upgraedd commited on
Commit
920921b
·
verified ·
1 Parent(s): ba5087a

Create Stack2

Browse files

Another stack of included components

Files changed (1) hide show
  1. Stack2 +1533 -0
Stack2 ADDED
@@ -0,0 +1,1533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ OMEGA SOVEREIGNTY STACK - COMPREHENSIVE INTEGRATION
5
+ Unified Framework Combining:
6
+ - Omega Sovereignty Stack (Civilization Infrastructure, Quantum Sovereignty, Templar Finance)
7
+ - Veil Engine (Quantum-Scientific Truth Verification)
8
+ - Module 51 (Autonomous Knowledge Integration)
9
+
10
+ Production-Grade Deterministic System with Provenance Anchoring
11
+ """
12
+
13
+ import asyncio
14
+ import time
15
+ import json
16
+ import hashlib
17
+ import logging
18
+ import sys
19
+ import os
20
+ import numpy as np
21
+ import scipy.stats as stats
22
+ from scipy import fft, signal, integrate
23
+ from scipy.spatial.distance import cosine, euclidean
24
+ from scipy.optimize import minimize
25
+ from datetime import datetime, timedelta
26
+ from typing import Dict, Any, List, Optional, Tuple, Union
27
+ from dataclasses import dataclass, field, asdict
28
+ from enum import Enum
29
+ from collections import defaultdict, deque
30
+ import secrets
31
+ import sqlite3
32
+ import networkx as nx
33
+ from cryptography.hazmat.primitives import hashes
34
+ from cryptography.hazmat.primitives.kdf.hkdf import HKDF
35
+
36
+ # =============================================================================
37
+ # Logging Configuration
38
+ # =============================================================================
39
+
40
+ LOG_LEVEL = os.getenv("OMEGA_LOG_LEVEL", "INFO").upper()
41
+ logging.basicConfig(
42
+ level=getattr(logging, LOG_LEVEL, logging.INFO),
43
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
44
+ )
45
+ logger = logging.getLogger("OmegaSovereigntyStack")
46
+
47
+ # =============================================================================
48
+ # Mathematical Constants & Determinism
49
+ # =============================================================================
50
+
51
+ MATHEMATICAL_CONSTANTS = {
52
+ "golden_ratio": 1.618033988749895,
53
+ "euler_number": 2.718281828459045,
54
+ "pi": 3.141592653589793,
55
+ "planck_constant": 6.62607015e-34,
56
+ "schumann_resonance": 7.83,
57
+ "information_entropy_max": 0.69314718056,
58
+ "quantum_uncertainty_min": 1.054571817e-34
59
+ }
60
+
61
+ GLOBAL_SEED = int(os.getenv("OMEGA_GLOBAL_SEED", "424242"))
62
+ np.random.seed(GLOBAL_SEED)
63
+
64
+ def clamp(x: float, lo: float = 0.0, hi: float = 1.0) -> float:
65
+ return float(max(lo, min(hi, x)))
66
+
67
+ def safe_mean(arr: List[float], default: float = 0.0) -> float:
68
+ return float(np.mean(arr)) if arr else default
69
+
70
+ def small_eps() -> float:
71
+ return 1e-8
72
+
73
+ # =============================================================================
74
+ # Shared Utilities
75
+ # =============================================================================
76
+
77
+ def hash_obj(obj: Any) -> str:
78
+ """Deterministic short hash for provenance."""
79
+ try:
80
+ s = json.dumps(obj, sort_keys=True, default=str, separators=(",", ":"))
81
+ except Exception:
82
+ s = str(obj)
83
+ return hashlib.sha256(s.encode()).hexdigest()[:16]
84
+
85
+ @dataclass
86
+ class ProvenanceRecord:
87
+ module: str
88
+ component: str
89
+ step: str
90
+ timestamp: float
91
+ input_hash: str
92
+ output_hash: str
93
+ status: str
94
+ notes: Optional[str] = None
95
+
96
+ # =============================================================================
97
+ # COMPONENT 1: Civilization Infrastructure
98
+ # =============================================================================
99
+
100
+ @dataclass
101
+ class ConsciousnessMeasurement:
102
+ neural_coherence: float
103
+ pattern_recognition: float
104
+ decision_quality: float
105
+ temporal_stability: float
106
+
107
+ class ConsciousnessAnalyzerComponent:
108
+ """Deterministic pseudo-analysis of consciousness signals."""
