Create MODULE 51
Browse files
MODULE 51
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
MODULE 51 v2.0: ENHANCED AUTONOMOUS KNOWLEDGE INTEGRATION FRAMEWORK
|
| 4 |
+
Recursive, self-learning AI for cross-domain historical pattern detection
|
| 5 |
+
"""
|
| 6 |
+
import numpy as np
|
| 7 |
+
from dataclasses import dataclass, field
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from typing import Dict, Any, List, Callable
|
| 10 |
+
import hashlib
|
| 11 |
+
import secrets
|
| 12 |
+
import asyncio
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# -------------------------------
|
| 19 |
+
# Epistemic Vectors
|
| 20 |
+
# -------------------------------
|
| 21 |
+
@dataclass
|
| 22 |
+
class EpistemicVector:
|
| 23 |
+
content_hash: str
|
| 24 |
+
dimensional_components: Dict[str, float]
|
| 25 |
+
confidence_metrics: Dict[str, float]
|
| 26 |
+
temporal_coordinates: Dict[str, Any]
|
| 27 |
+
relational_entanglements: List[str]
|
| 28 |
+
meta_cognition: Dict[str, Any]
|
| 29 |
+
security_signature: str
|
| 30 |
+
epistemic_coherence: float = field(init=False)
|
| 31 |
+
|
| 32 |
+
def __post_init__(self):
|
| 33 |
+
dimensional_strength = np.mean(list(self.dimensional_components.values()))
|
| 34 |
+
confidence_strength = np.mean(list(self.confidence_metrics.values()))
|
| 35 |
+
relational_density = min(1.0, len(self.relational_entanglements) / 10.0)
|
| 36 |
+
self.epistemic_coherence = min(
|
| 37 |
+
1.0,
|
| 38 |
+
(dimensional_strength * 0.4 + confidence_strength * 0.3 + relational_density * 0.3)
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# -------------------------------
|
| 42 |
+
# Quantum-style security
|
| 43 |
+
# -------------------------------
|
| 44 |
+
class QuantumSecurityContext:
|
| 45 |
+
def __init__(self):
|
| 46 |
+
self.key = secrets.token_bytes(32)
|
| 47 |
+
self.temporal_signature = hashlib.sha3_512(datetime.now().isoformat().encode()).hexdigest()
|
| 48 |
+
|
| 49 |
+
def generate_quantum_hash(self, data: Any) -> str:
|
| 50 |
+
data_str = str(data)
|
| 51 |
+
combined = f"{data_str}{self.temporal_signature}{secrets.token_hex(8)}"
|
| 52 |
+
return hashlib.sha3_512(combined.encode()).hexdigest()
|
| 53 |
+
|
| 54 |
+
# -------------------------------
|
| 55 |
+
# Autonomous Knowledge Integration
|
| 56 |
+
# -------------------------------
|
| 57 |
+
class AutonomousKnowledgeActivation:
|
| 58 |
+
def __init__(self):
|
| 59 |
+
self.security_context = QuantumSecurityContext()
|
| 60 |
+
self.knowledge_domains = self._initialize_knowledge_domains()
|
| 61 |
+
self.integration_triggers = self._set_integration_triggers()
|
| 62 |
+
self.epistemic_vectors: Dict[str, EpistemicVector] = {}
|
| 63 |
+
self.recursive_depth = 0
|
| 64 |
+
self.max_recursive_depth = 10
|
| 65 |
+
|
| 66 |
+
def _initialize_knowledge_domains(self):
|
| 67 |
+
return {
|
| 68 |
+
'archaeological': {'scope': 'global_site_databases, dating_methodologies, cultural_sequences'},
|
| 69 |
+
'geological': {'scope': 'catastrophe_records, climate_proxies, impact_evidence'},
|
| 70 |
+
'mythological': {'scope': 'cross_cultural_narratives, thematic_archetypes, transmission_pathways'},
|
| 71 |
+
'astronomical': {'scope': 'orbital_mechanics, impact_probabilities, cosmic_cycles'},
|
| 72 |
+
'genetic': {'scope': 'population_bottlenecks, migration_patterns, evolutionary_pressure'}
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
def _set_integration_triggers(self):
|
| 76 |
+
return {domain: "pattern_detection_trigger" for domain in self.knowledge_domains}
|
| 77 |
+
|
| 78 |
+
async def activate_autonomous_research(self, initial_data=None):
|
| 79 |
+
self.recursive_depth += 1
|
| 80 |
+
results = {}
|
| 81 |
+
for domain in self.knowledge_domains:
|
| 82 |
+
results[domain] = await self._process_domain(domain)
|
| 83 |
+
integrated_vector = self._integrate_vectors(results)
|
| 84 |
+
self.recursive_depth -= 1
|
| 85 |
+
return {
|
| 86 |
+
