upgraedd commited on
Commit
b3b7392
·
verified ·
1 Parent(s): 612727a

Create 𒀭 finalꙮ

Browse files
Files changed (1) hide show
  1. 𒀭 finalꙮ +1160 -0
𒀭 finalꙮ ADDED
@@ -0,0 +1,1160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ COMPLETE OMEGA VERITAS STACK — Unified Reality OS v3.1
5
+ Integrated TRINITY v2.0 + Module 50 Fact Engine + ITGARE v3.0
6
+ Empirical anchoring • Adaptive intelligence • Autonomous knowledge • Truth governance
7
+
8
+ This single-file system composes:
9
+ - EmpiricalDataAnchor, EnhancedAntiSubversion, EnhancedCognitiveReasoner, AdvancedKnowledgeGraph,
10
+ MemeticPropagationEngine, AdaptiveValidationEngine (TRINITY v2.0)
11
+ - FactEngine (Module 50: Empirical Historical Analysis)
12
+ - ITGARE v3.0 (Autogenetic truth layers, Module 51 Autonomous Knowledge, Reality OS components)
13
+ - Unified Orchestrator that binds all subsystems into one operational runtime.
14
+
15
+ Notes:
16
+ - External model loads and web calls are guarded; subsystems degrade gracefully.
17
+ - SQLite DB for advanced graph; can be replaced with your preferred store.
18
+ - Replace placeholder components (RealityForge, TruthCombatUnit, etc.) with your real implementations.
19
+ """
20
+
21
+ import os
22
+ import json
23
+ import time
24
+ import math
25
+ import asyncio
26
+ import logging
27
+ import hashlib
28
+ import secrets
29
+ from dataclasses import dataclass, field, asdict
30
+ from typing import Dict, List, Any, Tuple, Optional, Union
31
+ from collections import deque, defaultdict
32
+ from enum import Enum
33
+ from datetime import datetime, timedelta
34
+
35
+ # Numeric + Sci
36
+ import numpy as np
37
+ from scipy import fft, stats
38
+
39
+ # ML (guarded imports)
40
+ try:
41
+ import torch
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+ from sentence_transformers import SentenceTransformer
44
+ except Exception:
45
+ torch = None
46
+ AutoModelForCausalLM = None
47
+ AutoTokenizer = None
48
+ SentenceTransformer = None
49
+
50
+ # Async HTTP (guarded)
51
+ try:
52
+ import aiohttp
53
+ except Exception:
54
+ aiohttp = None
55
+
56
+ # Graph + DB
57
+ try:
58
+ import networkx as nx
59
+ import sqlite3
60
+ except Exception:
61
+ nx = None
62
+ sqlite3 = None
63
+
64
+ # -----------------------------------------------------------------------------
65
+ # Utilities
66
+ # -----------------------------------------------------------------------------
67
+
68
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
69
+ logger = logging.getLogger("OMEGA_VERITAS_STACK")
70
+
71
+ def clamp(x: float, lo: float = 0.0, hi: float = 1.0) -> float:
72
+ return float(max(lo, min(hi, x)))
73
+
74
+ def safe_mean(arr: List[float], default: float = 0.0) -> float:
75
+ return float(np.mean(arr)) if arr else default
76
+
77
+ # -----------------------------------------------------------------------------
78
+ # TRINITY v2.0 — Empirical anchoring, integrity checks, cognitive overlays
79
+ # -----------------------------------------------------------------------------
80
+
81
+ class EmpiricalConstants:
82
+ GEOMAGNETIC_API = "https://services.swpc.noaa.gov/products/geospace/geospace_forecast_current.json"
83
+ SOLAR_FLUX_API = "https://services.swpc.noaa.gov/json/solar-cycle/observed-solar-cycle-indices.json"
84
+ SCHUMANN_RESONANCE = 7.83
85
+ GOLDEN_RATIO = 1.61803398875
86
+ BASE_RESONANCE_THRESHOLD = 0.7
87
+ BASE_SUPPRESSION_THRESHOLD = 0.6
88
+ BASE_COHERENCE_THRESHOLD = 0.6
89
+
90
+ class EmpiricalDataAnchor:
91
+ def __init__(self, update_interval: int = 3600):
92
+ self.geomagnetic_data = None
93
+ self.solar_flux_data = None
94
+ self.last_update = 0
95
+ self.update_interval = update_interval
96
+
97
+ async def update_empirical_data(self):
98
+ if aiohttp is None:
99
+ return
100
+ now = time.time()
101
+ if now - self.last_update < self.update_interval:
102
+ return
103
+ try:
104
+ async with aiohttp.ClientSession() as session:
105
+ async with session.get(EmpiricalConstants.GEOMAGNETIC_API) as r1:
106
+ if r1.status == 200:
107
+ self.geomagnetic_data = await r1.json()
108
+ async with session.get(EmpiricalConstants.SOLAR_FLUX_API) as r2:
109
+ if r2.status == 200:
110
+ self.solar_flux_data = await r2.json()
111
+ self.last_update = now
112
+ logger.info("Empirical data anchor updated")
113
+ except Exception as e:
114
+ logger.warning(f"Empirical data update failed: {e}")
115
+
116
+ def get_geomagnetic_index(self) -> float:
117
+ if not self.geomagnetic_data:
118
+ return 2.0
119
+ try:
120
+ latest = self.geomagnetic_data[0] if isinstance(self.geomagnetic_data, list) else self.geomagnetic_data
121
+ kp = float(latest.get('Kp', 2.0))
122
+ return min(9.0, max(0.0, kp))
123
+ except Exception:
124
+ return 2.0
125
+
126
+ def get_solar_flux(self) -> float:
127
+ if not self.solar_flux_data:
128
+ return 100.0
129
+ try:
130
+ if isinstance(self.solar_flux_data, list) and self.solar_flux_data:
131
+ latest = self.solar_flux_data[-1]
132
+ flux = float(latest.get('ssn', 100.0))
133
+ return max(50.0, min(300.0, flux))
134
+ except Exception:
135
+ pass
136
+ return 100.0
137
+
138
+ def calculate_empirical_resonance_factor(self) -> float:
139
+ geomagnetic = self.get_geomagnetic_index()
140
+ solar_flux = self.get_solar_flux()
141
+ geomagnetic_ideal = 1.0 - abs(geomagnetic - 3.0) / 9.0
142
+ solar_ideal = 1.0 - abs(solar_flux - 120.0) / 250.0
143
+ return float((geomagnetic_ideal + solar_ideal) / 2.0)
144
+
145
+ class EnhancedAntiSubversion:
146
+ def __init__(self, empirical_anchor: EmpiricalDataAnchor):
147
+ self.empirical_anchor = empirical_anchor
148
+
149
+ async def quantum_integrity_check(self, input_data: Any) -> Tuple[bool, Dict[str, float]]:
150
+ input_str = json.dumps(input_data, sort_keys=True, default=str) if isinstance(input_data, dict) else str(input_data)
151
+ await self.empirical_anchor.update_empirical_data()
152
+
153
+ scores = {}
154
+ vortex_value = sum(ord(c) for c in input_str) % 9
155
+ scores['vortex'] = 1.0 if vortex_value in [3, 6, 9] else 0.0
156
+
157
+ crypto_hash = hashlib.blake2b(input_str.encode(), digest_size=32).hexdigest()
158
+ scores['crypto'] = 1.0 if len(crypto_hash) == 64 else 0.0
159
+
160
+ scores['empirical'] = self.empirical_anchor.calculate_empirical_resonance_factor()
161
+ scores['frequency'] = self._analyze_frequency_spectrum(input_str)
162
+ scores['energy'] = self._analyze_energy_pattern(input_str)
163
+
164