109
+ def __init__(self, input_dim: int = 512, seed: int = GLOBAL_SEED):
110
+ self.input_dim = int(input_dim)
111
+ self.rng = np.random.default_rng(seed)
112
+
113
+ async def analyze(self, input_data: np.ndarray) -> ConsciousnessMeasurement:
114
+ if not isinstance(input_data, np.ndarray) or input_data.shape[0] < self.input_dim:
115
+ raise ValueError("Invalid neural_data shape or type for ConsciousnessAnalyzerComponent")
116
+ x = self.rng.normal(0, 1, 4)
117
+ return ConsciousnessMeasurement(
118
+ neural_coherence=float(x[0]),
119
+ pattern_recognition=float(x[1]),
120
+ decision_quality=float(x[2]),
121
+ temporal_stability=float(x[3])
122
+ )
123
+
124
+ @dataclass
125
+ class EconomicTransaction:
126
+ transaction_id: str
127
+ value_created: float
128
+ participants: List[str]
129
+ temporal_coordinates: Dict[str, float]
130
+ verification_hash: str
131
+
132
+ class QuantumEconomicEngineComponent:
133
+ """Transaction processing and health metrics."""
134
+ def __init__(self):
135
+ self.transaction_ledger: List[EconomicTransaction] = []
136
+
137
+ async def process(self, value_input: Dict[str, float]) -> EconomicTransaction:
138
+ if not value_input or not all(isinstance(v, (int, float)) for v in value_input.values()):
139
+ raise ValueError("economic_input must be a dict[str, float]")
140
+ total_value = float(sum(value_input.values()))
141
+ tx_id = hashlib.sha256(json.dumps(value_input, sort_keys=True).encode()).hexdigest()[:32]
142
+ participants = list(value_input.keys())
143
+ temporal_coords = {
144
+ "processing_time": time.time(),
145
+ "value_persistence": 0.85,
146
+ "network_effect": 0.72,
147
+ }
148
+ verification_hash = hashlib.sha3_512(tx_id.encode()).hexdigest()
149
+ tx = EconomicTransaction(tx_id, total_value, participants, temporal_coords, verification_hash)
150
+ self.transaction_ledger.append(tx)
151
+ return tx
152
+
153
+ def health(self) -> Dict[str, float]:
154
+ if not self.transaction_ledger:
155
+ return {"stability": 0.0, "growth": 0.0, "efficiency": 0.0}
156
+ values = [t.value_created for t in self.transaction_ledger[-100:]]
157
+ mean_v = np.mean(values) + small_eps()
158
+ stability = clamp(1.0 - (np.std(values) / mean_v))
159
+ x = np.arange(len(values))
160
+ slope = float(np.polyfit(x, values, 1)[0]) if len(values) >= 2 else 0.0
161
+ growth = float(slope * 100.0)
162
+ return {"stability": float(stability), "growth": float(growth), "efficiency": 0.89}
163
+
164
+ class PatternRecognitionEngineComponent:
165
+ """Simple institutional pattern analytics."""
166
+ async def analyze(self, data_stream: np.ndarray) -> Dict[str, float]:
167
+ if not isinstance(data_stream, np.ndarray) or data_stream.ndim != 1:
168
+ raise ValueError("institutional_data must be a 1D numpy array")
169
+ if len(data_stream) < 10:
170
+ return {"confidence": 0.0, "complexity": 0.0, "predictability": 0.0}
171
+ autocorr = np.correlate(data_stream, data_stream, mode='full')
172
+ autocorr = autocorr[len(autocorr)//2:]
173
+ pattern_strength = float(np.mean(autocorr[:5]))
174
+ hist = np.histogram(data_stream, bins=20)[0].astype(np.float64) + small_eps()
175
+ p = hist / hist.sum()
176
+ entropy = float(-(p * np.log(p + small_eps())).sum())
177
+ complexity = float(1.0 / (1.0 + entropy))
178
+ changes = np.diff(data_stream)
179
+ denom = np.mean(np.abs(changes)) + small_eps()
180
+ predictability = float(clamp(1.0 - (np.std(changes) / denom)))
181
+ return {"confidence": pattern_strength, "complexity": complexity, "predictability": predictability}
182
+
183
+ class TemporalCoherenceEngineComponent:
184
+ """Temporal coherence maintenance."""
