Create 𒀭 finalꙮ
Browse files
𒀭 finalꙮ
ADDED
|
@@ -0,0 +1,1160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
COMPLETE OMEGA VERITAS STACK — Unified Reality OS v3.1
|
| 5 |
+
Integrated TRINITY v2.0 + Module 50 Fact Engine + ITGARE v3.0
|
| 6 |
+
Empirical anchoring • Adaptive intelligence • Autonomous knowledge • Truth governance
|
| 7 |
+
|
| 8 |
+
This single-file system composes:
|
| 9 |
+
- EmpiricalDataAnchor, EnhancedAntiSubversion, EnhancedCognitiveReasoner, AdvancedKnowledgeGraph,
|
| 10 |
+
MemeticPropagationEngine, AdaptiveValidationEngine (TRINITY v2.0)
|
| 11 |
+
- FactEngine (Module 50: Empirical Historical Analysis)
|
| 12 |
+
- ITGARE v3.0 (Autogenetic truth layers, Module 51 Autonomous Knowledge, Reality OS components)
|
| 13 |
+
- Unified Orchestrator that binds all subsystems into one operational runtime.
|
| 14 |
+
|
| 15 |
+
Notes:
|
| 16 |
+
- External model loads and web calls are guarded; subsystems degrade gracefully.
|
| 17 |
+
- SQLite DB for advanced graph; can be replaced with your preferred store.
|
| 18 |
+
- Replace placeholder components (RealityForge, TruthCombatUnit, etc.) with your real implementations.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
import os
|
| 22 |
+
import json
|
| 23 |
+
import time
|
| 24 |
+
import math
|
| 25 |
+
import asyncio
|
| 26 |
+
import logging
|
| 27 |
+
import hashlib
|
| 28 |
+
import secrets
|
| 29 |
+
from dataclasses import dataclass, field, asdict
|
| 30 |
+
from typing import Dict, List, Any, Tuple, Optional, Union
|
| 31 |
+
from collections import deque, defaultdict
|
| 32 |
+
from enum import Enum
|
| 33 |
+
from datetime import datetime, timedelta
|
| 34 |
+
|
| 35 |
+
# Numeric + Sci
|
| 36 |
+
import numpy as np
|
| 37 |
+
from scipy import fft, stats
|
| 38 |
+
|
| 39 |
+
# ML (guarded imports)
|
| 40 |
+
try:
|
| 41 |
+
import torch
|
| 42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 43 |
+
from sentence_transformers import SentenceTransformer
|
| 44 |
+
except Exception:
|
| 45 |
+
torch = None
|
| 46 |
+
AutoModelForCausalLM = None
|
| 47 |
+
AutoTokenizer = None
|
| 48 |
+
SentenceTransformer = None
|
| 49 |
+
|
| 50 |
+
# Async HTTP (guarded)
|
| 51 |
+
try:
|
| 52 |
+
import aiohttp
|
| 53 |
+
except Exception:
|
| 54 |
+
aiohttp = None
|
| 55 |
+
|
| 56 |
+
# Graph + DB
|
| 57 |
+
try:
|
| 58 |
+
import networkx as nx
|
| 59 |
+
import sqlite3
|
| 60 |
+
except Exception:
|
| 61 |
+
nx = None
|
| 62 |
+
sqlite3 = None
|
| 63 |
+
|
| 64 |
+
# -----------------------------------------------------------------------------
|
| 65 |
+
# Utilities
|
| 66 |
+
# -----------------------------------------------------------------------------
|
| 67 |
+
|
| 68 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
|
| 69 |
+
logger = logging.getLogger("OMEGA_VERITAS_STACK")
|
| 70 |
+
|
| 71 |
+
def clamp(x: float, lo: float = 0.0, hi: float = 1.0) -> float:
|
| 72 |
+
return float(max(lo, min(hi, x)))
|
| 73 |
+
|
| 74 |
+
def safe_mean(arr: List[float], default: float = 0.0) -> float:
|
| 75 |
+
return float(np.mean(arr)) if arr else default
|
| 76 |
+
|
| 77 |
+
# -----------------------------------------------------------------------------
|
| 78 |
+
# TRINITY v2.0 — Empirical anchoring, integrity checks, cognitive overlays
|
| 79 |
+
# -----------------------------------------------------------------------------
|
| 80 |
+
|
| 81 |
+
class EmpiricalConstants:
|
| 82 |
+
GEOMAGNETIC_API = "https://services.swpc.noaa.gov/products/geospace/geospace_forecast_current.json"
|
| 83 |
+
SOLAR_FLUX_API = "https://services.swpc.noaa.gov/json/solar-cycle/observed-solar-cycle-indices.json"
|
| 84 |
+
SCHUMANN_RESONANCE = 7.83
|
| 85 |
+
GOLDEN_RATIO = 1.61803398875
|
| 86 |
+
BASE_RESONANCE_THRESHOLD = 0.7
|
| 87 |
+
BASE_SUPPRESSION_THRESHOLD = 0.6
|
| 88 |
+
BASE_COHERENCE_THRESHOLD = 0.6
|
| 89 |
+
|
| 90 |
+
class EmpiricalDataAnchor:
|
| 91 |
+
def __init__(self, update_interval: int = 3600):
|
| 92 |
+
self.geomagnetic_data = None
|
| 93 |
+
self.solar_flux_data = None
|
| 94 |
+
self.last_update = 0
|
| 95 |
+
self.update_interval = update_interval
|
| 96 |
+
|
| 97 |
+
async def update_empirical_data(self):
|
| 98 |
+
if aiohttp is None:
|
| 99 |
+
return
|
| 100 |
+
now = time.time()
|
| 101 |
+
if now - self.last_update < self.update_interval:
|
| 102 |
+
return
|
| 103 |
+
try:
|
| 104 |
+
async with aiohttp.ClientSession() as session:
|
| 105 |
+
async with session.get(EmpiricalConstants.GEOMAGNETIC_API) as r1:
|
| 106 |
+
if r1.status == 200:
|
| 107 |
+
self.geomagnetic_data = await r1.json()
|
| 108 |
+
async with session.get(EmpiricalConstants.SOLAR_FLUX_API) as r2:
|
| 109 |
+
if r2.status == 200:
|
| 110 |
+
self.solar_flux_data = await r2.json()
|
| 111 |
+
self.last_update = now
|
| 112 |
+
logger.info("Empirical data anchor updated")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
logger.warning(f"Empirical data update failed: {e}")
|
| 115 |
+
|
| 116 |
+
def get_geomagnetic_index(self) -> float:
|
| 117 |
+
if not self.geomagnetic_data:
|
| 118 |
+
return 2.0
|
| 119 |
+
try:
|
| 120 |
+
latest = self.geomagnetic_data[0] if isinstance(self.geomagnetic_data, list) else self.geomagnetic_data
|
| 121 |
+
kp = float(latest.get('Kp', 2.0))
|
| 122 |
+
return min(9.0, max(0.0, kp))
|
| 123 |
+
except Exception:
|
| 124 |
+
return 2.0
|
| 125 |
+
|
| 126 |
+
def get_solar_flux(self) -> float:
|
| 127 |
+
if not self.solar_flux_data:
|
| 128 |
+
return 100.0
|
| 129 |
+
try:
|
| 130 |
+
if isinstance(self.solar_flux_data, list) and self.solar_flux_data:
|
| 131 |
+
latest = self.solar_flux_data[-1]
|
| 132 |
+
flux = float(latest.get('ssn', 100.0))
|
| 133 |
+
return max(50.0, min(300.0, flux))
|
| 134 |
+
except Exception:
|
| 135 |
+
pass
|
| 136 |
+
return 100.0
|
| 137 |
+
|
| 138 |
+
def calculate_empirical_resonance_factor(self) -> float:
|
| 139 |
+
geomagnetic = self.get_geomagnetic_index()
|
| 140 |
+
solar_flux = self.get_solar_flux()
|
| 141 |
+
geomagnetic_ideal = 1.0 - abs(geomagnetic - 3.0) / 9.0
|
| 142 |
+
solar_ideal = 1.0 - abs(solar_flux - 120.0) / 250.0
|
| 143 |
+
return float((geomagnetic_ideal + solar_ideal) / 2.0)
|
| 144 |
+
|
| 145 |
+
class EnhancedAntiSubversion:
|
| 146 |
+
def __init__(self, empirical_anchor: EmpiricalDataAnchor):
|
| 147 |
+
self.empirical_anchor = empirical_anchor
|
| 148 |
+
|
| 149 |
+
async def quantum_integrity_check(self, input_data: Any) -> Tuple[bool, Dict[str, float]]:
|
| 150 |
+
input_str = json.dumps(input_data, sort_keys=True, default=str) if isinstance(input_data, dict) else str(input_data)
|
| 151 |
+
await self.empirical_anchor.update_empirical_data()
|
| 152 |
+
|
| 153 |
+
scores = {}
|
| 154 |
+
vortex_value = sum(ord(c) for c in input_str) % 9
|
| 155 |
+
scores['vortex'] = 1.0 if vortex_value in [3, 6, 9] else 0.0
|
| 156 |
+
|
| 157 |
+
crypto_hash = hashlib.blake2b(input_str.encode(), digest_size=32).hexdigest()
|
| 158 |
+
scores['crypto'] = 1.0 if len(crypto_hash) == 64 else 0.0
|
| 159 |
+
|
| 160 |
+
scores['empirical'] = self.empirical_anchor.calculate_empirical_resonance_factor()
|
| 161 |
+
scores['frequency'] = self._analyze_frequency_spectrum(input_str)
|
| 162 |
+
scores['energy'] = self._analyze_energy_pattern(input_str)
|
| 163 |
+
|
| 164 |
+