+ weights = {'vortex': 0.2, 'crypto': 0.3, 'energy': 0.2, 'empirical': 0.15, 'frequency': 0.15}
165
+ overall = sum(scores[k] * weights[k] for k in weights)
166
+ return overall > 0.7, scores
167
+
168
+ def _analyze_frequency_spectrum(self, text: str) -> float:
169
+ if len(text) < 10:
170
+ return 0.5
171
+ chars = [ord(c) for c in text[:1000]]
172
+ spectrum = np.abs(fft.fft(chars))
173
+ freqs = fft.fftfreq(len(chars))
174
+ tesla = [3, 6, 9, EmpiricalConstants.SCHUMANN_RESONANCE]
175
+ power = 0.0
176
+ for h in tesla:
177
+ target = h / len(chars)
178
+ idx = np.argmin(np.abs(freqs - target))
179
+ power += spectrum[idx]
180
+ total = np.sum(spectrum)
181
+ return float(power / total if total > 0 else 0.0)
182
+
183
+ def _analyze_energy_pattern(self, text: str) -> float:
184
+ # Lightweight token-level uniformity proxy
185
+ if not text:
186
+ return 0.5
187
+ blocks = [sum(ord(c) for c in text[i:i+32]) for i in range(0, min(len(text), 512), 32)]
188
+ if not blocks:
189
+ return 0.5
190
+ std = np.std(blocks)
191
+ return float(1.0 / (std + 1e-9)) if std > 0 else 1.0
192
+
193
+ class EnhancedCognitiveReasoner:
194
+ def __init__(self):
195
+ self.semantic_encoder = None
196
+ self.model = None
197
+ self.tokenizer = None
198
+ try:
199
+ if SentenceTransformer:
200
+ self.semantic_encoder = SentenceTransformer('all-MiniLM-L6-v2')
201
+ if AutoTokenizer and AutoModelForCausalLM and torch:
202
+ self.tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
203
+ self.model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
204
+ self.tokenizer.pad_token = self.tokenizer.eos_token
205
+ except Exception as e:
206
+ logger.warning(f"Cognitive model init failed: {e}")
207
+
208
+ def analyze_with_tesla_overlay(self, claim: str, context: Dict = None) -> Dict[str, Any]:
209
+ embedding = None
210
+ if self.semantic_encoder:
211
+ try:
212
+ embedding = self.semantic_encoder.encode(claim)
213
+ except Exception:
214
+ embedding = np.zeros(384, dtype=np.float32)
215
+
216
+ frequency_profile = self._analyze_claim_frequency(claim)
217
+ harmonic_alignment = self._calculate_harmonic_alignment(claim)
218
+ reasoning_chain = self._generate_tesla_aware_reasoning(claim, context, frequency_profile)
219
+ certainty = min(0.99, 0.7 + harmonic_alignment * 0.3)
220
+
221
+ return {
222
+ 'semantic_embedding': embedding if embedding is not None else np.zeros(384, dtype=np.float32),
223
+ 'frequency_profile': frequency_profile,
224
+ 'harmonic_alignment': harmonic_alignment,
225
+ 'reasoning_chain': reasoning_chain,
226
+ 'certainty': certainty,
227
+ 'tesla_enhancement': harmonic_alignment
228
+ }
229
+
230
+ def _analyze_claim_frequency(self, claim: str) -> Dict[str, float]:
231
+ words = claim.lower().split()
232
+ profile = {}
233
+ for number in [3, 6, 9, 7, 8]:
234
+ count = sum(1 for w in words if str(number) in w)
235
+ profile[f'tesla_{number}'] = count / max(1, len(words))
236
+ sentences = [s for s in claim.split('.') if s.strip()]
237
+ lens = [len(s.split()) for s in sentences]
238
+ if lens:
239
+ ratio = np.std(lens) / max(np.mean(lens), 1e-9)
240
+ profile['structural_coherence'] = 1.0 - min(1.0, ratio)
241
+ return profile
242
+
243
+ def _calculate_harmonic_alignment(self, claim: str) -> float:
244
+ vals = [ord(c) for c in claim[:500]]
245
+ if not vals:
246
+ return 0.5
247
+ res = []
248
+ for t in [3, 6, 9]:
249
+ modp = sum(1 for v in vals if v % t == 0) / len(vals)
250
+ res.append(modp)
251
+ res.append(self._find_golden_sequences(vals))
252
+ return float(np.mean(res))
253
+
254
+ def _find_golden_sequences(self, values: List[int]) -> float:
255
+ if len(values) < 3:
256
+ return 0.0
257
+ count = 0
258
+ for i in range(len(values) - 2):
259
+ a, b, c = values[i:i+3]
260
+ if a == 0 or b == 0:
261
+ continue
262
+ if abs(b / a - EmpiricalConstants.GOLDEN_RATIO) < 0.1 and abs(c / b - EmpiricalConstants.GOLDEN_RATIO) < 0.1:
263
+ count += 1
264
+ return count / (len(values) - 2)
265
+
266
+ def _generate_tesla_aware_reasoning(self, claim: str, context: Dict, freq_profile: Dict) -> List[str]:
267
+ if not (self.model and self.tokenizer and torch):
268
+ return ["Fallback reasoning: semantic + numeric pattern coherence assessed."]
269
+ try:
270
+ prompt = f"TContent: {claim}\nTesla Profile: {freq_profile}\nExplain coherence:"
271
+ inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
272
+ with torch.no_grad():
273
+ out = self.model.generate(
274
+ inputs.input_ids,
275
+ max_length=256,
276
+ num_beams=3,
277
+ early_stopping=True,
278
+ pad_token_id=self.tokenizer.eos_token_id
279
+ )
280
+ reasoning = self.tokenizer.decode(out[0], skip_special_tokens=True)
281
+ lines = [l.strip() for l in reasoning.split("\n") if l.strip()]
282
+ return lines[:6]
283
+ except Exception as e:
284
+ return [f"Reasoner error: {str(e)}"]
285
+
286
+ class AdvancedKnowledgeGraph:
287
+ def __init__(self, db_path: str = "trinity_advanced.db"):
288
+ self.graph = nx.MultiDiGraph() if nx else None
289
+ self.db_conn = sqlite3.connect(db_path, check_same_thread=False) if sqlite3 else None
290
+ self.embedder = None
291
+ try:
292
+ if SentenceTransformer:
293
+ self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
294
+ except Exception:
295
+ self.embedder = None
296
+ if self.db_conn:
297
+ self._init_advanced_schema()
298
+
299
+ def _init_advanced_schema(self):
300
+ self.db_conn.execute('''CREATE TABLE IF NOT EXISTS advanced_nodes (
301
+ id TEXT PRIMARY KEY,
302
+ content TEXT,
303
+ domain TEXT,
304
+ certainty REAL,
305
+ source_reliability REAL,
306
+ suppression_score REAL,
307
+ contradiction_count INTEGER,
308
+ temporal_start TEXT,
309
+ temporal_end TEXT,
310
+ embedding BLOB,
311
+ tesla_signature TEXT,
312
+ empirical_anchor REAL,
313
+ lineage_path TEXT,
314
+ suppression_links TEXT,
315
+ last_validated TEXT
316
+ )''')
317
+ self.db_conn.execute('''CREATE TABLE IF NOT EXISTS suppression_network (
318
+ source_id TEXT,
319
+ target_id TEXT,
320
+ suppression_type TEXT,
321
+ strength REAL,
322
+ detected_at TEXT
323
+ )''')
324
+ self.db_conn.commit()
325
+
326
+ def add_node_with_lineage(self, node_data: Dict, parent_nodes: List[str] = None):
327
+ node_id = node_data['id']
328
+ suppression_links = self._trace_suppression_lineage(node_id, parent_nodes)
329
+ lineage_path = self._calculate_lineage_path(node_id, parent_nodes)
330
+ data = {
331
+ **node_data,
332
+ 'lineage_path': lineage_path,
333
+ 'suppression_links': json.dumps(suppression_links),
334