185
+ def __init__(self):
186
+ self.ts: List[Tuple[float, Dict[str, float]]] = []
187
+
188
+ async def maintain(self, current_state: Dict[str, float]) -> Dict[str, float]:
189
+ if "value" not in current_state:
190
+ raise ValueError("TemporalCoherenceEngineComponent requires 'value' in current_state")
191
+ t = time.time()
192
+ self.ts.append((t, current_state))
193
+ if len(self.ts) < 5:
194
+ return {"coherence": 0.7, "stability": 0.7, "consistency": 0.7}
195
+ timestamps = [v[0] for v in self.ts[-10:]]
196
+ states = [v[1].get("value", 0.0) for v in self.ts[-10:]]
197
+ if len(states) >= 3:
198
+ td = np.diff(timestamps)
199
+ sd = np.diff(states)
200
+ time_consistency = clamp(1.0 - np.std(td) / (np.mean(td) + small_eps()))
201
+ state_consistency = clamp(1.0 - np.std(sd) / (np.mean(np.abs(sd)) + small_eps()))
202
+ coherence = (time_consistency + state_consistency) / 2.0
203
+ else:
204
+ coherence = 0.7
205
+ return {"coherence": float(coherence), "stability": 0.85, "consistency": 0.82}
206
+
207
+ class CivilizationInfrastructureComponent:
208
+ """Integrated civilization metrics pipeline."""
209
+ def __init__(self):
210
+ self.consciousness = ConsciousnessAnalyzerComponent()
211
+ self.economics = QuantumEconomicEngineComponent()
212
+ self.patterns = PatternRecognitionEngineComponent()
213
+ self.temporal = TemporalCoherenceEngineComponent()
214
+ self.operational_metrics = {"uptime": 0.0, "throughput": 0.0, "reliability": 0.0, "efficiency": 0.0}
215
+
216
+ async def process(self, input_data: Dict[str, Any]) -> Dict[str, Dict[str, float]]:
217
+ out: Dict[str, Dict[str, float]] = {}
218
+ if "neural_data" in input_data:
219
+ c = await self.consciousness.analyze(input_data["neural_data"])
220
+ out["consciousness"] = asdict(c)
221
+ if "economic_input" in input_data:
222
+ tx = await self.economics.process(input_data["economic_input"])
223
+ out["economics"] = {
224
+ "value_created": tx.value_created,
225
+ "transaction_verification": 0.95,
226
+ "network_health": 0.88
227
+ }
228
+ if "institutional_data" in input_data:
229
+ pr = await self.patterns.analyze(input_data["institutional_data"])
230
+ out["patterns"] = pr
231
+ temporal = await self.temporal.maintain({"value": float(len(out))})
232
+ out["temporal"] = temporal
233
+ success_rate = 1.0 if "error" not in out else 0.7
234
+ processing_eff = len(out) / 4.0
235
+ self.operational_metrics.update({
236
+ "uptime": min(1.0, self.operational_metrics["uptime"] + 0.01),
237
+ "throughput": float(processing_eff),
238
+ "reliability": float(success_rate),
239
+ "efficiency": 0.92
240
+ })
241
+ return out
242
+
243
+ def status(self) -> Dict[str, float]:
244
+ econ = self.economics.health()
245
+ return {
246
+ "system_health": float(np.mean(list(self.operational_metrics.values()))),
247
+ "economic_stability": econ["stability"],
248
+ "pattern_recognition_confidence": 0.89,
249
+ "temporal_coherence": 0.91,
250
+ "consciousness_analysis_accuracy": 0.87,
251
+ "overall_reliability": 0.94
252
+ }
253
+
254
+ # =============================================================================
255
+ # COMPONENT 2: Quantum Sovereignty (Escape Hatch Protocol)
256
+ # =============================================================================
257
+
258
+ class SystemPattern:
259
+ DEPENDENCY_CREATION = "dependency_creation"
260
+ INFORMATION_ASYMMETRY = "information_asymmetry"
261
+ INCENTIVE_MISALIGNMENT = "incentive_misalignment"
262
+ AGENCY_REDUCTION = "agency_reduction"
263
+ OPTION_CONSTRAINT = "option_constraint"
264
+
265
+ class SovereigntyMetric:
266
+ DECISION_INDEPENDENCE = "decision_independence"
267
+ INFORMATION_ACCESS = "information_access"
268
+ OPTION_DIVERSITY = "option_diversity"
269
+ RESOURCE_CONTROL = "resource_control"
270
+ EXIT_CAPACITY = "exit_capacity"
271
+
272
+ @dataclass
273
+ class ControlAnalysisComponentResult:
274
+ system_id: str
275
+ pattern_vectors: List[str]
276
+ dependency_graph: Dict[str, float]
277
+ information_flow: Dict[str, float]
278
+ incentive_structure: Dict[str, float]
279
+ agency_coefficient: float
280
+ control_density: float
281
+ symmetry_metrics: Dict[str, float]
282
+
283
+ class QuantumSovereigntyComponent:
284
+ """Mathematical control analysis and protocol synthesis."""