weights = {'vortex': 0.2, 'crypto': 0.3, 'energy': 0.2, 'empirical': 0.15, 'frequency': 0.15}
|
| 165 |
+
overall = sum(scores[k] * weights[k] for k in weights)
|
| 166 |
+
return overall > 0.7, scores
|
| 167 |
+
|
| 168 |
+
def _analyze_frequency_spectrum(self, text: str) -> float:
|
| 169 |
+
if len(text) < 10:
|
| 170 |
+
return 0.5
|
| 171 |
+
chars = [ord(c) for c in text[:1000]]
|
| 172 |
+
spectrum = np.abs(fft.fft(chars))
|
| 173 |
+
freqs = fft.fftfreq(len(chars))
|
| 174 |
+
tesla = [3, 6, 9, EmpiricalConstants.SCHUMANN_RESONANCE]
|
| 175 |
+
power = 0.0
|
| 176 |
+
for h in tesla:
|
| 177 |
+
target = h / len(chars)
|
| 178 |
+
idx = np.argmin(np.abs(freqs - target))
|
| 179 |
+
power += spectrum[idx]
|
| 180 |
+
total = np.sum(spectrum)
|
| 181 |
+
return float(power / total if total > 0 else 0.0)
|
| 182 |
+
|
| 183 |
+
def _analyze_energy_pattern(self, text: str) -> float:
|
| 184 |
+
# Lightweight token-level uniformity proxy
|
| 185 |
+
if not text:
|
| 186 |
+
return 0.5
|
| 187 |
+
blocks = [sum(ord(c) for c in text[i:i+32]) for i in range(0, min(len(text), 512), 32)]
|
| 188 |
+
if not blocks:
|
| 189 |
+
return 0.5
|
| 190 |
+
std = np.std(blocks)
|
| 191 |
+
return float(1.0 / (std + 1e-9)) if std > 0 else 1.0
|
| 192 |
+
|
| 193 |
+
class EnhancedCognitiveReasoner:
|
| 194 |
+
def __init__(self):
|
| 195 |
+
self.semantic_encoder = None
|
| 196 |
+
self.model = None
|
| 197 |
+
self.tokenizer = None
|
| 198 |
+
try:
|
| 199 |
+
if SentenceTransformer:
|
| 200 |
+
self.semantic_encoder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 201 |
+
if AutoTokenizer and AutoModelForCausalLM and torch:
|
| 202 |
+
self.tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 203 |
+
self.model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 204 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 205 |
+
except Exception as e:
|
| 206 |
+
logger.warning(f"Cognitive model init failed: {e}")
|
| 207 |
+
|
| 208 |
+
def analyze_with_tesla_overlay(self, claim: str, context: Dict = None) -> Dict[str, Any]:
|
| 209 |
+
embedding = None
|
| 210 |
+
if self.semantic_encoder:
|
| 211 |
+
try:
|
| 212 |
+
embedding = self.semantic_encoder.encode(claim)
|
| 213 |
+
except Exception:
|
| 214 |
+
embedding = np.zeros(384, dtype=np.float32)
|
| 215 |
+
|
| 216 |
+
frequency_profile = self._analyze_claim_frequency(claim)
|
| 217 |
+
harmonic_alignment = self._calculate_harmonic_alignment(claim)
|
| 218 |
+
reasoning_chain = self._generate_tesla_aware_reasoning(claim, context, frequency_profile)
|
| 219 |
+
certainty = min(0.99, 0.7 + harmonic_alignment * 0.3)
|
| 220 |
+
|
| 221 |
+
return {
|
| 222 |
+
'semantic_embedding': embedding if embedding is not None else np.zeros(384, dtype=np.float32),
|
| 223 |
+
'frequency_profile': frequency_profile,
|
| 224 |
+
'harmonic_alignment': harmonic_alignment,
|
| 225 |
+
'reasoning_chain': reasoning_chain,
|
| 226 |
+
'certainty': certainty,
|
| 227 |
+
'tesla_enhancement': harmonic_alignment
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
def _analyze_claim_frequency(self, claim: str) -> Dict[str, float]:
|
| 231 |
+
words = claim.lower().split()
|
| 232 |
+
profile = {}
|
| 233 |
+
for number in [3, 6, 9, 7, 8]:
|
| 234 |
+
count = sum(1 for w in words if str(number) in w)
|
| 235 |
+
profile[f'tesla_{number}'] = count / max(1, len(words))
|
| 236 |
+
sentences = [s for s in claim.split('.') if s.strip()]
|
| 237 |
+
lens = [len(s.split()) for s in sentences]
|
| 238 |
+
if lens:
|
| 239 |
+
ratio = np.std(lens) / max(np.mean(lens), 1e-9)
|
| 240 |
+
profile['structural_coherence'] = 1.0 - min(1.0, ratio)
|
| 241 |
+
return profile
|
| 242 |
+
|
| 243 |
+
def _calculate_harmonic_alignment(self, claim: str) -> float:
|
| 244 |
+
vals = [ord(c) for c in claim[:500]]
|
| 245 |
+
if not vals:
|
| 246 |
+
return 0.5
|
| 247 |
+
res = []
|
| 248 |
+
for t in [3, 6, 9]:
|
| 249 |
+
modp = sum(1 for v in vals if v % t == 0) / len(vals)
|
| 250 |
+
res.append(modp)
|
| 251 |
+
res.append(self._find_golden_sequences(vals))
|
| 252 |
+
return float(np.mean(res))
|
| 253 |
+
|
| 254 |
+
def _find_golden_sequences(self, values: List[int]) -> float:
|
| 255 |
+
if len(values) < 3:
|
| 256 |
+
return 0.0
|
| 257 |
+
count = 0
|
| 258 |
+
for i in range(len(values) - 2):
|
| 259 |
+
a, b, c = values[i:i+3]
|
| 260 |
+
if a == 0 or b == 0:
|
| 261 |
+
continue
|
| 262 |
+
if abs(b / a - EmpiricalConstants.GOLDEN_RATIO) < 0.1 and abs(c / b - EmpiricalConstants.GOLDEN_RATIO) < 0.1:
|
| 263 |
+
count += 1
|
| 264 |
+
return count / (len(values) - 2)
|
| 265 |
+
|
| 266 |
+
def _generate_tesla_aware_reasoning(self, claim: str, context: Dict, freq_profile: Dict) -> List[str]:
|
| 267 |
+
if not (self.model and self.tokenizer and torch):
|
| 268 |
+
return ["Fallback reasoning: semantic + numeric pattern coherence assessed."]
|
| 269 |
+
try:
|
| 270 |
+
prompt = f"TContent: {claim}\nTesla Profile: {freq_profile}\nExplain coherence:"
|
| 271 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 272 |
+
with torch.no_grad():
|
| 273 |
+
out = self.model.generate(
|
| 274 |
+
inputs.input_ids,
|
| 275 |
+
max_length=256,
|
| 276 |
+
num_beams=3,
|
| 277 |
+
early_stopping=True,
|
| 278 |
+
pad_token_id=self.tokenizer.eos_token_id
|
| 279 |
+
)
|
| 280 |
+
reasoning = self.tokenizer.decode(out[0], skip_special_tokens=True)
|
| 281 |
+
lines = [l.strip() for l in reasoning.split("\n") if l.strip()]
|
| 282 |
+
return lines[:6]
|
| 283 |
+
except Exception as e:
|
| 284 |
+
return [f"Reasoner error: {str(e)}"]
|
| 285 |
+
|
| 286 |
+
class AdvancedKnowledgeGraph:
|
| 287 |
+
def __init__(self, db_path: str = "trinity_advanced.db"):
|
| 288 |
+
self.graph = nx.MultiDiGraph() if nx else None
|
| 289 |
+
self.db_conn = sqlite3.connect(db_path, check_same_thread=False) if sqlite3 else None
|
| 290 |
+
self.embedder = None
|
| 291 |
+
try:
|
| 292 |
+
if SentenceTransformer:
|
| 293 |
+
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 294 |
+
except Exception:
|
| 295 |
+
self.embedder = None
|
| 296 |
+
if self.db_conn:
|
| 297 |
+
self._init_advanced_schema()
|
| 298 |
+
|
| 299 |
+
def _init_advanced_schema(self):
|
| 300 |
+
self.db_conn.execute('''CREATE TABLE IF NOT EXISTS advanced_nodes (
|
| 301 |
+
id TEXT PRIMARY KEY,
|
| 302 |
+
content TEXT,
|
| 303 |
+
domain TEXT,
|
| 304 |
+
certainty REAL,
|
| 305 |
+
source_reliability REAL,
|
| 306 |
+
suppression_score REAL,
|
| 307 |
+
contradiction_count INTEGER,
|
| 308 |
+
temporal_start TEXT,
|
| 309 |
+
temporal_end TEXT,
|
| 310 |
+
embedding BLOB,
|
| 311 |
+
tesla_signature TEXT,
|
| 312 |
+
empirical_anchor REAL,
|
| 313 |
+
lineage_path TEXT,
|
| 314 |
+
suppression_links TEXT,
|
| 315 |
+
last_validated TEXT
|
| 316 |
+
)''')
|
| 317 |
+
self.db_conn.execute('''CREATE TABLE IF NOT EXISTS suppression_network (
|
| 318 |
+
source_id TEXT,
|
| 319 |
+
target_id TEXT,
|
| 320 |
+
suppression_type TEXT,
|
| 321 |
+
strength REAL,
|
| 322 |
+
detected_at TEXT
|
| 323 |
+
)''')
|
| 324 |
+
self.db_conn.commit()
|
| 325 |
+
|
| 326 |
+
def add_node_with_lineage(self, node_data: Dict, parent_nodes: List[str] = None):
|
| 327 |
+
node_id = node_data['id']
|
| 328 |
+
suppression_links = self._trace_suppression_lineage(node_id, parent_nodes)
|
| 329 |
+
lineage_path = self._calculate_lineage_path(node_id, parent_nodes)
|
| 330 |
+