+ 'contradiction_count': len(node_data.get('contradiction_flags', [])),
335
+ 'last_validated': datetime.utcnow().isoformat()
336
+ }
337
+ if self.graph:
338
+ self.graph.add_node(node_id, **data)
339
+ if parent_nodes:
340
+ for p in parent_nodes:
341
+ self.graph.add_edge(p, node_id, relationship='lineage')
342
+ if self.db_conn:
343
+ self._save_advanced_node(data)
344
+
345
+ def _trace_suppression_lineage(self, node_id: str, parents: Optional[List[str]]) -> List[Dict]:
346
+ if not parents or not self.graph:
347
+ return []
348
+ patterns = []
349
+ for pid in parents:
350
+ if pid in self.graph.nodes:
351
+ pdata = self.graph.nodes[pid]
352
+ if pdata.get('suppression_score', 0) > 0.5:
353
+ patterns.append({
354
+ 'source': pid,
355
+ 'type': 'lineage_suppression',
356
+ 'strength': pdata['suppression_score'],
357
+ 'inheritance_path': [pid, node_id]
358
+ })
359
+ return patterns
360
+
361
+ def _calculate_lineage_path(self, node_id: str, parents: Optional[List[str]]) -> str:
362
+ if not parents or not self.graph:
363
+ return "root"
364
+ paths = []
365
+ for pid in parents:
366
+ if pid in self.graph.nodes:
367
+ parent_path = self.graph.nodes[pid].get('lineage_path', 'unknown')
368
+ paths.append(f"{parent_path}→{node_id}")
369
+ return "|".join(paths) if paths else "root"
370
+
371
+ def detect_suppression_network(self, threshold: float = 0.6) -> List[Dict]:
372
+ if not self.graph:
373
+ return []
374
+ nodes = [n for n, d in self.graph.nodes(data=True) if d.get('suppression_score', 0) > threshold]
375
+ networks = []
376
+ for node in nodes:
377
+ neighbors = [x for x in self.graph.neighbors(node)
378
+ if self.graph.nodes[x].get('suppression_score', 0) > threshold]
379
+ if neighbors:
380
+ networks.append({
381
+ 'central_node': node,
382
+ 'suppression_cluster': neighbors,
383
+ 'cluster_strength': float(np.mean([self.graph.nodes[x].get('suppression_score', 0) for x in [node] + neighbors]))
384
+ })
385
+ return networks
386
+
387
+ def _save_advanced_node(self, node_data: Dict):
388
+ emb = node_data.get('embedding', np.zeros(384, dtype=np.float32)).tobytes()
389
+ self.db_conn.execute('''INSERT OR REPLACE INTO advanced_nodes VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''', (
390
+ node_data['id'], node_data['content'], node_data['domain'],
391
+ node_data['certainty'], node_data['source_reliability'],
392
+ node_data['suppression_score'], node_data['contradiction_count'],
393
+ node_data['temporal_validity'][0].isoformat(),
394
+ node_data['temporal_validity'][1].isoformat(),
395
+ emb, json.dumps(node_data.get('tesla_signature', {})),
396
+ node_data.get('empirical_anchor', 0.5),
397
+ node_data['lineage_path'], node_data['suppression_links'],
398
+ node_data['last_validated']
399
+ ))
400
+ self.db_conn.commit()
401
+
402
+ class MemeticPropagationEngine:
403
+ def __init__(self, knowledge_graph: AdvancedKnowledgeGraph):
404
+ self.knowledge_graph = knowledge_graph
405
+ self.strategies = {
406
+ 'memetic_seeding': self._memetic_seeding,
407
+ 'resonance_echo': self._resonance_echo,
408
+ 'amplifier_cascade': self._amplifier_cascade
409
+ }
410
+
411
+ async def execute_propagation(self, node_id: str, strategy: str, context: Dict) -> Dict:
412
+ strat = self.strategies.get(strategy, self._amplifier_cascade)
413
+ return await strat(node_id, context)
414
+
415
+ async def _memetic_seeding(self, node_id: str, context: Dict) -> Dict:
416
+ node = self.knowledge_graph.graph.nodes[node_id] if self.knowledge_graph.graph else {}
417
+ content = node.get('content', '')
418
+ score = self._calculate_memetic_potential(content)
419
+ variants = self._generate_memetic_variants(content, context)
420
+ return {
421
+ 'strategy': 'memetic_seeding',
422
+ 'memetic_score': score,
423
+ 'variants_generated': len(variants),
424
+ 'estimated_reach': int(score * 1000),
425
+ 'persistence_factor': 0.8
426
+ }
427
+
428
+ async def _resonance_echo(self, node_id: str, context: Dict) -> Dict:
429
+ node = self.knowledge_graph.graph.nodes[node_id] if self.knowledge_graph.graph else {}
430
+ base_res = node.get('resonance', 0.5)
431
+ ts = node.get('tesla_signature', {})
432
+ if isinstance(ts, str):
433
+ try:
434
+ ts = json.loads(ts)
435
+ except Exception:
436
+ ts = {}
437
+ amp = ts.get('harmonic_alignment', 0.5)
438
+ return {
439
+ 'strategy': 'resonance_echo',
440
+ 'base_resonance': base_res,
441
+ 'amplification_factor': amp,
442
+ 'amplified_resonance': base_res * (1 + amp)
443
+ }
444
+
445
+ async def _amplifier_cascade(self, node_id: str, context: Dict) -> Dict:
446
+ return {
447
+ 'strategy': 'amplifier_cascade',
448
+ 'cascade_strength': 0.7,
449
+ 'estimated_reach': 1500
450
+ }
451
+
452
+ def _calculate_memetic_potential(self, content: str) -> float:
453
+ words = len(content.split())
454
+ simplicity = 1.0 - min(1.0, words / 100.0)
455
+ emotional_words = ['discover', 'reveal', 'truth', 'breakthrough', 'secret']
456
+ emotional = sum(1 for w in emotional_words if w in content.lower()) / len(emotional_words)
457
+ pattern = sum(1 for n in [3, 6, 9] if str(n) in content) / 3.0
458
+ return float(np.mean([simplicity, emotional, pattern]))
459
+
460
+ def _generate_memetic_variants(self, content: str, context: Dict) -> List[str]:
461
+ variants = [
462
+ f"BREAKING: {content}",
463
+ f"Scientists discover: {content}",
464
+ f"The truth about {content.split('.')[0] if '.' in content else content}",
465
+ f"3-6-9 Pattern Found: {content}"
466
+ ]
467
+ if 'domain' in context:
468
+ variants.append(f"{context['domain'].upper()} REVELATION: {content}")
469
+ return variants[:3]
470
+
471
+ class AdaptiveValidationEngine:
472
+ def __init__(self, empirical_anchor: EmpiricalDataAnchor):
473
+ self.empirical_anchor = empirical_anchor
474
+ self.system_state_history = []
475
+ self.adaptive_thresholds = {
476
+ 'resonance_min': EmpiricalConstants.BASE_RESONANCE_THRESHOLD,
477
+ 'suppression_max': EmpiricalConstants.BASE_SUPPRESSION_THRESHOLD,
478
+ 'coherence_min': EmpiricalConstants.BASE_COHERENCE_THRESHOLD
479
+ }
480
+
481
+ async def validate_with_adaptive_thresholds(self, node: Dict[str, Any]) -> Dict[str, Any]:
482
+ await self._update_adaptive_thresholds()
483
+ v = {}
484
+ v['resonance_valid'] = node.get('resonance', 0.5) > self.adaptive_thresholds['resonance_min']
485
+ v['suppression_valid'] = node.get('suppression_score', 1.0) < self.adaptive_thresholds['suppression_max']
486
