrum', data=power_spectrum)
|
| 494 |
+
|
| 495 |
+
print("Scientific simulation results saved to scientific_simulation_results.h5")
|