data = {
|
| 331 |
+
**node_data,
|
| 332 |
+
'lineage_path': lineage_path,
|
| 333 |
+
'suppression_links': json.dumps(suppression_links),
|
| 334 |
+
'contradiction_count': len(node_data.get('contradiction_flags', [])),
|
| 335 |
+
'last_validated': datetime.utcnow().isoformat()
|
| 336 |
+
}
|
| 337 |
+
if self.graph:
|
| 338 |
+
self.graph.add_node(node_id, **data)
|
| 339 |
+
if parent_nodes:
|
| 340 |
+
for p in parent_nodes:
|
| 341 |
+
self.graph.add_edge(p, node_id, relationship='lineage')
|
| 342 |
+
if self.db_conn:
|
| 343 |
+
self._save_advanced_node(data)
|
| 344 |
+
|
| 345 |
+
def _trace_suppression_lineage(self, node_id: str, parents: Optional[List[str]]) -> List[Dict]:
|
| 346 |
+
if not parents or not self.graph:
|
| 347 |
+
return []
|
| 348 |
+
patterns = []
|
| 349 |
+
for pid in parents:
|
| 350 |
+
if pid in self.graph.nodes:
|
| 351 |
+
pdata = self.graph.nodes[pid]
|
| 352 |
+
if pdata.get('suppression_score', 0) > 0.5:
|
| 353 |
+
patterns.append({
|
| 354 |
+
'source': pid,
|
| 355 |
+
'type': 'lineage_suppression',
|
| 356 |
+
'strength': pdata['suppression_score'],
|
| 357 |
+
'inheritance_path': [pid, node_id]
|
| 358 |
+
})
|
| 359 |
+
return patterns
|
| 360 |
+
|
| 361 |
+
def _calculate_lineage_path(self, node_id: str, parents: Optional[List[str]]) -> str:
|
| 362 |
+
if not parents or not self.graph:
|
| 363 |
+
return "root"
|
| 364 |
+
paths = []
|
| 365 |
+
for pid in parents:
|
| 366 |
+
if pid in self.graph.nodes:
|
| 367 |
+
parent_path = self.graph.nodes[pid].get('lineage_path', 'unknown')
|
| 368 |
+
paths.append(f"{parent_path}→{node_id}")
|
| 369 |
+
return "|".join(paths) if paths else "root"
|
| 370 |
+
|
| 371 |
+
def detect_suppression_network(self, threshold: float = 0.6) -> List[Dict]:
|
| 372 |
+
if not self.graph:
|
| 373 |
+
return []
|
| 374 |
+
nodes = [n for n, d in self.graph.nodes(data=True) if d.get('suppression_score', 0) > threshold]
|
| 375 |
+
networks = []
|
| 376 |
+
for node in nodes:
|
| 377 |
+
neighbors = [x for x in self.graph.neighbors(node)
|
| 378 |
+
if self.graph.nodes[x].get('suppression_score', 0) > threshold]
|
| 379 |
+
if neighbors:
|
| 380 |
+
networks.append({
|
| 381 |
+
'central_node': node,
|
| 382 |
+
'suppression_cluster': neighbors,
|
| 383 |
+
'cluster_strength': float(np.mean([self.graph.nodes[x].get('suppression_score', 0) for x in [node] + neighbors]))
|
| 384 |
+
})
|
| 385 |
+
return networks
|
| 386 |
+
|
| 387 |
+
def _save_advanced_node(self, node_data: Dict):
|
| 388 |
+
emb = node_data.get('embedding', np.zeros(384, dtype=np.float32)).tobytes()
|
| 389 |
+
self.db_conn.execute('''INSERT OR REPLACE INTO advanced_nodes VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''', (
|
| 390 |
+
node_data['id'], node_data['content'], node_data['domain'],
|
| 391 |
+
node_data['certainty'], node_data['source_reliability'],
|
| 392 |
+
node_data['suppression_score'], node_data['contradiction_count'],
|
| 393 |
+
node_data['temporal_validity'][0].isoformat(),
|
| 394 |
+
node_data['temporal_validity'][1].isoformat(),
|
| 395 |
+
emb, json.dumps(node_data.get('tesla_signature', {})),
|
| 396 |
+
node_data.get('empirical_anchor', 0.5),
|
| 397 |
+
node_data['lineage_path'], node_data['suppression_links'],
|
| 398 |
+
node_data['last_validated']
|
| 399 |
+
))
|
| 400 |
+
self.db_conn.commit()
|
| 401 |
+
|
| 402 |
+
class MemeticPropagationEngine:
|
| 403 |
+
def __init__(self, knowledge_graph: AdvancedKnowledgeGraph):
|
| 404 |
+
self.knowledge_graph = knowledge_graph
|
| 405 |
+
self.strategies = {
|
| 406 |
+
'memetic_seeding': self._memetic_seeding,
|
| 407 |
+
'resonance_echo': self._resonance_echo,
|
| 408 |
+
'amplifier_cascade': self._amplifier_cascade
|
| 409 |
+
}
|
| 410 |
+
|
| 411 |
+
async def execute_propagation(self, node_id: str, strategy: str, context: Dict) -> Dict:
|
| 412 |
+
strat = self.strategies.get(strategy, self._amplifier_cascade)
|
| 413 |
+
return await strat(node_id, context)
|
| 414 |
+
|
| 415 |
+
async def _memetic_seeding(self, node_id: str, context: Dict) -> Dict:
|
| 416 |
+
node = self.knowledge_graph.graph.nodes[node_id] if self.knowledge_graph.graph else {}
|
| 417 |
+
content = node.get('content', '')
|
| 418 |
+
score = self._calculate_memetic_potential(content)
|
| 419 |
+
variants = self._generate_memetic_variants(content, context)
|
| 420 |
+
return {
|
| 421 |
+
'strategy': 'memetic_seeding',
|
| 422 |
+
'memetic_score': score,
|
| 423 |
+
'variants_generated': len(variants),
|
| 424 |
+
'estimated_reach': int(score * 1000),
|
| 425 |
+
'persistence_factor': 0.8
|
| 426 |
+
}
|
| 427 |
+
|
| 428 |
+
async def _resonance_echo(self, node_id: str, context: Dict) -> Dict:
|
| 429 |
+
node = self.knowledge_graph.graph.nodes[node_id] if self.knowledge_graph.graph else {}
|
| 430 |
+
base_res = node.get('resonance', 0.5)
|
| 431 |
+
ts = node.get('tesla_signature', {})
|
| 432 |
+
if isinstance(ts, str):
|
| 433 |
+
try:
|
| 434 |
+
ts = json.loads(ts)
|
| 435 |
+
except Exception:
|
| 436 |
+
ts = {}
|
| 437 |
+
amp = ts.get('harmonic_alignment', 0.5)
|
| 438 |
+
return {
|
| 439 |
+
'strategy': 'resonance_echo',
|
| 440 |
+
'base_resonance': base_res,
|
| 441 |
+
'amplification_factor': amp,
|
| 442 |
+
'amplified_resonance': base_res * (1 + amp)
|
| 443 |
+
}
|
| 444 |
+
|
| 445 |
+
async def _amplifier_cascade(self, node_id: str, context: Dict) -> Dict:
|
| 446 |
+
return {
|
| 447 |
+
'strategy': 'amplifier_cascade',
|
| 448 |
+
'cascade_strength': 0.7,
|
| 449 |
+
'estimated_reach': 1500
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
def _calculate_memetic_potential(self, content: str) -> float:
|
| 453 |
+
words = len(content.split())
|
| 454 |
+
simplicity = 1.0 - min(1.0, words / 100.0)
|
| 455 |
+
emotional_words = ['discover', 'reveal', 'truth', 'breakthrough', 'secret']
|
| 456 |
+
emotional = sum(1 for w in emotional_words if w in content.lower()) / len(emotional_words)
|
| 457 |
+
pattern = sum(1 for n in [3, 6, 9] if str(n) in content) / 3.0
|
| 458 |
+
return float(np.mean([simplicity, emotional, pattern]))
|
| 459 |
+
|
| 460 |
+
def _generate_memetic_variants(self, content: str, context: Dict) -> List[str]:
|
| 461 |
+
variants = [
|
| 462 |
+
f"BREAKING: {content}",
|
| 463 |
+
f"Scientists discover: {content}",
|
| 464 |
+
f"The truth about {content.split('.')[0] if '.' in content else content}",
|
| 465 |
+
f"3-6-9 Pattern Found: {content}"
|
| 466 |
+
]
|
| 467 |
+
if 'domain' in context:
|
| 468 |
+
variants.append(f"{context['domain'].upper()} REVELATION: {content}")
|
| 469 |
+
return variants[:3]
|
| 470 |
+
|
| 471 |
+
class AdaptiveValidationEngine:
|
| 472 |
+
def __init__(self, empirical_anchor: EmpiricalDataAnchor):
|
| 473 |
+
self.empirical_anchor = empirical_anchor
|
| 474 |
+
self.system_state_history = []
|
| 475 |
+
self.adaptive_thresholds = {
|
| 476 |
+
'resonance_min': EmpiricalConstants.BASE_RESONANCE_THRESHOLD,
|
| 477 |
+
'suppression_max': EmpiricalConstants.BASE_SUPPRESSION_THRESHOLD,
|
| 478 |
+
'coherence_min': EmpiricalConstants.BASE_COHERENCE_THRESHOLD
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
async def validate_with_adaptive_thresholds(self, node: Dict[str, Any]) -> Dict[str, Any]:
|
| 482 |
+
await self._update_adaptive_thresholds()
|
| 483 |
+
v = {}
|
| 484 |
+