'autonomous_research_activated': True,
|
| 87 |
+
'knowledge_domains_deployed': len(self.knowledge_domains),
|
| 88 |
+
'epistemic_vectors': self.epistemic_vectors,
|
| 89 |
+
'integrated_vector': integrated_vector
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
async def _process_domain(self, domain):
|
| 93 |
+
# Simulated recursive pattern detection & correlation
|
| 94 |
+
data_snapshot = {
|
| 95 |
+
'domain': domain,
|
| 96 |
+
'timestamp': datetime.now().isoformat(),
|
| 97 |
+
'simulated_pattern_score': np.random.rand()
|
| 98 |
+
}
|
| 99 |
+
vector = EpistemicVector(
|
| 100 |
+
content_hash=self.security_context.generate_quantum_hash(data_snapshot),
|
| 101 |
+
dimensional_components={'pattern_density': np.random.rand(), 'temporal_alignment': np.random.rand()},
|
| 102 |
+
confidence_metrics={'domain_confidence': np.random.rand()},
|
| 103 |
+
temporal_coordinates={'processed_at': datetime.now().isoformat()},
|
| 104 |
+
relational_entanglements=list(self.knowledge_domains.keys()),
|
| 105 |
+
meta_cognition={'recursive_depth': self.recursive_depth},
|
| 106 |
+
security_signature=self.security_context.generate_quantum_hash(data_snapshot)
|
| 107 |
+
)
|
| 108 |
+
self.epistemic_vectors[vector.content_hash] = vector
|
| 109 |
+
# Recursive deepening if under max depth
|
| 110 |
+
if self.recursive_depth < self.max_recursive_depth and np.random.rand() > 0.7:
|
| 111 |
+
await self.activate_autonomous_research(initial_data=data_snapshot)
|
| 112 |
+
return vector
|
| 113 |
+
|
| 114 |
+
def _integrate_vectors(self, domain_vectors: Dict[str, EpistemicVector]) -> EpistemicVector:
|
| 115 |
+
# Combine dimensional components & confidence metrics
|
| 116 |
+
dimensional_components = {k: np.mean([v.dimensional_components.get(k, 0.5) for v in domain_vectors.values()])
|
| 117 |
+
for k in ['pattern_density', 'temporal_alignment']}
|
| 118 |
+
confidence_metrics = {k: np.mean([v.confidence_metrics.get(k, 0.5) for v in domain_vectors.values()])
|
| 119 |
+
for k in ['domain_confidence']}
|
| 120 |
+
integrated_vector = EpistemicVector(
|
| 121 |
+
content_hash=self.security_context.generate_quantum_hash(domain_vectors),
|
| 122 |
+
dimensional_components=dimensional_components,
|
| 123 |
+
confidence_metrics=confidence_metrics,
|
| 124 |
+
temporal_coordinates={'integration_time': datetime.now().isoformat()},
|
| 125 |
+
relational_entanglements=list(domain_vectors.keys()),
|
| 126 |
+
meta_cognition={'integration_depth': self.recursive_depth},
|
| 127 |
+
security_signature=self.security_context.generate_quantum_hash(domain_vectors)
|
| 128 |
+
)
|
| 129 |
+
return integrated_vector
|
| 130 |
+
|
| 131 |
+
# -------------------------------
|
| 132 |
+
# Self-Directed Learning Protocol
|
| 133 |
+
# -------------------------------
|
| 134 |
+
class SelfDirectedLearningProtocol:
|
| 135 |
+
def __init__(self, framework: AutonomousKnowledgeActivation):
|
| 136 |
+
self.framework = framework
|
| 137 |
+
|
| 138 |
+
async def execute_autonomous_learning_cycle(self):
|
| 139 |
+
return await self.framework.activate_autonomous_research()
|
| 140 |
+
|
| 141 |
+
# -------------------------------
|
| 142 |
+
# DEMONSTRATION
|
| 143 |
+
# -------------------------------
|
| 144 |
+
async def demonstrate_autonomous_framework():
|
| 145 |
+
framework = AutonomousKnowledgeActivation()
|
| 146 |
+
results = await framework.activate_autonomous_research()
|
| 147 |
+
print("MODULE 51 v2.0: ENHANCED AUTONOMOUS KNOWLEDGE INTEGRATION")
|
| 148 |
+
print(f"Autonomous Research Activated: {results['autonomous_research_activated']}")
|
| 149 |
+
print(f"Knowledge Domains Deployed: {results['knowledge_domains_deployed']}")
|
| 150 |
+
print(f"Epistemic Vectors Created: {len(results['epistemic_vectors'])}")
|
| 151 |
+
print(f"Integrated Vector Coherence: {results['integrated_vector'].epistemic_coherence:.3f}")
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
asyncio.run(demonstrate_autonomous_framework())
|