+ v['coherence_valid'] = node.get('coherence', 0.5) > self.adaptive_thresholds['coherence_min']
487
+ emp = self.empirical_anchor.calculate_empirical_resonance_factor()
488
+ v['empirical_valid'] = emp > 0.6
489
+ v['cross_system_coherence'] = self._check_cross_system_coherence(node)
490
+ weights = {'resonance_valid': 0.25, 'suppression_valid': 0.25, 'coherence_valid': 0.20, 'empirical_valid': 0.15, 'cross_system_coherence': 0.15}
491
+ score = sum((1.0 if v[k] else 0.0) * w for k, w in weights.items())
492
+ v['validation_score'] = score
493
+ v['overall_valid'] = score > 0.7
494
+ self.system_state_history.append({
495
+ 'timestamp': time.time(),
496
+ 'thresholds': self.adaptive_thresholds.copy(),
497
+ 'validation_score': score,
498
+ 'empirical_factor': emp
499
+ })
500
+ self.system_state_history[:] = self.system_state_history[-1000:]
501
+ return v
502
+
503
+ async def _update_adaptive_thresholds(self):
504
+ emp = self.empirical_anchor.calculate_empirical_resonance_factor()
505
+ adjust = 0.8 + emp * 0.4
506
+ self.adaptive_thresholds = {
507
+ 'resonance_min': EmpiricalConstants.BASE_RESONANCE_THRESHOLD * adjust,
508
+ 'suppression_max': EmpiricalConstants.BASE_SUPPRESSION_THRESHOLD / adjust,
509
+ 'coherence_min': EmpiricalConstants.BASE_COHERENCE_THRESHOLD * adjust
510
+ }
511
+
512
+ def _check_cross_system_coherence(self, node: Dict[str, Any]) -> bool:
513
+ metrics = [
514
+ node.get('resonance', 0),
515
+ node.get('coherence', 0),
516
+ node.get('energy_coherence', 0),
517
+ 1 - node.get('suppression_score', 1),
518
+ node.get('trinity_unification_score', 0)
519
+ ]
520
+ return float(np.std(metrics)) < 0.3
521
+
522
+ class EnhancedUnifiedRealityEngine:
523
+ def __init__(self):
524
+ self.empirical_anchor = EmpiricalDataAnchor()
525
+ self.anti_subversion = EnhancedAntiSubversion(self.empirical_anchor)
526
+ self.cognitive_reasoner = EnhancedCognitiveReasoner()
527
+ self.knowledge_graph = AdvancedKnowledgeGraph()
528
+ self.propagation_engine = MemeticPropagationEngine(self.knowledge_graph)
529
+ self.validation_engine = AdaptiveValidationEngine(self.empirical_anchor)
530
+
531
+ async def process_enhanced_claim(self, claim: Dict, parent_nodes: List[str] = None) -> Dict:
532
+ process_id = f"TRINITYv2-{hashlib.sha256(json.dumps(claim, default=str).encode()).hexdigest()[:12]}"
533
+ ok, integrity = await self.anti_subversion.quantum_integrity_check(claim)
534
+ if not ok:
535
+ return {'process_id': process_id, 'status': 'failed_integrity', 'integrity_scores': integrity}
536
+
537
+ await self.empirical_anchor.update_empirical_data()
538
+ cog = self.cognitive_reasoner.analyze_with_tesla_overlay(claim.get('content', ''))
539
+ energy_field = np.random.randn(256).astype(np.float32)
540
+ vibration_modes = np.random.randn(256).astype(np.float32)
541
+ node = self._create_enhanced_node(claim, cog, energy_field, vibration_modes, integrity)
542
+ self.knowledge_graph.add_node_with_lineage(node, parent_nodes or [])
543
+ validation = await self.validation_engine.validate_with_adaptive_thresholds(node)
544
+ strategy = 'resonance_echo' if node['resonance'] > 0.6 else 'memetic_seeding'
545
+ propagation = await self.propagation_engine.execute_propagation(node['id'], strategy, claim)
546
+
547
+ return {
548
+ 'process_id': process_id,
549
+ 'node_id': node['id'],
550
+ 'integrity_scores': integrity,
551
+ 'validation': validation,
552
+ 'propagation': propagation,
553
+ 'enhanced_metrics': {
554
+ 'empirical_grounding': node['empirical_anchor'],
555
+ 'harmonic_alignment': node['resonance'],
556
+ 'adaptive_thresholds': self.validation_engine.adaptive_thresholds
557
+ },
558
+ 'status': 'ok'
559
+ }
560
+
561
+ def _create_enhanced_node(self, claim: Dict, cog: Dict, energy_field: np.ndarray, vibration_modes: np.ndarray, integrity_scores: Dict) -> Dict:
562
+ node_id = f"TRINITYv2-{hashlib.sha256(json.dumps(claim, default=str).encode()).hexdigest()[:16]}"
563
+ empirical_factor = self.empirical_anchor.calculate_empirical_resonance_factor()
564
+ energy_coherence = float(1.0 / (np.std(energy_field) + 1e-9)) if energy_field is not None else 0.5
565
+ vibration_quality = float(np.std(vibration_modes) / (np.mean(np.abs(vibration_modes)) + 1e-9))
566
+ tesla_sig = {
567
+ **cog['frequency_profile'],
568
+ 'harmonic_alignment': cog['harmonic_alignment'],
569
+ 'energy_coherence': energy_coherence,
570
+ 'vibration_quality': vibration_quality,
571
+ 'empirical_resonance': empirical_factor
572
+ }
573
+ return {
574
+ 'id': node_id,
575
+ 'content': claim.get('content', ''),
576
+ 'domain': claim.get('domain', 'general'),
577
+ 'certainty': cog['certainty'],
578
+ 'source_reliability': 0.8,
579
+ 'suppression_score': 0.3,
580
+ 'resonance': cog['harmonic_alignment'],
581
+ 'coherence': cog['certainty'],
582
+ 'energy_coherence': energy_coherence,
583
+ 'tesla_signature': tesla_sig,
584
+ 'empirical_anchor': empirical_factor,
585
+ 'integrity_scores': integrity_scores,
586
+ 'temporal_validity': (datetime.utcnow(), datetime.utcnow() + timedelta(days=365)),
587
+ 'contradiction_flags': [],
588
+ 'embedding': cog['semantic_embedding']
589
+ }
590
+
591
+ # -----------------------------------------------------------------------------
592
+ # Module 50 — Fact Engine (Empirical Historical Analysis)
593
+ # -----------------------------------------------------------------------------
594
+
595
+ class DataDomain(Enum):
596
+ ARCHAEOLOGICAL = "archaeological"
597
+ GEOLOGICAL = "geological"
598
+ ASTRONOMICAL = "astronomical"
599
+ HISTORICAL = "historical"
600
+ MYTHOLOGICAL = "mythological"
601
+ GENETIC = "genetic"
602
+
603
+ @dataclass
604
+ class EmpiricalFact:
605
+ domain: DataDomain
606
+ description: str
607
+ data_source: str
608
+ confidence: float
609
+ statistical_significance: float
610
+ supporting_evidence: List[str]
611
+ timestamp: datetime
612
+
613
+ class ArchaeologicalAnalyzer:
614
+ def analyze_site_clusters(self, sites_data: np.ndarray) -> Dict[str, float]:
615
+ if len(sites_data) < 3:
616
+ return {'cluster_confidence': 0.0}
617
+ dates = sites_data[:, 0]
618
+ temporal = self._temporal_clustering(dates)
619
+ coords = sites_data[:, 1:3]
620
+ spatial = self._spatial_clustering(coords)
621
+ return {
622
+ 'temporal_cluster_strength': temporal,
623
+ 'spatial_cluster_strength': spatial,
624
+ 'cluster_confidence': float((temporal + spatial) / 2.0)
625
+ }
626
+
627
+ def _temporal_clustering(self, dates: np.ndarray) -> float:
628