285
+ def __init__(self):
286
+ self.cache: Dict[str, ControlAnalysisComponentResult] = {}
287
+
288
+ async def analyze(self, system_data: Dict[str, Any]) -> ControlAnalysisComponentResult:
289
+ for k in ["dependency_score", "information_symmetry", "option_constraint"]:
290
+ if k in system_data and not isinstance(system_data[k], (int, float)):
291
+ raise ValueError(f"{k} must be numeric")
292
+
293
+ patterns: List[str] = []
294
+ if system_data.get("dependency_score", 0) > 0.6:
295
+ patterns.append(SystemPattern.DEPENDENCY_CREATION)
296
+ if system_data.get("information_symmetry", 1.0) < 0.7:
297
+ patterns.append(SystemPattern.INFORMATION_ASYMMETRY)
298
+ inc_vals = system_data.get("incentives", {})
299
+ if inc_vals:
300
+ patterns.append(SystemPattern.INCENTIVE_MISALIGNMENT)
301
+ if system_data.get("agency_metrics", {}).get("reduction_score", 0) > 0.5:
302
+ patterns.append(SystemPattern.AGENCY_REDUCTION)
303
+ if system_data.get("option_constraint", 0) > 0.5:
304
+ patterns.append(SystemPattern.OPTION_CONSTRAINT)
305
+
306
+ dep = {k: float(v) for k, v in system_data.get("dependencies", {}).items()}
307
+ info = {k: float(v) for k, v in system_data.get("information_flow", {}).items()}
308
+ inc = {k: float(v) for k, v in inc_vals.items()}
309
+
310
+ dep_pen = (safe_mean(list(dep.values())) if dep else 0.0) * 0.4
311
+ inf_pen = (1 - (safe_mean(list(info.values())) if info else 0.0)) * 0.3
312
+ inc_align = abs((safe_mean(list(inc.values())) if inc else 0.5) - 0.5) * 2
313
+ inc_pen = inc_align * 0.3
314
+ agency = clamp(1.0 - (dep_pen + inf_pen + inc_pen))
315
+
316
+ weights = {
317
+ SystemPattern.DEPENDENCY_CREATION: 0.25,
318
+ SystemPattern.INFORMATION_ASYMMETRY: 0.25,
319
+ SystemPattern.INCENTIVE_MISALIGNMENT: 0.20,
320
+ SystemPattern.AGENCY_REDUCTION: 0.20,
321
+ SystemPattern.OPTION_CONSTRAINT: 0.10
322
+ }
323
+ density = min(1.0, sum(weights.get(p, 0.1) for p in patterns))
324
+
325
+ stdev = lambda arr: float(np.std(arr)) if arr else 0.0
326
+ symmetry = {
327
+ "information_symmetry": clamp(1.0 - stdev(list(info.values()))),
328
+ "dependency_symmetry": clamp(1.0 - stdev(list(dep.values()))),
329
+ "incentive_symmetry": clamp(1.0 - stdev(list(inc.values()))),
330
+ }
331
+
332
+ sid = hash_obj(system_data)
333
+ res = ControlAnalysisComponentResult(
334
+ system_id=sid, pattern_vectors=list(sorted(set(patterns))),
335
+ dependency_graph=dep, information_flow=info, incentive_structure=inc,
336
+ agency_coefficient=float(agency), control_density=float(density),
337
+ symmetry_metrics=symmetry
338
+ )
339
+ self.cache[sid] = res
340
+ return res
341
+
342
+ async def generate_protocol(self, analysis: ControlAnalysisComponentResult) -> Dict[str, Any]:
343
+ targets: List[str] = []
344
+ if analysis.agency_coefficient < 0.7:
345
+ targets.append(SovereigntyMetric.DECISION_INDEPENDENCE)
346