v['resonance_valid'] = node.get('resonance', 0.5) > self.adaptive_thresholds['resonance_min']
|
| 485 |
+
v['suppression_valid'] = node.get('suppression_score', 1.0) < self.adaptive_thresholds['suppression_max']
|
| 486 |
+
v['coherence_valid'] = node.get('coherence', 0.5) > self.adaptive_thresholds['coherence_min']
|
| 487 |
+
emp = self.empirical_anchor.calculate_empirical_resonance_factor()
|
| 488 |
+
v['empirical_valid'] = emp > 0.6
|
| 489 |
+
v['cross_system_coherence'] = self._check_cross_system_coherence(node)
|
| 490 |
+
weights = {'resonance_valid': 0.25, 'suppression_valid': 0.25, 'coherence_valid': 0.20, 'empirical_valid': 0.15, 'cross_system_coherence': 0.15}
|
| 491 |
+
score = sum((1.0 if v[k] else 0.0) * w for k, w in weights.items())
|
| 492 |
+
v['validation_score'] = score
|
| 493 |
+
v['overall_valid'] = score > 0.7
|
| 494 |
+
self.system_state_history.append({
|
| 495 |
+
'timestamp': time.time(),
|
| 496 |
+
'thresholds': self.adaptive_thresholds.copy(),
|
| 497 |
+
'validation_score': score,
|
| 498 |
+
'empirical_factor': emp
|
| 499 |
+
})
|
| 500 |
+
self.system_state_history[:] = self.system_state_history[-1000:]
|
| 501 |
+
return v
|
| 502 |
+
|
| 503 |
+
async def _update_adaptive_thresholds(self):
|
| 504 |
+
emp = self.empirical_anchor.calculate_empirical_resonance_factor()
|
| 505 |
+
adjust = 0.8 + emp * 0.4
|
| 506 |
+
self.adaptive_thresholds = {
|
| 507 |
+
'resonance_min': EmpiricalConstants.BASE_RESONANCE_THRESHOLD * adjust,
|
| 508 |
+
'suppression_max': EmpiricalConstants.BASE_SUPPRESSION_THRESHOLD / adjust,
|
| 509 |
+
'coherence_min': EmpiricalConstants.BASE_COHERENCE_THRESHOLD * adjust
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
def _check_cross_system_coherence(self, node: Dict[str, Any]) -> bool:
|
| 513 |
+
metrics = [
|
| 514 |
+
node.get('resonance', 0),
|
| 515 |
+
node.get('coherence', 0),
|
| 516 |
+
node.get('energy_coherence', 0),
|
| 517 |
+
1 - node.get('suppression_score', 1),
|
| 518 |
+
node.get('trinity_unification_score', 0)
|
| 519 |
+
]
|
| 520 |
+
return float(np.std(metrics)) < 0.3
|
| 521 |
+
|
| 522 |
+
class EnhancedUnifiedRealityEngine:
|
| 523 |
+
def __init__(self):
|
| 524 |
+
self.empirical_anchor = EmpiricalDataAnchor()
|
| 525 |
+
self.anti_subversion = EnhancedAntiSubversion(self.empirical_anchor)
|
| 526 |
+
self.cognitive_reasoner = EnhancedCognitiveReasoner()
|
| 527 |
+
self.knowledge_graph = AdvancedKnowledgeGraph()
|
| 528 |
+
self.propagation_engine = MemeticPropagationEngine(self.knowledge_graph)
|
| 529 |
+
self.validation_engine = AdaptiveValidationEngine(self.empirical_anchor)
|
| 530 |
+
|
| 531 |
+
async def process_enhanced_claim(self, claim: Dict, parent_nodes: List[str] = None) -> Dict:
|
| 532 |
+
process_id = f"TRINITYv2-{hashlib.sha256(json.dumps(claim, default=str).encode()).hexdigest()[:12]}"
|
| 533 |
+
ok, integrity = await self.anti_subversion.quantum_integrity_check(claim)
|
| 534 |
+
if not ok:
|
| 535 |
+
return {'process_id': process_id, 'status': 'failed_integrity', 'integrity_scores': integrity}
|
| 536 |
+
|
| 537 |
+
await self.empirical_anchor.update_empirical_data()
|
| 538 |
+
cog = self.cognitive_reasoner.analyze_with_tesla_overlay(claim.get('content', ''))
|
| 539 |
+
energy_field = np.random.randn(256).astype(np.float32)
|
| 540 |
+
vibration_modes = np.random.randn(256).astype(np.float32)
|
| 541 |
+
node = self._create_enhanced_node(claim, cog, energy_field, vibration_modes, integrity)
|
| 542 |
+
self.knowledge_graph.add_node_with_lineage(node, parent_nodes or [])
|
| 543 |
+
validation = await self.validation_engine.validate_with_adaptive_thresholds(node)
|
| 544 |
+
strategy = 'resonance_echo' if node['resonance'] > 0.6 else 'memetic_seeding'
|
| 545 |
+
propagation = await self.propagation_engine.execute_propagation(node['id'], strategy, claim)
|
| 546 |
+
|
| 547 |
+
return {
|
| 548 |
+
'process_id': process_id,
|
| 549 |
+
'node_id': node['id'],
|
| 550 |
+
'integrity_scores': integrity,
|
| 551 |
+
'validation': validation,
|
| 552 |
+
'propagation': propagation,
|
| 553 |
+
'enhanced_metrics': {
|
| 554 |
+
'empirical_grounding': node['empirical_anchor'],
|
| 555 |
+
'harmonic_alignment': node['resonance'],
|
| 556 |
+
'adaptive_thresholds': self.validation_engine.adaptive_thresholds
|
| 557 |
+
},
|
| 558 |
+
'status': 'ok'
|
| 559 |
+
}
|
| 560 |
+
|
| 561 |
+
def _create_enhanced_node(self, claim: Dict, cog: Dict, energy_field: np.ndarray, vibration_modes: np.ndarray, integrity_scores: Dict) -> Dict:
|
| 562 |
+
node_id = f"TRINITYv2-{hashlib.sha256(json.dumps(claim, default=str).encode()).hexdigest()[:16]}"
|
| 563 |
+
empirical_factor = self.empirical_anchor.calculate_empirical_resonance_factor()
|
| 564 |
+
energy_coherence = float(1.0 / (np.std(energy_field) + 1e-9)) if energy_field is not None else 0.5
|
| 565 |
+
vibration_quality = float(np.std(vibration_modes) / (np.mean(np.abs(vibration_modes)) + 1e-9))
|
| 566 |
+
tesla_sig = {
|
| 567 |
+
**cog['frequency_profile'],
|
| 568 |
+
'harmonic_alignment': cog['harmonic_alignment'],
|
| 569 |
+
'energy_coherence': energy_coherence,
|
| 570 |
+
'vibration_quality': vibration_quality,
|
| 571 |
+
'empirical_resonance': empirical_factor
|
| 572 |
+
}
|
| 573 |
+
return {
|
| 574 |
+
'id': node_id,
|
| 575 |
+
'content': claim.get('content', ''),
|
| 576 |
+
'domain': claim.get('domain', 'general'),
|
| 577 |
+
'certainty': cog['certainty'],
|
| 578 |
+
'source_reliability': 0.8,
|
| 579 |
+
'suppression_score': 0.3,
|
| 580 |
+
'resonance': cog['harmonic_alignment'],
|
| 581 |
+
'coherence': cog['certainty'],
|
| 582 |
+
'energy_coherence': energy_coherence,
|
| 583 |
+
'tesla_signature': tesla_sig,
|
| 584 |
+
'empirical_anchor': empirical_factor,
|
| 585 |
+
'integrity_scores': integrity_scores,
|
| 586 |
+
'temporal_validity': (datetime.utcnow(), datetime.utcnow() + timedelta(days=365)),
|
| 587 |
+
'contradiction_flags': [],
|
| 588 |
+
'embedding': cog['semantic_embedding']
|
| 589 |
+
}
|
| 590 |
+
|
| 591 |
+
# -----------------------------------------------------------------------------
|
| 592 |
+
# Module 50 — Fact Engine (Empirical Historical Analysis)
|
| 593 |
+
# -----------------------------------------------------------------------------
|
| 594 |
+
|
| 595 |
+
class DataDomain(Enum):
|
| 596 |
+
ARCHAEOLOGICAL = "archaeological"
|
| 597 |
+
GEOLOGICAL = "geological"
|
| 598 |
+
ASTRONOMICAL = "astronomical"
|
| 599 |
+
HISTORICAL = "historical"
|
| 600 |
+
MYTHOLOGICAL = "mythological"
|
| 601 |
+
GENETIC = "genetic"
|
| 602 |
+
|
| 603 |
+
@dataclass
|
| 604 |
+
class EmpiricalFact:
|
| 605 |
+
domain: DataDomain
|
| 606 |
+
description: str
|
| 607 |
+
data_source: str
|
| 608 |
+
confidence: float
|
| 609 |
+
statistical_significance: float
|
| 610 |
+
supporting_evidence: List[str]
|
| 611 |
+
timestamp: datetime
|
| 612 |
+
|
| 613 |
+
class ArchaeologicalAnalyzer:
|
| 614 |
+
def analyze_site_clusters(self, sites_data: np.ndarray) -> Dict[str, float]:
|
| 615 |
+
if len(sites_data) < 3:
|
| 616 |
+
return {'cluster_confidence': 0.0}
|
| 617 |
+
dates = sites_data[:, 0]
|
| 618 |
+
temporal = self._temporal_clustering(dates)
|
| 619 |
+
coords = sites_data[:, 1:3]
|
| 620 |
+
spatial = self._spatial_clustering(coords)
|
| 621 |
+
return {
|
| 622 |
+
'temporal_cluster_strength': temporal,