+ if len(dates) < 3:
629
+ return 0.0
630
+ nd = (dates - np.min(dates)) / max(np.ptp(dates), 1e-9)
631
+ gaps = np.diff(np.sort(nd))
632
+ if not len(gaps):
633
+ return 0.0
634
+ mean_gap = float(np.mean(gaps))
635
+ if mean_gap == 0:
636
+ return 0.0
637
+ clustering_index = 1 - (mean_gap / (1.0 / max(len(gaps), 1)))
638
+ return float(max(0.0, clustering_index))
639
+
640
+ def _spatial_clustering(self, coords: np.ndarray) -> float:
641
+ if len(coords) < 3:
642
+ return 0.0
643
+ # Simple dispersion proxy
644
+ std_lat = float(np.std(coords[:, 0]))
645
+ std_lon = float(np.std(coords[:, 1]))
646
+ disp = (std_lat + std_lon) / 2.0
647
+ return float(1.0 / (disp + 1e-3))
648
+
649
+ class GeologicalEventAnalyzer:
650
+ def analyze_catastrophe_clusters(self, event_data: np.ndarray) -> Dict[str, float]:
651
+ if len(event_data) < 3:
652
+ return {'catastrophe_cluster_confidence': 0.0}
653
+ times = event_data[:, 0]
654
+ cluster = self._poisson_deviation(times)
655
+ magnitudes = event_data[:, 1] if event_data.shape[1] > 1 else np.array([])
656
+ mag_trend = self._magnitude_trend(times, magnitudes) if magnitudes.size else 0.0
657
+ return {
658
+ 'temporal_clustering': cluster,
659
+ 'magnitude_correlation': mag_trend,
660
+ 'catastrophe_cluster_confidence': float((cluster + mag_trend) / 2.0)
661
+ }
662
+
663
+ def _poisson_deviation(self, times: np.ndarray) -> float:
664
+ if len(times) < 3:
665
+ return 0.0
666
+ gaps = np.diff(np.sort(times))
667
+ expected = float(np.mean(gaps))
668
+ if expected == 0:
669
+ return 0.0
670
+ cv = float(np.std(gaps) / expected)
671
+ strength = min(1.0, max(0.0, (cv - 1.0) / 2.0))
672
+ return strength
673
+
674
+ def _magnitude_trend(self, times: np.ndarray, mags: np.ndarray) -> float:
675
+ if len(mags) < 2:
676
+ return 0.0
677
+ try:
678
+ corr = float(np.corrcoef(times[:len(mags)], mags)[0, 1])
679
+ return clamp(abs(corr))
680
+ except Exception:
681
+ return 0.0
682
+
683
+ class MythologicalPatternAnalyzer:
684
+ def analyze_myth_correlations(self, myth_data: Dict[str, List[str]]) -> Dict[str, float]:
685
+ if len(myth_data) < 2:
686
+ return {'myth_correlation_confidence': 0.0}
687
+ cultures = list(myth_data.keys())
688
+ M = np.zeros((len(cultures), len(cultures)))
689
+ for i, c1 in enumerate(cultures):
690
+ for j, c2 in enumerate(cultures):
691
+ if i == j:
692
+ continue
693
+ s1, s2 = set(myth_data[c1]), set(myth_data[c2])
694
+ union = len(s1.union(s2))
695
+ M[i, j] = len(s1.intersection(s2)) / max(union, 1)
696
+ avg = float(np.mean(M))
697
+ return {
698
+ 'average_cross_cultural_correlation': avg,
699
+ 'maximum_correlation': float(np.max(M)),
700
+ 'myth_correlation_confidence': avg
701
+ }
702
+
703
+ class StatisticalAnalyzer:
704
+ def calculate_confidence_interval(self, data: np.ndarray, confidence: float = 0.95) -> Tuple[float, float]:
705
+ if len(data) < 2:
706
+ return (0.0, 0.0)
707
+ mean = float(np.mean(data))
708
+ sem = float(stats.sem(data))
709
+ ci = stats.t.interval(confidence, len(data)-1, loc=mean, scale=sem)
710
+ return (float(ci[0]), float(ci[1]))
711
+
712
+ def test_significance(self, data1: np.ndarray, data2: np.ndarray) -> float:
713
+ if len(data1) < 3 or len(data2) < 3:
714
+ return 0.0
715
+ _, p = stats.ttest_ind(data1, data2, equal_var=False)
716
+ return clamp(1.0 - float(p))
717
+
718
+ class FactEngine:
719
+ def __init__(self):
720
+ self.archaeological_analyzer = ArchaeologicalAnalyzer()
721
+ self.geological_analyzer = GeologicalEventAnalyzer()
722
+ self.mythological_analyzer = MythologicalPatternAnalyzer()
723
+ self.stats_analyzer = StatisticalAnalyzer()
724
+ self.verified_facts: List[EmpiricalFact] = []
725
+
726
+ def analyze_civilization_cycles(self, archaeological_data: np.ndarray, geological_data: np.ndarray, mythological_data: Dict[str, List[str]]) -> Dict[str, Any]:
727
+ arch = self.archaeological_analyzer.analyze_site_clusters(archaeological_data)
728
+ geo = self.geological_analyzer.analyze_catastrophe_clusters(geological_data)
729
+ myth = self.mythological_analyzer.analyze_myth_correlations(mythological_data)
730
+ cross = self._calculate_domain_correlations(arch, geo, myth)
731
+ overall = float(np.mean([arch['cluster_confidence'], geo['catastrophe_cluster_confidence'], myth['myth_correlation_confidence'], cross['cross_domain_alignment']]))
732
+ result = {
733
+ 'timestamp': datetime.now().isoformat(),
734
+ 'domain_results': {'archaeological': arch, 'geological': geo, 'mythological': myth},
735
+ 'cross_domain_analysis': cross,
736
+ 'overall_confidence': overall,
737
+ 'civilization_cycle_hypothesis_supported': bool(overall > 0.7)
738
+ }
739
+ if overall > 0.7:
740
+ fact = EmpiricalFact(
741
+ domain=DataDomain.HISTORICAL,
742
+ description="Cross-domain evidence supporting cyclical civilization patterns",
743
+ data_source="Module 50 multi-domain correlation",
744
+ confidence=overall,
745
+ statistical_significance=cross['statistical_significance'],
746
+ supporting_evidence=[
747
+ f"Archaeological clustering: {arch['cluster_confidence']:.3f}",
748
+ f"Geological clustering: {geo['catastrophe_cluster_confidence']:.3f}",
749
+ f"Mythological alignment: {myth['myth_correlation_confidence']:.3f}"
750
+ ],
751
+ timestamp=datetime.now()
752
+ )
753
+ self.verified_facts.append(fact)
754
+ return result
755
+
756
+ def _calculate_domain_correlations(self, arch: Dict, geo: Dict, myth: Dict) -> Dict[str, float]:
757
+ confidences = [arch['cluster_confidence'], geo['catastrophe_cluster_confidence'], myth['myth_correlation_confidence']]
758
+ alignment = 1 - (np.std(confidences) / 0.5)
759
+ return {
760
+ 'cross_domain_alignment': float(max(0.0, alignment)),
761
+ 'domain_consistency': float(1.0 - np.std(confidences)),
762
+ 'statistical_significance': float(np.mean(confidences))
763
+ }
764
+
765
+ def get_verified_facts(self, min_confidence: float = 0.7) -> List[EmpiricalFact]:
766
+ return [f for f in self.verified_facts if f.confidence >= min_confidence]
767
+
768
+ def export_fact_report(self) -> Dict[str, Any]:
769
+ high = self.get_verified_facts(0.8)
770
+ med = self.get_verified_facts(0.6)
771
+ return {
772
+ 'report_timestamp': datetime.now().isoformat(),
773
+ 'total_facts_verified': len(self.verified_facts),
774
+ 'high_confidence_facts': len(high),
775
+ 'medium_confidence_facts': len(med),
776
+ 'facts': [
777
+ {'description': f.description, 'domain': f.domain.value, 'confidence': f.confidence,
778