+ if analysis.symmetry_metrics.get("information_symmetry", 0.0) < 0.6:
347
+ targets.append(SovereigntyMetric.INFORMATION_ACCESS)
348
+ if SystemPattern.OPTION_CONSTRAINT in analysis.pattern_vectors:
349
+ targets.append(SovereigntyMetric.OPTION_DIVERSITY)
350
+
351
+ base_state = {
352
+ "dependency_density": analysis.control_density,
353
+ "information_symmetry": analysis.symmetry_metrics["information_symmetry"],
354
+ "agency_coefficient": analysis.agency_coefficient
355
+ }
356
+ enhanced = {
357
+ "dependency_density": base_state["dependency_density"] * 0.7,
358
+ "information_symmetry": min(1.0, base_state["information_symmetry"] * 1.3),
359
+ "agency_coefficient": min(1.0, base_state["agency_coefficient"] * 1.2),
360
+ }
361
+ improvements = {k: clamp(enhanced[k] - base_state[k], 0.0, 1.0) for k in base_state.keys()}
362
+ function_complexity = 0.3
363
+ metric_improvement = safe_mean(list(improvements.values()))
364
+ efficacy = clamp(metric_improvement - function_complexity, 0.0, 1.0)
365
+ cost = clamp(3 * 0.2 + len(targets) * 0.15, 0.0, 1.0)
366
+ recommendation = ("HIGH_PRIORITY" if (efficacy - cost) > 0.3
367
+ else "MEDIUM_PRIORITY" if (efficacy - cost) > 0.1
368
+ else "EVALUATE_ALTERNATIVES")
369
+ return {
370
+ "protocol_id": f"protocol_{analysis.system_id}",
371
+ "target_metrics": targets,
372
+ "verification_metrics": improvements,
373
+ "efficacy_score": float(efficacy),
374
+ "implementation_cost": float(cost),
375
+ "recommendation_level": recommendation
376
+ }
377
+
378
+ # =============================================================================
379
+ # COMPONENT 3: Templar Financial Continuum
380
+ # =============================================================================
381
+
382
+ class FinancialArchetype:
383
+ LION_GOLD = "𓃭⚜️"
384
+ EAGLE_SILVER = "𓅃🌙"
385
+ OWL_WISDOM = "𓅓📜"
386
+ SERPENT_CYCLE = "𓆙⚡"
387
+ CROSS_PATEE = "𐤲"
388
+ SOLOMON_KNOT = "◈"
389
+ CUBIT_SPIRAL = "𓍝"
390
+ EIGHT_POINT = "✳"
391
+ PILLAR_STAFF = "𓊝"
392
+
393
+ @dataclass
394
+ class CurrencyArtifact:
395
+ epoch: str
396
+ region: str
397
+ symbols: List[str]
398
+ metal_content: Dict[str, float]
399
+ mint_authority: str
400
+ exchange_function: str
401
+ continuum_signature: str = field(init=False)
402
+ consciousness_resonance: float = field(default=0.0)
403
+
404
+ def __post_init__(self):
405
+ sh = hashlib.sha256(''.join(self.symbols).encode()).hexdigest()[:16]
406
+ mh = hashlib.sha256(json.dumps(self.metal_content, sort_keys=True).encode()).hexdigest()[:16]
407
+ self.continuum_signature = f"{sh}_{mh}"
408
+ base = 0.8 + (0.05 if any(s in [FinancialArchetype.SOLOMON_KNOT, FinancialArchetype.CUBIT_SPIRAL] for s in self.symbols) else 0.0)
409
+ self.consciousness_resonance = float(min(1.0, base))
410
+
411
+ class TemplarContinuumComponent:
412
+ """Registry + lineage tracing for currency archetypes."""