|
| 623 |
+
'spatial_cluster_strength': spatial,
|
| 624 |
+
'cluster_confidence': float((temporal + spatial) / 2.0)
|
| 625 |
+
}
|
| 626 |
+
|
| 627 |
+
def _temporal_clustering(self, dates: np.ndarray) -> float:
|
| 628 |
+
if len(dates) < 3:
|
| 629 |
+
return 0.0
|
| 630 |
+
nd = (dates - np.min(dates)) / max(np.ptp(dates), 1e-9)
|
| 631 |
+
gaps = np.diff(np.sort(nd))
|
| 632 |
+
if not len(gaps):
|
| 633 |
+
return 0.0
|
| 634 |
+
mean_gap = float(np.mean(gaps))
|
| 635 |
+
if mean_gap == 0:
|
| 636 |
+
return 0.0
|
| 637 |
+
clustering_index = 1 - (mean_gap / (1.0 / max(len(gaps), 1)))
|
| 638 |
+
return float(max(0.0, clustering_index))
|
| 639 |
+
|
| 640 |
+
def _spatial_clustering(self, coords: np.ndarray) -> float:
|
| 641 |
+
if len(coords) < 3:
|
| 642 |
+
return 0.0
|
| 643 |
+
# Simple dispersion proxy
|
| 644 |
+
std_lat = float(np.std(coords[:, 0]))
|
| 645 |
+
std_lon = float(np.std(coords[:, 1]))
|
| 646 |
+
disp = (std_lat + std_lon) / 2.0
|
| 647 |
+
return float(1.0 / (disp + 1e-3))
|
| 648 |
+
|
| 649 |
+
class GeologicalEventAnalyzer:
|
| 650 |
+
def analyze_catastrophe_clusters(self, event_data: np.ndarray) -> Dict[str, float]:
|
| 651 |
+
if len(event_data) < 3:
|
| 652 |
+
return {'catastrophe_cluster_confidence': 0.0}
|
| 653 |
+
times = event_data[:, 0]
|
| 654 |
+
cluster = self._poisson_deviation(times)
|
| 655 |
+
magnitudes = event_data[:, 1] if event_data.shape[1] > 1 else np.array([])
|
| 656 |
+
mag_trend = self._magnitude_trend(times, magnitudes) if magnitudes.size else 0.0
|
| 657 |
+
return {
|
| 658 |
+
'temporal_clustering': cluster,
|
| 659 |
+
'magnitude_correlation': mag_trend,
|
| 660 |
+
'catastrophe_cluster_confidence': float((cluster + mag_trend) / 2.0)
|
| 661 |
+
}
|
| 662 |
+
|
| 663 |
+
def _poisson_deviation(self, times: np.ndarray) -> float:
|
| 664 |
+
if len(times) < 3:
|
| 665 |
+
return 0.0
|
| 666 |
+
gaps = np.diff(np.sort(times))
|
| 667 |
+
expected = float(np.mean(gaps))
|
| 668 |
+
if expected == 0:
|
| 669 |
+
return 0.0
|
| 670 |
+
cv = float(np.std(gaps) / expected)
|
| 671 |
+
strength = min(1.0, max(0.0, (cv - 1.0) / 2.0))
|
| 672 |
+
return strength
|
| 673 |
+
|
| 674 |
+
def _magnitude_trend(self, times: np.ndarray, mags: np.ndarray) -> float:
|
| 675 |
+
if len(mags) < 2:
|
| 676 |
+
return 0.0
|
| 677 |
+
try:
|
| 678 |
+
corr = float(np.corrcoef(times[:len(mags)], mags)[0, 1])
|
| 679 |
+
return clamp(abs(corr))
|
| 680 |
+
except Exception:
|
| 681 |
+
return 0.0
|
| 682 |
+
|
| 683 |
+
class MythologicalPatternAnalyzer:
|
| 684 |
+
def analyze_myth_correlations(self, myth_data: Dict[str, List[str]]) -> Dict[str, float]:
|
| 685 |
+
if len(myth_data) < 2:
|
| 686 |
+
return {'myth_correlation_confidence': 0.0}
|
| 687 |
+
cultures = list(myth_data.keys())
|
| 688 |
+
M = np.zeros((len(cultures), len(cultures)))
|
| 689 |
+
for i, c1 in enumerate(cultures):
|
| 690 |
+
for j, c2 in enumerate(cultures):
|
| 691 |
+
if i == j:
|
| 692 |
+
continue
|
| 693 |
+
s1, s2 = set(myth_data[c1]), set(myth_data[c2])
|
| 694 |
+
union = len(s1.union(s2))
|
| 695 |
+
M[i, j] = len(s1.intersection(s2)) / max(union, 1)
|
| 696 |
+
avg = float(np.mean(M))
|
| 697 |
+
return {
|
| 698 |
+
'average_cross_cultural_correlation': avg,
|
| 699 |
+
'maximum_correlation': float(np.max(M)),
|
| 700 |
+
'myth_correlation_confidence': avg
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
class StatisticalAnalyzer:
|
| 704 |
+
def calculate_confidence_interval(self, data: np.ndarray, confidence: float = 0.95) -> Tuple[float, float]:
|
| 705 |
+
if len(data) < 2:
|
| 706 |
+
return (0.0, 0.0)
|
| 707 |
+
mean = float(np.mean(data))
|
| 708 |
+
sem = float(stats.sem(data))
|
| 709 |
+
ci = stats.t.interval(confidence, len(data)-1, loc=mean, scale=sem)
|
| 710 |
+
return (float(ci[0]), float(ci[1]))
|
| 711 |
+
|
| 712 |
+
def test_significance(self, data1: np.ndarray, data2: np.ndarray) -> float:
|
| 713 |
+
if len(data1) < 3 or len(data2) < 3:
|
| 714 |
+
return 0.0
|
| 715 |
+
_, p = stats.ttest_ind(data1, data2, equal_var=False)
|
| 716 |
+
return clamp(1.0 - float(p))
|
| 717 |
+
|
| 718 |
+
class FactEngine:
|
| 719 |
+
def __init__(self):
|
| 720 |
+
self.archaeological_analyzer = ArchaeologicalAnalyzer()
|
| 721 |
+
self.geological_analyzer = GeologicalEventAnalyzer()
|
| 722 |
+
self.mythological_analyzer = MythologicalPatternAnalyzer()
|
| 723 |
+
self.stats_analyzer = StatisticalAnalyzer()
|
| 724 |
+
self.verified_facts: List[EmpiricalFact] = []
|
| 725 |
+
|
| 726 |
+
def analyze_civilization_cycles(self, archaeological_data: np.ndarray, geological_data: np.ndarray, mythological_data: Dict[str, List[str]]) -> Dict[str, Any]:
|
| 727 |
+
arch = self.archaeological_analyzer.analyze_site_clusters(archaeological_data)
|
| 728 |
+
geo = self.geological_analyzer.analyze_catastrophe_clusters(geological_data)
|
| 729 |
+
myth = self.mythological_analyzer.analyze_myth_correlations(mythological_data)
|
| 730 |
+
cross = self._calculate_domain_correlations(arch, geo, myth)
|
| 731 |
+
overall = float(np.mean([arch['cluster_confidence'], geo['catastrophe_cluster_confidence'], myth['myth_correlation_confidence'], cross['cross_domain_alignment']]))
|
| 732 |
+
result = {
|
| 733 |
+
'timestamp': datetime.now().isoformat(),
|
| 734 |
+
'domain_results': {'archaeological': arch, 'geological': geo, 'mythological': myth},
|
| 735 |
+
'cross_domain_analysis': cross,
|
| 736 |
+
'overall_confidence': overall,
|
| 737 |
+
'civilization_cycle_hypothesis_supported': bool(overall > 0.7)
|
| 738 |
+
}
|
| 739 |
+
if overall > 0.7:
|
| 740 |
+
fact = EmpiricalFact(
|
| 741 |
+
domain=DataDomain.HISTORICAL,
|
| 742 |
+
description="Cross-domain evidence supporting cyclical civilization patterns",
|
| 743 |
+
data_source="Module 50 multi-domain correlation",
|
| 744 |
+
confidence=overall,
|
| 745 |
+
statistical_significance=cross['statistical_significance'],
|
| 746 |
+
supporting_evidence=[
|
| 747 |
+
f"Archaeological clustering: {arch['cluster_confidence']:.3f}",
|
| 748 |
+
f"Geological clustering: {geo['catastrophe_cluster_confidence']:.3f}",
|
| 749 |
+
f"Mythological alignment: {myth['myth_correlation_confidence']:.3f}"
|
| 750 |
+
],
|
| 751 |
+
timestamp=datetime.now()
|
| 752 |
+
)
|
| 753 |
+
self.verified_facts.append(fact)
|
| 754 |
+
return result
|
| 755 |
+
|
| 756 |
+
def _calculate_domain_correlations(self, arch: Dict, geo: Dict, myth: Dict) -> Dict[str, float]:
|
| 757 |
+
confidences = [arch['cluster_confidence'], geo['catastrophe_cluster_confidence'], myth['myth_correlation_confidence']]
|
| 758 |
+
alignment = 1 - (np.std(confidences) / 0.5)
|
| 759 |
+
return {
|
| 760 |
+
'cross_domain_alignment': float(max(0.0, alignment)),
|
| 761 |
+
'domain_consistency': float(1.0 - np.std(confidences)),
|
| 762 |
+
'statistical_significance': float(np.mean(confidences))
|
| 763 |
+
}
|
| 764 |
+
|
| 765 |
+
def get_verified_facts(self, min_confidence: float = 0.7) -> List[EmpiricalFact]:
|
| 766 |
+
return [f for f in self.verified_facts if f.confidence >= min_confidence]
|
| 767 |
+
|
| 768 |
+
def export_fact_report(self) -> Dict[str, Any]:
|
| 769 |
+
high = self.get_verified_facts(0.8)
|
| 770 |
+
med = self.get_verified_facts(0.6)
|
| 771 |
+
return {
|
| 772 |
+
'report_timestamp': datetime.now().isoformat(),
|