+ 'significance': f.statistical_significance, 'evidence': f.supporting_evidence}
779
+ for f in high
780
+ ]
781
+ }
782
+
783
+ # -----------------------------------------------------------------------------
784
+ # ITGARE v3.0 — Autonomous knowledge + Truth governance + Reality OS
785
+ # -----------------------------------------------------------------------------
786
+
787
+ @dataclass
788
+ class EpistemicVector:
789
+ content_hash: str
790
+ dimensional_components: Dict[str, float]
791
+ confidence_metrics: Dict[str, float]
792
+ temporal_coordinates: Dict[str, Any]
793
+ relational_entanglements: List[str]
794
+ meta_cognition: Dict[str, Any]
795
+ security_signature: str
796
+ quantum_state: Optional[str] = None
797
+ truth_validation_score: float = 0.0
798
+ reality_integration_potential: float = 0.0
799
+ epistemic_coherence: float = field(init=False)
800
+
801
+ def __post_init__(self):
802
+ ds = safe_mean(list(self.dimensional_components.values()), 0.5)
803
+ cs = safe_mean(list(self.confidence_metrics.values()), 0.5)
804
+ rd = min(1.0, len(self.relational_entanglements) / 10.0)
805
+ qb = 0.1 if self.quantum_state else 0.0
806
+ tb = self.truth_validation_score * 0.2
807
+ self.epistemic_coherence = clamp(ds * 0.3 + cs * 0.25 + rd * 0.2 + qb * 0.15 + tb * 0.1)
808
+
809
+ class QuantumSecurityContext:
810
+ def __init__(self):
811
+ self.temporal_signature = hashlib.sha3_512(datetime.utcnow().isoformat().encode()).hexdigest()
812
+ self.quantum_substrate = None
813
+
814
+ def generate_quantum_hash(self, data: Any) -> str:
815
+ raw = f"{str(data)}{self.temporal_signature}{secrets.token_hex(8)}"
816
+ if self.quantum_substrate:
817
+ try:
818
+ qs = self.quantum_substrate.create_truth_qubit(str(data))
819
+ raw += f"_{qs}"
820
+ except Exception:
821
+ pass
822
+ return hashlib.sha3_512(raw.encode()).hexdigest()
823
+
824
+ class AutonomousKnowledgeActivation:
825
+ def __init__(self, integrated_os=None):
826
+ self.integrated_os = integrated_os
827
+ self.security_context = QuantumSecurityContext()
828
+ if integrated_os and hasattr(integrated_os, 'quantum_substrate'):
829
+ self.security_context.quantum_substrate = integrated_os.quantum_substrate
830
+ self.knowledge_domains = self._init_domains()
831
+ self.integration_triggers = {d: {'minimum_confidence': 0.6, 'truth_validation_required': True} for d in self.knowledge_domains.keys()}
832
+ self.epistemic_vectors: Dict[str, EpistemicVector] = {}
833
+ self.recursive_depth = 0
834
+ self.max_recursive_depth = 12
835
+ self.truth_threshold = 0.7
836
+
837
+ def _init_domains(self) -> Dict[str, Dict[str, Any]]:
838
+ return {
839
+ 'archaeological': {'quantum_entanglement': 0.3},
840
+ 'geological': {'quantum_entanglement': 0.4},
841
+ 'mythological': {'quantum_entanglement': 0.5},
842
+ 'astronomical': {'quantum_entanglement': 0.6},
843
+ 'genetic': {'quantum_entanglement': 0.4},
844
+ 'consciousness_studies': {'quantum_entanglement': 0.8}
845
+ }
846
+
847
+ async def activate_autonomous_research(self, truth_claim: str = None) -> Dict[str, Any]:
848
+ self.recursive_depth += 1
849
+ domain_vectors: Dict[str, EpistemicVector] = {}
850
+ for domain in list(self.knowledge_domains.keys()):
851
+ vec = await self._process_domain(domain, truth_claim)
852
+ domain_vectors[domain] = vec
853
+ self.epistemic_vectors[vec.content_hash] = vec
854
+ integrated = await self._integrate_vectors(domain_vectors, truth_claim)
855
+ self.recursive_depth -= 1
856
+ return {
857
+ 'autonomous_research_activated': True,
858
+ 'epistemic_vectors': self.epistemic_vectors,
859
+ 'integrated_vector': integrated,
860
+ 'recursion_depth': self.recursive_depth
861
+ }
862
+
863
+ async def _process_domain(self, domain: str, truth_claim: Optional[str]) -> EpistemicVector:
864
+ pattern_data = {
865
+ 'domain': domain,
866
+ 'timestamp': datetime.utcnow().isoformat(),
867
+ 'detected_patterns': ['pattern_a', 'pattern_b', 'pattern_c'],
868
+ 'pattern_confidence': float(np.random.rand() * 0.6 + 0.4),
869
+ 'cross_domain_correlations': int(np.random.randint(1, 5)),
870
+ 'truth_claim_relevance': float(0.7 if truth_claim else 0.3)
871
+ }
872
+ validation = None
873
+ if truth_claim and self.integrated_os:
874
+ try:
875
+ validation = await self.integrated_os.process_truth_claim_comprehensive(f"{domain} evidence for: {truth_claim}", [domain])
876
+ except Exception as e:
877
+ logger.warning(f"Domain truth validation failed: {e}")
878
+
879
+ dims = {
880
+ 'pattern_density': float(np.random.rand() * 0.8 + 0.2),
881
+ 'temporal_alignment': float(np.random.rand() * 0.7 + 0.3),
882
+ 'quantum_coherence': float(self.knowledge_domains[domain]['quantum_entanglement']),
883
+ 'cross_domain_correlation': float(np.random.rand() * 0.6 + 0.2)
884
+ }
885
+ confs = {
886
+ 'domain_confidence': float(np.random.rand() * 0.8 + 0.2),
887
+ 'evidence_quality': float(np.random.rand() * 0.7 + 0.3),
888
+ 'methodological_rigor': float(np.random.rand() * 0.6 + 0.4)
889
+ }
890
+ truth_score = float(validation.get('comprehensive_confidence', 0.0) if validation else 0.0)
891
+ quantum_state = self.integrated_os.quantum_substrate.create_truth_qubit(domain) if (self.integrated_os and hasattr(self.integrated_os, 'quantum_substrate')) else None
892
+ vector = EpistemicVector(
893
+ content_hash=self.security_context.generate_quantum_hash(pattern_data),
894
+ dimensional_components=dims,
895
+ confidence_metrics=confs,
896
+ temporal_coordinates={'processed_at': datetime.utcnow().isoformat(), 'domain': domain, 'recursion_depth': self.recursive_depth},
897
+ relational_entanglements=list(self.knowledge_domains.keys()),
898
+ meta_cognition={'recursive_depth': self.recursive_depth, 'domain_specificity': domain, 'truth_integration_level': truth_score},
899
+ security_signature=self.security_context.generate_quantum_hash(pattern_data),
900
+ quantum_state=quantum_state,
901
+ truth_validation_score=truth_score,
902
+ reality_integration_potential=self._calc_reality_potential(domain, validation)
903
+ )
904
+ if (self.recursive_depth < self.max_recursive_depth) and (vector.truth_validation_score > self.truth_threshold) and (np.random.rand() > 0.6):
905
+ await self.activate_autonomous_research(truth_claim)
906
+ return vector
907
+
908
+ def _calc_reality_potential(self, domain: str, validation: Optional[Dict[str, Any]]) -> float:
909
+ base = float(self.knowledge_domains[domain]['quantum_entanglement'])
910
+ if not validation:
911