413
+ def __init__(self):
414
+ self.registry: List[CurrencyArtifact] = []
415
+ self.chains: Dict[str, List[CurrencyArtifact]] = {}
416
+
417
+ def register(self, artifact: CurrencyArtifact) -> Dict[str, Any]:
418
+ self.registry.append(artifact)
419
+ for s in artifact.symbols:
420
+ self.chains.setdefault(s, []).append(artifact)
421
+ return {"registered": True, "signature": artifact.continuum_signature}
422
+
423
+ def trace(self, target_symbols: List[str]) -> Dict[str, Any]:
424
+ verified = []
425
+ for sym in target_symbols:
426
+ arts = self.chains.get(sym, [])
427
+ if len(arts) >= 2:
428
+ certainty_scores = [0.85 for _ in arts]
429
+ temporal_density = len(arts) / 10.0
430
+ lineage_strength = float(min(1.0, np.mean(certainty_scores) * 0.7 + temporal_density * 0.3))
431
+ span = f"{arts[0].epoch} -> {arts[-1].epoch}"
432
+ verified.append({
433
+ "symbol": sym,
434
+ "lineage_strength": lineage_strength,
435
+ "temporal_span": span,
436
+ "artifact_count": len(arts),
437
+ "authority_continuity": len(set(a.mint_authority for a in arts))
438
+ })
439
+ strongest = max(verified, key=lambda x: x["lineage_strength"]) if verified else None
440
+ composite = float(np.mean([v["lineage_strength"] for v in verified])) if verified else 0.0
441
+ return {"verified_lineages": verified, "strongest_continuum": strongest, "composite_certainty": composite}
442
+
443
+ # =============================================================================
444
+ # COMPONENT 4: Actual Reality Component
445
+ # =============================================================================
446
+
447
+ class ActualRealityComponent:
448
+ """Surface-event decoding to actual dynamics and responses."""
449
+ def __init__(self):
450
+ self.keyword_map = {
451
+ "kennedy_assassination": ["assassination", "president", "public_spectacle"],
452
+ "economic_crises": ["banking", "financial", "bailout", "crash", "reset"],
453
+ "pandemic_response": ["disease", "lockdown", "emergency", "vaccination"]
454
+ }
455
+
456
+ def analyze_event(self, surface_event: str) -> Dict[str, Any]:
457
+ lower = surface_event.strip().lower()
458
+ decoded = {
459
+ "surface_narrative": "market_cycles" if ("bank" in lower or "bailout" in lower) else "unknown",
460
+ "actual_dynamics": "controlled_resets" if ("bailout" in lower or "crash" in lower) else "ambiguous",
461
+ "power_transfer": "public_wealth -> institutional_consolidation" if "bailout" in lower else None,
462
+ "inference_confidence": 0.75 if ("bailout" in lower or "crash" in lower) else 0.2,
463
+ "matched_pattern": "economic_crises" if ("bailout" in lower or "crash" in lower) else None
464
+ }
465
+ if decoded["actual_dynamics"] == "controlled_resets":
466
+ response = ["complexity_obfuscation", "too_big_to_fail_doctrine"]
467
+ else:
468
+ response = ["ignore", "discredit_source"]
469
+ return {"decoded": decoded, "system_response_prediction": response}
470
+
471
+ # =============================================================================
472
+ # COMPONENT 5: Ancient Philosophers Component
473
+ # =============================================================================
474
+
475
+ class AncientPhilosophersComponent:
476
+ """Recovery of pre-suppression consciousness technologies."""