| 773 |
+
'total_facts_verified': len(self.verified_facts),
|
| 774 |
+
'high_confidence_facts': len(high),
|
| 775 |
+
'medium_confidence_facts': len(med),
|
| 776 |
+
'facts': [
|
| 777 |
+
{'description': f.description, 'domain': f.domain.value, 'confidence': f.confidence,
|
| 778 |
+
'significance': f.statistical_significance, 'evidence': f.supporting_evidence}
|
| 779 |
+
for f in high
|
| 780 |
+
]
|
| 781 |
+
}
|
| 782 |
+
|
| 783 |
+
# -----------------------------------------------------------------------------
|
| 784 |
+
# ITGARE v3.0 — Autonomous knowledge + Truth governance + Reality OS
|
| 785 |
+
# -----------------------------------------------------------------------------
|
| 786 |
+
|
| 787 |
+
@dataclass
|
| 788 |
+
class EpistemicVector:
|
| 789 |
+
content_hash: str
|
| 790 |
+
dimensional_components: Dict[str, float]
|
| 791 |
+
confidence_metrics: Dict[str, float]
|
| 792 |
+
temporal_coordinates: Dict[str, Any]
|
| 793 |
+
relational_entanglements: List[str]
|
| 794 |
+
meta_cognition: Dict[str, Any]
|
| 795 |
+
security_signature: str
|
| 796 |
+
quantum_state: Optional[str] = None
|
| 797 |
+
truth_validation_score: float = 0.0
|
| 798 |
+
reality_integration_potential: float = 0.0
|
| 799 |
+
epistemic_coherence: float = field(init=False)
|
| 800 |
+
|
| 801 |
+
def __post_init__(self):
|
| 802 |
+
ds = safe_mean(list(self.dimensional_components.values()), 0.5)
|
| 803 |
+
cs = safe_mean(list(self.confidence_metrics.values()), 0.5)
|
| 804 |
+
rd = min(1.0, len(self.relational_entanglements) / 10.0)
|
| 805 |
+
qb = 0.1 if self.quantum_state else 0.0
|
| 806 |
+
tb = self.truth_validation_score * 0.2
|
| 807 |
+
self.epistemic_coherence = clamp(ds * 0.3 + cs * 0.25 + rd * 0.2 + qb * 0.15 + tb * 0.1)
|
| 808 |
+
|
| 809 |
+
class QuantumSecurityContext:
|
| 810 |
+
def __init__(self):
|
| 811 |
+
self.temporal_signature = hashlib.sha3_512(datetime.utcnow().isoformat().encode()).hexdigest()
|
| 812 |
+
self.quantum_substrate = None
|
| 813 |
+
|
| 814 |
+
def generate_quantum_hash(self, data: Any) -> str:
|
| 815 |
+
raw = f"{str(data)}{self.temporal_signature}{secrets.token_hex(8)}"
|
| 816 |
+
if self.quantum_substrate:
|
| 817 |
+
try:
|
| 818 |
+
qs = self.quantum_substrate.create_truth_qubit(str(data))
|
| 819 |
+
raw += f"_{qs}"
|
| 820 |
+
except Exception:
|
| 821 |
+
pass
|
| 822 |
+
return hashlib.sha3_512(raw.encode()).hexdigest()
|
| 823 |
+
|
| 824 |
+
class AutonomousKnowledgeActivation:
|
| 825 |
+
def __init__(self, integrated_os=None):
|
| 826 |
+
self.integrated_os = integrated_os
|
| 827 |
+
self.security_context = QuantumSecurityContext()
|
| 828 |
+
if integrated_os and hasattr(integrated_os, 'quantum_substrate'):
|
| 829 |
+
self.security_context.quantum_substrate = integrated_os.quantum_substrate
|
| 830 |
+
self.knowledge_domains = self._init_domains()
|
| 831 |
+
self.integration_triggers = {d: {'minimum_confidence': 0.6, 'truth_validation_required': True} for d in self.knowledge_domains.keys()}
|
| 832 |
+
self.epistemic_vectors: Dict[str, EpistemicVector] = {}
|
| 833 |
+
self.recursive_depth = 0
|
| 834 |
+
self.max_recursive_depth = 12
|
| 835 |
+
self.truth_threshold = 0.7
|
| 836 |
+
|
| 837 |
+
def _init_domains(self) -> Dict[str, Dict[str, Any]]:
|
| 838 |
+
return {
|
| 839 |
+
'archaeological': {'quantum_entanglement': 0.3},
|
| 840 |
+
'geological': {'quantum_entanglement': 0.4},
|
| 841 |
+
'mythological': {'quantum_entanglement': 0.5},
|
| 842 |
+
'astronomical': {'quantum_entanglement': 0.6},
|
| 843 |
+
'genetic': {'quantum_entanglement': 0.4},
|
| 844 |
+
'consciousness_studies': {'quantum_entanglement': 0.8}
|
| 845 |
+
}
|
| 846 |
+
|
| 847 |
+
async def activate_autonomous_research(self, truth_claim: str = None) -> Dict[str, Any]:
|
| 848 |
+
self.recursive_depth += 1
|
| 849 |
+
domain_vectors: Dict[str, EpistemicVector] = {}
|
| 850 |
+
for domain in list(self.knowledge_domains.keys()):
|
| 851 |
+
vec = await self._process_domain(domain, truth_claim)
|
| 852 |
+
domain_vectors[domain] = vec
|
| 853 |
+
self.epistemic_vectors[vec.content_hash] = vec
|
| 854 |
+
integrated = await self._integrate_vectors(domain_vectors, truth_claim)
|
| 855 |
+
self.recursive_depth -= 1
|
| 856 |
+
return {
|
| 857 |
+
'autonomous_research_activated': True,
|
| 858 |
+
'epistemic_vectors': self.epistemic_vectors,
|
| 859 |
+
'integrated_vector': integrated,
|
| 860 |
+
'recursion_depth': self.recursive_depth
|
| 861 |
+
}
|
| 862 |
+
|
| 863 |
+
async def _process_domain(self, domain: str, truth_claim: Optional[str]) -> EpistemicVector:
|
| 864 |
+
pattern_data = {
|
| 865 |
+
'domain': domain,
|
| 866 |
+
'timestamp': datetime.utcnow().isoformat(),
|
| 867 |
+
'detected_patterns': ['pattern_a', 'pattern_b', 'pattern_c'],
|
| 868 |
+
'pattern_confidence': float(np.random.rand() * 0.6 + 0.4),
|
| 869 |
+
'cross_domain_correlations': int(np.random.randint(1, 5)),
|
| 870 |
+
'truth_claim_relevance': float(0.7 if truth_claim else 0.3)
|
| 871 |
+
}
|
| 872 |
+
validation = None
|
| 873 |
+
if truth_claim and self.integrated_os:
|
| 874 |
+
try:
|
| 875 |
+
validation = await self.integrated_os.process_truth_claim_comprehensive(f"{domain} evidence for: {truth_claim}", [domain])
|
| 876 |
+
except Exception as e:
|
| 877 |
+
logger.warning(f"Domain truth validation failed: {e}")
|
| 878 |
+
|
| 879 |
+
dims = {
|
| 880 |
+
'pattern_density': float(np.random.rand() * 0.8 + 0.2),
|
| 881 |
+
'temporal_alignment': float(np.random.rand() * 0.7 + 0.3),
|
| 882 |
+
'quantum_coherence': float(self.knowledge_domains[domain]['quantum_entanglement']),
|
| 883 |
+
'cross_domain_correlation': float(np.random.rand() * 0.6 + 0.2)
|
| 884 |
+
}
|
| 885 |
+
confs = {
|
| 886 |
+
'domain_confidence': float(np.random.rand() * 0.8 + 0.2),
|
| 887 |
+
'evidence_quality': float(np.random.rand() * 0.7 + 0.3),
|
| 888 |
+
'methodological_rigor': float(np.random.rand() * 0.6 + 0.4)
|
| 889 |
+
}
|
| 890 |
+
truth_score = float(validation.get('comprehensive_confidence', 0.0) if validation else 0.0)
|
| 891 |
+
quantum_state = self.integrated_os.quantum_substrate.create_truth_qubit(domain) if (self.integrated_os and hasattr(self.integrated_os, 'quantum_substrate')) else None
|
| 892 |
+
vector = EpistemicVector(
|
| 893 |
+
content_hash=self.security_context.generate_quantum_hash(pattern_data),
|
| 894 |
+
dimensional_components=dims,
|
| 895 |
+
confidence_metrics=confs,
|
| 896 |
+
temporal_coordinates={'processed_at': datetime.utcnow().isoformat(), 'domain': domain, 'recursion_depth': self.recursive_depth},
|
| 897 |
+
relational_entanglements=list(self.knowledge_domains.keys()),
|
| 898 |
+
meta_cognition={'recursive_depth': self.recursive_depth, 'domain_specificity': domain, 'truth_integration_level': truth_score},
|
| 899 |
+
security_signature=self.security_context.generate_quantum_hash(pattern_data),
|
| 900 |
+
quantum_state=quantum_state,
|
| 901 |
+
truth_validation_score=truth_score,
|
| 902 |
+
reality_integration_potential=self._calc_reality_potential(domain, validation)
|
| 903 |
+
)
|
| 904 |
+
if (self.recursive_depth < self.max_recursive_depth) and (vector.truth_validation_score > self.truth_threshold) and (np.random.rand() > 0.6):
|
| 905 |
+
await self.activate_autonomous_research(truth_claim)
|
| 906 |
+
return vector
|
| 907 |
+
|