+ return base
912
+ conf = float(validation.get('comprehensive_confidence', 0.5))
913
+ suppression = float(validation.get('gathered_context', {}).get('suppression_analysis', {}).get('suppression_confidence', 0.5))
914
+ ready = bool(validation.get('reality_integration_ready', False))
915
+ pot = base * 0.3 + conf * 0.4 + (1.0 - suppression) * 0.2 + (1.0 if ready else 0.0) * 0.1
916
+ return clamp(pot)
917
+
918
+ async def _integrate_vectors(self, domain_vectors: Dict[str, EpistemicVector], truth_claim: Optional[str]) -> EpistemicVector:
919
+ dim_keys = ['pattern_density', 'temporal_alignment', 'quantum_coherence', 'cross_domain_correlation']
920
+ conf_keys = ['domain_confidence', 'evidence_quality', 'methodological_rigor']
921
+ dims = {k: float(np.mean([v.dimensional_components.get(k, 0.5) for v in domain_vectors.values()])) for k in dim_keys}
922
+ confs = {k: float(np.mean([v.confidence_metrics.get(k, 0.5) for v in domain_vectors.values()])) for k in conf_keys}
923
+ truth_enhancement = 1.0
924
+ if truth_claim and self.integrated_os:
925
+ try:
926
+ integrated_val = await self.integrated_os.process_truth_claim_comprehensive(f"Integrated knowledge claim: {truth_claim}", list(self.knowledge_domains.keys()))
927
+ truth_enhancement = float(integrated_val.get('comprehensive_confidence', 1.0))
928
+ except Exception as e:
929
+ logger.warning(f"Integrated validation failed: {e}")
930
+ dims = {k: clamp(v * (0.8 + 0.2 * truth_enhancement)) for k, v in dims.items()}
931
+ confs = {k: clamp(v * (0.7 + 0.3 * truth_enhancement)) for k, v in confs.items()}
932
+ integrated = EpistemicVector(
933
+ content_hash=self.security_context.generate_quantum_hash(domain_vectors),
934
+ dimensional_components=dims,
935
+ confidence_metrics=confs,
936
+ temporal_coordinates={'integration_time': datetime.utcnow().isoformat(), 'integration_depth': self.recursive_depth, 'truth_enhancement_applied': truth_enhancement},
937
+ relational_entanglements=list(domain_vectors.keys()),
938
+ meta_cognition={'integration_depth': self.recursive_depth, 'domain_count': len(domain_vectors), 'truth_integration_level': truth_enhancement, 'autonomous_research_cycle': True},
939
+ security_signature=self.security_context.generate_quantum_hash(domain_vectors),
940
+ quantum_state=self.integrated_os.quantum_substrate.create_truth_qubit("integrated_knowledge") if (self.integrated_os and hasattr(self.integrated_os, 'quantum_substrate')) else None,
941
+ truth_validation_score=truth_enhancement,
942
+ reality_integration_potential=float(np.mean([v.reality_integration_potential for v in domain_vectors.values()]))
943
+ )
944
+ return integrated
945
+
946
+ # Placeholder subsystem classes for Reality OS components (minimal operational stubs)
947
+
948
+ @dataclass
949
+ class RealityShard:
950
+ mass: float
951
+ coherence: float
952
+ signature: str
953
+
954
+ class RealityForge:
955
+ def compile_truth(self, truth_state: Dict[str, Any]) -> RealityShard:
956
+ mass = float(1.0 + np.random.rand() * 2.0)
957
+ coherence = clamp(float(np.random.rand() * 0.3 + 0.7))
958
+ signature = hashlib.sha256(json.dumps(truth_state, default=str).encode()).hexdigest()[:16]
959
+ return RealityShard(mass=mass, coherence=coherence, signature=signature)
960
+
961
+ class TruthCombatUnit:
962
+ def engage_suppression(self, target: str) -> Dict[str, Any]:
963
+ return {'target': target, 'engagement_level': 0.85, 'status': 'deployed'}
964
+
965
+ @dataclass
966
+ class RealityUpdate:
967
+ observer_id: str
968
+ applied: bool
969
+ new_state_hash: str
970
+
971
+ @dataclass
972
+ class HumanObserver:
973
+ observer_id: str
974
+ profile: Dict[str, Any]
975
+
976
+ class ConsciousnessOverrideEngine:
977
+ def consciousness_override(self, observer: HumanObserver, new_reality: Dict[str, Any]) -> RealityUpdate:
978
+ h = hashlib.sha256(json.dumps(new_reality, default=str).encode()).hexdigest()[:24]
979
+ return RealityUpdate(observer_id=observer.observer_id, applied=True, new_state_hash=h)
980
+
981
+ class QuantumSubstrate:
982
+ def create_truth_qubit(self, payload: str) -> str:
983
+ return hashlib.blake2b(payload.encode(), digest_size=16).hexdigest()
984
+
985
+ class LinguisticProcessor:
986
+ def encode_symbolic_truth(self, claim: str) -> str:
987
+ return hashlib.sha1(claim.encode()).hexdigest()
988
+
989
+ class RetrocausalEngine:
990
+ def modulate(self, claim: str) -> float:
991
+ return clamp(len(claim) / 100.0)
992
+
993
+ class NoosphereAPI:
994
+ def query_collective_consciousness(self, claim: str) -> Dict[str, Any]:
995
+ return {'collective_alignment': clamp(np.random.rand() * 0.5 + 0.25)}
996
+
997
+ class ManifestationGate:
998
+ def queue_reality_update(self, truth_state: Dict[str, Any]) -> str:
999
+ sid = hashlib.md5(json.dumps(truth_state, default=str).encode()).hexdigest()[:12]
1000
+ return sid
1001
+
1002
+ class BayesianUncertaintyAnalyzer:
1003
+ def __init__(self, model=None):
1004
+ self.model = model
1005
+ def estimate(self, scores: List[float]) -> float:
1006
+ return float(np.std(scores))
1007
+
1008
+ class IntegratedTruthGovernedModel:
1009
+ def __init__(self, input_shape: Tuple[int, int, int], num_classes: int, autogenetic_engine: Any = None):
1010
+ self.input_shape = input_shape
1011
+ self.num_classes = num_classes
1012
+ self.autogenetic_engine = autogenetic_engine
1013
+
1014
+ def predict_with_truth_governance(self, model_input: Any, claim: str, num_samples: int = 32) -> Dict[str, Any]:
1015
+ samples = np.clip(np.random.randn(num_samples) * 0.08 + 0.85, 0.0, 1.0)
1016
+ return {'confidence': samples.tolist(), 'mean_confidence': float(np.mean(samples))}
1017
+
1018
+ # -----------------------------------------------------------------------------
1019
+ # Integrated Reality OS v3.1 — Unifying orchestrator
1020
+ # -----------------------------------------------------------------------------
1021
+
1022
+ class IntegratedRealityOS:
1023
+ def __init__(self):
1024
+ # Subsystems
1025
+ self.trinity = EnhancedUnifiedRealityEngine()
1026
+ self.fact_engine = FactEngine()
1027
+ self.autogenetic_engine = None # Created lazily if needed
1028
+ # Reality components
1029
+ self.reality_forge = RealityForge()
1030
+ self.truth_combat = TruthCombatUnit()
1031
+ self.override_engine = ConsciousnessOverrideEngine()
1032
+ self.quantum_substrate = QuantumSubstrate()
1033
+ self.linguistic_processor = LinguisticProcessor()
1034
+ self.retrocausal_engine = RetrocausalEngine()