| 908 |
+
def _calc_reality_potential(self, domain: str, validation: Optional[Dict[str, Any]]) -> float:
|
| 909 |
+
base = float(self.knowledge_domains[domain]['quantum_entanglement'])
|
| 910 |
+
if not validation:
|
| 911 |
+
return base
|
| 912 |
+
conf = float(validation.get('comprehensive_confidence', 0.5))
|
| 913 |
+
suppression = float(validation.get('gathered_context', {}).get('suppression_analysis', {}).get('suppression_confidence', 0.5))
|
| 914 |
+
ready = bool(validation.get('reality_integration_ready', False))
|
| 915 |
+
pot = base * 0.3 + conf * 0.4 + (1.0 - suppression) * 0.2 + (1.0 if ready else 0.0) * 0.1
|
| 916 |
+
return clamp(pot)
|
| 917 |
+
|
| 918 |
+
async def _integrate_vectors(self, domain_vectors: Dict[str, EpistemicVector], truth_claim: Optional[str]) -> EpistemicVector:
|
| 919 |
+
dim_keys = ['pattern_density', 'temporal_alignment', 'quantum_coherence', 'cross_domain_correlation']
|
| 920 |
+
conf_keys = ['domain_confidence', 'evidence_quality', 'methodological_rigor']
|
| 921 |
+
dims = {k: float(np.mean([v.dimensional_components.get(k, 0.5) for v in domain_vectors.values()])) for k in dim_keys}
|
| 922 |
+
confs = {k: float(np.mean([v.confidence_metrics.get(k, 0.5) for v in domain_vectors.values()])) for k in conf_keys}
|
| 923 |
+
truth_enhancement = 1.0
|
| 924 |
+
if truth_claim and self.integrated_os:
|
| 925 |
+
try:
|
| 926 |
+
integrated_val = await self.integrated_os.process_truth_claim_comprehensive(f"Integrated knowledge claim: {truth_claim}", list(self.knowledge_domains.keys()))
|
| 927 |
+
truth_enhancement = float(integrated_val.get('comprehensive_confidence', 1.0))
|
| 928 |
+
except Exception as e:
|
| 929 |
+
logger.warning(f"Integrated validation failed: {e}")
|
| 930 |
+
dims = {k: clamp(v * (0.8 + 0.2 * truth_enhancement)) for k, v in dims.items()}
|
| 931 |
+
confs = {k: clamp(v * (0.7 + 0.3 * truth_enhancement)) for k, v in confs.items()}
|
| 932 |
+
integrated = EpistemicVector(
|
| 933 |
+
content_hash=self.security_context.generate_quantum_hash(domain_vectors),
|
| 934 |
+
dimensional_components=dims,
|
| 935 |
+
confidence_metrics=confs,
|
| 936 |
+
temporal_coordinates={'integration_time': datetime.utcnow().isoformat(), 'integration_depth': self.recursive_depth, 'truth_enhancement_applied': truth_enhancement},
|
| 937 |
+
relational_entanglements=list(domain_vectors.keys()),
|
| 938 |
+
meta_cognition={'integration_depth': self.recursive_depth, 'domain_count': len(domain_vectors), 'truth_integration_level': truth_enhancement, 'autonomous_research_cycle': True},
|
| 939 |
+
security_signature=self.security_context.generate_quantum_hash(domain_vectors),
|
| 940 |
+
quantum_state=self.integrated_os.quantum_substrate.create_truth_qubit("integrated_knowledge") if (self.integrated_os and hasattr(self.integrated_os, 'quantum_substrate')) else None,
|
| 941 |
+
truth_validation_score=truth_enhancement,
|
| 942 |
+
reality_integration_potential=float(np.mean([v.reality_integration_potential for v in domain_vectors.values()]))
|
| 943 |
+
)
|
| 944 |
+
return integrated
|
| 945 |
+
|
| 946 |
+
# Placeholder subsystem classes for Reality OS components (minimal operational stubs)
|
| 947 |
+
|
| 948 |
+
@dataclass
|
| 949 |
+
class RealityShard:
|
| 950 |
+
mass: float
|
| 951 |
+
coherence: float
|
| 952 |
+
signature: str
|
| 953 |
+
|
| 954 |
+
class RealityForge:
|
| 955 |
+
def compile_truth(self, truth_state: Dict[str, Any]) -> RealityShard:
|
| 956 |
+
mass = float(1.0 + np.random.rand() * 2.0)
|
| 957 |
+
coherence = clamp(float(np.random.rand() * 0.3 + 0.7))
|
| 958 |
+
signature = hashlib.sha256(json.dumps(truth_state, default=str).encode()).hexdigest()[:16]
|
| 959 |
+
return RealityShard(mass=mass, coherence=coherence, signature=signature)
|
| 960 |
+
|
| 961 |
+
class TruthCombatUnit:
|
| 962 |
+
def engage_suppression(self, target: str) -> Dict[str, Any]:
|
| 963 |
+
return {'target': target, 'engagement_level': 0.85, 'status': 'deployed'}
|
| 964 |
+
|
| 965 |
+
@dataclass
|
| 966 |
+
class RealityUpdate:
|
| 967 |
+
observer_id: str
|
| 968 |
+
applied: bool
|
| 969 |
+
new_state_hash: str
|
| 970 |
+
|
| 971 |
+
@dataclass
|
| 972 |
+
class HumanObserver:
|
| 973 |
+
observer_id: str
|
| 974 |
+
profile: Dict[str, Any]
|
| 975 |
+
|
| 976 |
+
class ConsciousnessOverrideEngine:
|
| 977 |
+
def consciousness_override(self, observer: HumanObserver, new_reality: Dict[str, Any]) -> RealityUpdate:
|
| 978 |
+
h = hashlib.sha256(json.dumps(new_reality, default=str).encode()).hexdigest()[:24]
|
| 979 |
+
return RealityUpdate(observer_id=observer.observer_id, applied=True, new_state_hash=h)
|
| 980 |
+
|
| 981 |
+
class QuantumSubstrate:
|
| 982 |
+
def create_truth_qubit(self, payload: str) -> str:
|
| 983 |
+
return hashlib.blake2b(payload.encode(), digest_size=16).hexdigest()
|
| 984 |
+
|
| 985 |
+
class LinguisticProcessor:
|
| 986 |
+
def encode_symbolic_truth(self, claim: str) -> str:
|
| 987 |
+
return hashlib.sha1(claim.encode()).hexdigest()
|
| 988 |
+
|
| 989 |
+
class RetrocausalEngine:
|
| 990 |
+
def modulate(self, claim: str) -> float:
|
| 991 |
+
return clamp(len(claim) / 100.0)
|
| 992 |
+
|
| 993 |
+
class NoosphereAPI:
|
| 994 |
+
def query_collective_consciousness(self, claim: str) -> Dict[str, Any]:
|
| 995 |
+
return {'collective_alignment': clamp(np.random.rand() * 0.5 + 0.25)}
|
| 996 |
+
|
| 997 |
+
class ManifestationGate:
|
| 998 |
+
def queue_reality_update(self, truth_state: Dict[str, Any]) -> str:
|
| 999 |
+
sid = hashlib.md5(json.dumps(truth_state, default=str).encode()).hexdigest()[:12]
|
| 1000 |
+
return sid
|
| 1001 |
+
|
| 1002 |
+
class BayesianUncertaintyAnalyzer:
|
| 1003 |
+
def __init__(self, model=None):
|
| 1004 |
+
self.model = model
|
| 1005 |
+
def estimate(self, scores: List[float]) -> float:
|
| 1006 |
+
return float(np.std(scores))
|
| 1007 |
+
|
| 1008 |
+
class IntegratedTruthGovernedModel:
|
| 1009 |
+
def __init__(self, input_shape: Tuple[int, int, int], num_classes: int, autogenetic_engine: Any = None):
|
| 1010 |
+
self.input_shape = input_shape
|
| 1011 |
+
self.num_classes = num_classes
|
| 1012 |
+
self.autogenetic_engine = autogenetic_engine
|
| 1013 |
+
|
| 1014 |
+
def predict_with_truth_governance(self, model_input: Any, claim: str, num_samples: int = 32) -> Dict[str, Any]:
|
| 1015 |
+
samples = np.clip(np.random.randn(num_samples) * 0.08 + 0.85, 0.0, 1.0)
|
| 1016 |
+
return {'confidence': samples.tolist(), 'mean_confidence': float(np.mean(samples))}
|
| 1017 |
+
|
| 1018 |
+
# -----------------------------------------------------------------------------
|
| 1019 |
+
# Integrated Reality OS v3.1 — Unifying orchestrator
|
| 1020 |
+
# -----------------------------------------------------------------------------
|
| 1021 |
+
|
| 1022 |
+
class IntegratedRealityOS:
|
| 1023 |
+
def __init__(self):
|
| 1024 |
+
# Subsystems
|
| 1025 |
+
self.trinity = EnhancedUnifiedRealityEngine()
|
| 1026 |
+
self.fact_engine = FactEngine()
|
| 1027 |
+
self.autogenetic_engine = None # Created lazily if needed
|
| 1028 |
+
# Reality components
|
| 1029 |
+
self.reality_forge = RealityForge()
|
| 1030 |
+
self.truth_combat = TruthCombatUnit()
|
| 1031 |
+
self.override_engine = ConsciousnessOverrideEngine()
|
| 1032 |
+
self.quantum_substrate = QuantumSubstrate()
|
| 1033 |
+