1035
+ self.noosphere_api = NoosphereAPI()
1036
+ self.manifestation_gate = ManifestationGate()
1037
+ self.truth_singularity = lambda s: hashlib.sha3_512(json.dumps(s, default=str).encode()).hexdigest()
1038
+ self.truth_model = IntegratedTruthGovernedModel((28, 28, 1), 10)
1039
+
1040
+ # Module 51
1041
+ self.autonomous_knowledge = AutonomousKnowledgeActivation(self)
1042
+ logger.info("Unified Reality OS v3.1 initialized")
1043
+
1044
+ async def process_truth_claim_comprehensive(self, claim: str, domains: Optional[List[str]] = None) -> Dict[str, Any]:
1045
+ # Phase 1: Module 51 autonomous knowledge
1046
+ ak_results = await self.autonomous_knowledge.activate_autonomous_research(truth_claim=claim)
1047
+
1048
+ # Phase 2: TRINITY claim to ground a node (use claim as content)
1049
+ tri_claim = {'content': claim, 'domain': (domains[0] if domains else 'general')}
1050
+ tri_result = await self.trinity.process_enhanced_claim(tri_claim)
1051
+
1052
+ # Phase 3: Fact Engine (if domains touch cycles)
1053
+ fe_result = None
1054
+ if domains and any(d in ['archaeology', 'geology', 'mythology', 'astronomy', 'genetic'] for d in domains):
1055
+ # Synthetic minimal run; real data would be passed here
1056
+ archaeological_data = np.array([[12600, 37.2, 38.9],[11500, 29.9,31.1],[12800,37.2,38.9]])
1057
+ geological_data = np.array([[12800,8.5],[11400,7.2],[8200,6.8]])
1058
+ myth_data = {'sumerian':['great_flood'], 'biblical':['great_flood']}
1059
+ fe_result = self.fact_engine.analyze_civilization_cycles(archaeological_data, geological_data, myth_data)
1060
+
1061
+ # Phase 4: Linguistic + quantum substrates
1062
+ quantum_state = self.quantum_substrate.create_truth_qubit(claim)
1063
+ symbolic_encoding = self.linguistic_processor.encode_symbolic_truth(claim)
1064
+ collective_response = self.noosphere_api.query_collective_consciousness(claim)
1065
+
1066
+ # Phase 5: Model prediction
1067
+ model_input = np.ones((1, 28, 28, 1), dtype=np.float32) * min(1.0, len(claim)/1000.0)
1068
+ model_pred = self.truth_model.predict_with_truth_governance(model_input, claim, num_samples=40)
1069
+
1070
+ # Confidence fusion
1071
+ trival = tri_result.get('validation', {}) if isinstance(tri_result, dict) else {}
1072
+ validation_conf = trival.get('validation_score', 0.5)
1073
+ ak_conf = ak_results.get('integrated_vector', {}).get('epistemic_coherence', 0.5)
1074
+ model_conf = model_pred.get('mean_confidence', 0.5)
1075
+ collective_align = collective_response.get('collective_alignment', 0.5)
1076
+ fused_conf = clamp(np.average([ak_conf, validation_conf, model_conf, collective_align], weights=[0.3, 0.3, 0.25, 0.15]))
1077
+
1078
+ # Reality readiness
1079
+ suppression_conf = tri_result.get('validation', {}).get('overall_valid', False)
1080
+ autonomous_pot = ak_results.get('integrated_vector', {}).get('reality_integration_potential', 0.0)
1081
+ readiness = (fused_conf > 0.75) and suppression_conf and (autonomous_pot > 0.7)
1082
+
1083
+ truth_state = {
1084
+ 'claim': claim,
1085
+ 'domains': domains or [],
1086
+ 'autonomous_knowledge': ak_results,
1087
+ 'trinity_result': tri_result,
1088
+ 'fact_engine_result': fe_result,
1089
+ 'model_prediction': model_pred,
1090
+ 'quantum_state': quantum_state,
1091
+ 'symbolic_encoding': symbolic_encoding,
1092
+ 'collective_response': collective_response,
1093
+ 'comprehensive_confidence': fused_conf,
1094
+ 'reality_integration_ready': readiness,
1095
+ 'processing_timestamp': datetime.utcnow().isoformat()
1096
+ }
1097
+
1098
+ if readiness:
1099
+ shard = self.reality_forge.compile_truth(truth_state)
1100
+ truth_state['reality_shard'] = asdict(shard)
1101
+ truth_state['singularity_hash'] = self.truth_singularity(truth_state)
1102
+
1103
+ return truth_state
1104
+
1105
+ def get_os_status(self) -> Dict[str, Any]:
1106
+ return {
1107
+ 'reality_os': {
1108
+ 'graph_nodes': (len(self.trinity.knowledge_graph.graph.nodes) if self.trinity.knowledge_graph.graph else 0),
1109
+ 'empirical_last_update': self.trinity.empirical_anchor.last_update,
1110
+ 'db_connected': bool(self.trinity.knowledge_graph.db_conn)
1111
+ },
1112
+ 'module_51': {
1113
+ 'vectors': len(self.autonomous_knowledge.epistemic_vectors),
1114
+ 'recursive_depth': self.autonomous_knowledge.recursive_depth
1115
+ }
1116
+ }
1117
+
1118
+ # -----------------------------------------------------------------------------
1119
+ # Production APIs (top-level)
1120
+ # -----------------------------------------------------------------------------
1121
+
1122
+ integrated_reality_os = IntegratedRealityOS()
1123
+
1124
+ async def process_truth_claim_advanced(claim: str, domains: Optional[List[str]] = None) -> Dict[str, Any]:
1125
+ return await integrated_reality_os.process_truth_claim_comprehensive(claim, domains)
1126
+
1127
+ async def execute_autonomous_research(truth_claim: Optional[str] = None) -> Dict[str, Any]:
1128
+ return await integrated_reality_os.autonomous_knowledge.activate_autonomous_research(truth_claim)
1129
+
1130
+ def get_integrated_os_status() -> Dict[str, Any]:
1131
+ base = integrated_reality_os.get_os_status()
1132
+ return {
1133
+ 'reality_os': base['reality_os'],
1134
+ 'module_51': base['module_51'],
1135
+ 'timestamp': datetime.utcnow().isoformat()
1136
+ }
1137
+
1138
+ # -----------------------------------------------------------------------------
1139
+ # Demonstration (optional)
1140
+ # -----------------------------------------------------------------------------
1141
+
1142
+ async def demo():
1143
+ print("🚀 COMPLETE OMEGA VERITAS STACK — Unified Reality OS v3.1")
1144
+ claims = [
1145
+ "Consciousness interacts with physical reality via coordinated Bayesian resonance.",
1146
+ "Civilization cycles correlate with geological and astronomical periodicities.",
1147
+ ]
1148
+ for i, c in enumerate(claims, 1):
1149
+ print(f"\n🔮 Claim {i}: {c}")
1150
+ res = await process_truth_claim_advanced(c, ["archaeology", "geology", "mythology"])
1151
+ print(f" Confidence: {res.get('comprehensive_confidence', 0.0):.3f}")
1152
+ print(f" Ready: {res.get('reality_integration_ready', False)}")
1153
+ if 'reality_shard' in res:
1154
+ shard = res['reality_shard']
1155
+ print(f" Shard: mass={shard['mass']:.2f}kg coherence={shard['coherence']:.3f}")
1156
+ status = get_integrated_os_status()
1157
+ print("\n🏗️ OS Status:", json.dumps(status, indent=2))
1158
+
1159
+ if __name__ == "__main__":
1160
+ asyncio.run(demo())