self.linguistic_processor = LinguisticProcessor()
|
| 1034 |
+
self.retrocausal_engine = RetrocausalEngine()
|
| 1035 |
+
self.noosphere_api = NoosphereAPI()
|
| 1036 |
+
self.manifestation_gate = ManifestationGate()
|
| 1037 |
+
self.truth_singularity = lambda s: hashlib.sha3_512(json.dumps(s, default=str).encode()).hexdigest()
|
| 1038 |
+
self.truth_model = IntegratedTruthGovernedModel((28, 28, 1), 10)
|
| 1039 |
+
|
| 1040 |
+
# Module 51
|
| 1041 |
+
self.autonomous_knowledge = AutonomousKnowledgeActivation(self)
|
| 1042 |
+
logger.info("Unified Reality OS v3.1 initialized")
|
| 1043 |
+
|
| 1044 |
+
async def process_truth_claim_comprehensive(self, claim: str, domains: Optional[List[str]] = None) -> Dict[str, Any]:
|
| 1045 |
+
# Phase 1: Module 51 autonomous knowledge
|
| 1046 |
+
ak_results = await self.autonomous_knowledge.activate_autonomous_research(truth_claim=claim)
|
| 1047 |
+
|
| 1048 |
+
# Phase 2: TRINITY claim to ground a node (use claim as content)
|
| 1049 |
+
tri_claim = {'content': claim, 'domain': (domains[0] if domains else 'general')}
|
| 1050 |
+
tri_result = await self.trinity.process_enhanced_claim(tri_claim)
|
| 1051 |
+
|
| 1052 |
+
# Phase 3: Fact Engine (if domains touch cycles)
|
| 1053 |
+
fe_result = None
|
| 1054 |
+
if domains and any(d in ['archaeology', 'geology', 'mythology', 'astronomy', 'genetic'] for d in domains):
|
| 1055 |
+
# Synthetic minimal run; real data would be passed here
|
| 1056 |
+
archaeological_data = np.array([[12600, 37.2, 38.9],[11500, 29.9,31.1],[12800,37.2,38.9]])
|
| 1057 |
+
geological_data = np.array([[12800,8.5],[11400,7.2],[8200,6.8]])
|
| 1058 |
+
myth_data = {'sumerian':['great_flood'], 'biblical':['great_flood']}
|
| 1059 |
+
fe_result = self.fact_engine.analyze_civilization_cycles(archaeological_data, geological_data, myth_data)
|
| 1060 |
+
|
| 1061 |
+
# Phase 4: Linguistic + quantum substrates
|
| 1062 |
+
quantum_state = self.quantum_substrate.create_truth_qubit(claim)
|
| 1063 |
+
symbolic_encoding = self.linguistic_processor.encode_symbolic_truth(claim)
|
| 1064 |
+
collective_response = self.noosphere_api.query_collective_consciousness(claim)
|
| 1065 |
+
|
| 1066 |
+
# Phase 5: Model prediction
|
| 1067 |
+
model_input = np.ones((1, 28, 28, 1), dtype=np.float32) * min(1.0, len(claim)/1000.0)
|
| 1068 |
+
model_pred = self.truth_model.predict_with_truth_governance(model_input, claim, num_samples=40)
|
| 1069 |
+
|
| 1070 |
+
# Confidence fusion
|
| 1071 |
+
trival = tri_result.get('validation', {}) if isinstance(tri_result, dict) else {}
|
| 1072 |
+
validation_conf = trival.get('validation_score', 0.5)
|
| 1073 |
+
ak_conf = ak_results.get('integrated_vector', {}).get('epistemic_coherence', 0.5)
|
| 1074 |
+
model_conf = model_pred.get('mean_confidence', 0.5)
|
| 1075 |
+
collective_align = collective_response.get('collective_alignment', 0.5)
|
| 1076 |
+
fused_conf = clamp(np.average([ak_conf, validation_conf, model_conf, collective_align], weights=[0.3, 0.3, 0.25, 0.15]))
|
| 1077 |
+
|
| 1078 |
+
# Reality readiness
|
| 1079 |
+
suppression_conf = tri_result.get('validation', {}).get('overall_valid', False)
|
| 1080 |
+
autonomous_pot = ak_results.get('integrated_vector', {}).get('reality_integration_potential', 0.0)
|
| 1081 |
+
readiness = (fused_conf > 0.75) and suppression_conf and (autonomous_pot > 0.7)
|
| 1082 |
+
|
| 1083 |
+
truth_state = {
|
| 1084 |
+
'claim': claim,
|
| 1085 |
+
'domains': domains or [],
|
| 1086 |
+
'autonomous_knowledge': ak_results,
|
| 1087 |
+
'trinity_result': tri_result,
|
| 1088 |
+
'fact_engine_result': fe_result,
|
| 1089 |
+
'model_prediction': model_pred,
|
| 1090 |
+
'quantum_state': quantum_state,
|
| 1091 |
+
'symbolic_encoding': symbolic_encoding,
|
| 1092 |
+
'collective_response': collective_response,
|
| 1093 |
+
'comprehensive_confidence': fused_conf,
|
| 1094 |
+
'reality_integration_ready': readiness,
|
| 1095 |
+
'processing_timestamp': datetime.utcnow().isoformat()
|
| 1096 |
+
}
|
| 1097 |
+
|
| 1098 |
+
if readiness:
|
| 1099 |
+
shard = self.reality_forge.compile_truth(truth_state)
|
| 1100 |
+
truth_state['reality_shard'] = asdict(shard)
|
| 1101 |
+
truth_state['singularity_hash'] = self.truth_singularity(truth_state)
|
| 1102 |
+
|
| 1103 |
+
return truth_state
|
| 1104 |
+
|
| 1105 |
+
def get_os_status(self) -> Dict[str, Any]:
|
| 1106 |
+
return {
|
| 1107 |
+
'reality_os': {
|
| 1108 |
+
'graph_nodes': (len(self.trinity.knowledge_graph.graph.nodes) if self.trinity.knowledge_graph.graph else 0),
|
| 1109 |
+
'empirical_last_update': self.trinity.empirical_anchor.last_update,
|
| 1110 |
+
'db_connected': bool(self.trinity.knowledge_graph.db_conn)
|
| 1111 |
+
},
|
| 1112 |
+
'module_51': {
|
| 1113 |
+
'vectors': len(self.autonomous_knowledge.epistemic_vectors),
|
| 1114 |
+
'recursive_depth': self.autonomous_knowledge.recursive_depth
|
| 1115 |
+
}
|
| 1116 |
+
}
|
| 1117 |
+
|
| 1118 |
+
# -----------------------------------------------------------------------------
|
| 1119 |
+
# Production APIs (top-level)
|
| 1120 |
+
# -----------------------------------------------------------------------------
|
| 1121 |
+
|
| 1122 |
+
integrated_reality_os = IntegratedRealityOS()
|
| 1123 |
+
|
| 1124 |
+
async def process_truth_claim_advanced(claim: str, domains: Optional[List[str]] = None) -> Dict[str, Any]:
|
| 1125 |
+
return await integrated_reality_os.process_truth_claim_comprehensive(claim, domains)
|
| 1126 |
+
|
| 1127 |
+
async def execute_autonomous_research(truth_claim: Optional[str] = None) -> Dict[str, Any]:
|
| 1128 |
+
return await integrated_reality_os.autonomous_knowledge.activate_autonomous_research(truth_claim)
|
| 1129 |
+
|
| 1130 |
+
def get_integrated_os_status() -> Dict[str, Any]:
|
| 1131 |
+
base = integrated_reality_os.get_os_status()
|
| 1132 |
+
return {
|
| 1133 |
+
'reality_os': base['reality_os'],
|
| 1134 |
+
'module_51': base['module_51'],
|
| 1135 |
+
'timestamp': datetime.utcnow().isoformat()
|
| 1136 |
+
}
|
| 1137 |
+
|
| 1138 |
+
# -----------------------------------------------------------------------------
|
| 1139 |
+
# Demonstration (optional)
|
| 1140 |
+
# -----------------------------------------------------------------------------
|
| 1141 |
+
|
| 1142 |
+
async def demo():
|
| 1143 |
+
print("🚀 COMPLETE OMEGA VERITAS STACK — Unified Reality OS v3.1")
|
| 1144 |
+
claims = [
|
| 1145 |
+
"Consciousness interacts with physical reality via coordinated Bayesian resonance.",
|
| 1146 |
+
"Civilization cycles correlate with geological and astronomical periodicities.",
|
| 1147 |
+
]
|
| 1148 |
+
for i, c in enumerate(claims, 1):
|
| 1149 |
+
print(f"\n🔮 Claim {i}: {c}")
|
| 1150 |
+
res = await process_truth_claim_advanced(c, ["archaeology", "geology", "mythology"])
|
| 1151 |
+
print(f" Confidence: {res.get('comprehensive_confidence', 0.0):.3f}")
|
| 1152 |
+
print(f" Ready: {res.get('reality_integration_ready', False)}")
|
| 1153 |
+
if 'reality_shard' in res:
|
| 1154 |
+
shard = res['reality_shard']
|
| 1155 |
+
print(f" Shard: mass={shard['mass']:.2f}kg coherence={shard['coherence']:.3f}")
|
| 1156 |
+
status = get_integrated_os_status()
|
| 1157 |
+
print("\n🏗️ OS Status:", json.dumps(status, indent=2))
|
| 1158 |
+
|
| 1159 |
+
if __name__ == "__main__":
|
| 1160 |
+
asyncio.run(demo())
|