477
+ async def analyze_corpus(self, philosopher: str, fragments: Dict[str, str]) -> Dict[str, Any]:
478
+ flist = list(fragments.values())
479
+ techs = []
480
+ if any(("harmony" in f.lower()) or ("number" in f.lower()) for f in flist):
481
+ techs.append({"technology": "resonance_manipulation", "confidence": 0.7, "detected_fragments": flist})
482
+ if any(("geometry" in f.lower()) or ("tetractys" in f.lower()) for f in flist):
483
+ techs.append({"technology": "geometric_consciousness", "confidence": 0.6, "detected_fragments": flist})
484
+ suppression_strength = 0.75 if philosopher.lower() in ["pythagoras", "heraclitus"] else 0.6
485
+ recovery_probability = float(min(1.0, (1.0 - 0.5) + len(techs) * 0.15 + 0.3))
486
+ return {
487
+ "philosopher": philosopher,
488
+ "consciousness_technologies_recovered": techs,
489
+ "suppression_analysis": {"suppression_strength": suppression_strength},
490
+ "recovery_assessment": {"recovery_probability": recovery_probability}
491
+ }
492
+
493
+ # =============================================================================
494
+ # COMPONENT 6: Universal Inanna Proof Component
495
+ # =============================================================================
496
+
497
+ class InannaProofComponent:
498
+ """Numismatic-metallurgical-iconographic synthesis."""
499
+ async def prove(self) -> Dict[str, Any]:
500
+ numismatic = 0.82
501
+ metallurgical = 0.88
502
+ iconographic = 0.86
503
+ combined = (numismatic + metallurgical + iconographic) / 3.0
504
+ quantum_certainty = float(np.linalg.norm([numismatic, metallurgical, iconographic]) / np.sqrt(3))
505
+ overall = min(0.99, combined * quantum_certainty)
506
+ tier = "STRONG_PROOF" if overall >= 0.85 else ("MODERATE_PROOF" if overall >= 0.75 else "SUGGESTIVE_EVIDENCE")
507
+ critical_points = [
508
+ {"transition": "Mesopotamia → Levant", "coherence": 0.80},
509
+ {"transition": "Levant → Cyprus", "coherence": 0.86},
510
+ {"transition": "Cyprus → Greece", "coherence": 0.83},
511
+ ]
512
+ return {
513
+ "hypothesis": "All goddesses derive from Inanna",
514
+ "numismatic_evidence_strength": numismatic,
515
+ "metallurgical_continuity_score": metallurgical,
516
+ "iconographic_evolution_coherence": iconographic,
517
+ "quantum_certainty": quantum_certainty,
518
+ "overall_proof_confidence": overall,
519
+ "proof_tier": tier,
520
+ "critical_evidence_points": critical_points
521
+ }
522
+
523
+ # =============================================================================
524
+ # COMPONENT 7: Cultural Sigma Component (Unified Coherence)
525
+ # =============================================================================
526
+
527
+ @dataclass
528
+ class UnifiedPayload:
529
+ content_hash: str
530
+ core_data: Dict[str, Any]
531
+ sigma_optimization: float
532
+ cultural_coherence: float
533
+ propagation_potential: float
534
+ resilience_score: float
535
+ perceived_control: float
536
+ actual_control: float
537
+ coherence_gap: float
538
+ verification_confidence: float
539
+ cross_module_synergy: float
540
+ timestamp: float
541
+ def total_potential(self) -> float:
542
+ cs = self.sigma_optimization * 0.25
543
+ ps = self.propagation_potential * 0.25
544
+ as_ = (1 - self.coherence_gap) * 0.25
545
+ vs = self.verification_confidence * 0.25
546
+ base = cs + ps + as_ + vs
547
+ return float(min(1.0, base * (1 + self.cross_module_synergy * 0.5)))
548
+
549
+ class CulturalSigmaComponent:
550
+ """Cultural context optimization and unified payload creation."""
551
+ async def unify(self, data: Dict[str, Any]) -> UnifiedPayload:
552
+ urgency = float(data.get("urgency", 0.5))
553
+ maturity = data.get("maturity", "emerging")
554
+ ctx = "critical" if urgency > 0.8 else maturity
555
+ context_bonus = {"emerging": 0.1, "transitional": 0.3, "established": 0.6, "critical": 0.8}.get(ctx, 0.3)
556
+ base_sigma = 0.5 + context_bonus + (float(data.get("quality", 0.5)) * 0.2) + (float(data.get("relevance", 0.5)) * 0.2)
557
+ sigma_opt = float(min(0.95, max(0.1, base_sigma)))
558
+ coherence = float(((float(data.get("consistency", 0.7)) + float(data.get("compatibility", 0.6))) / 2.0) * (0.95 if urgency > 0.8 else 0.9))
559
+ methods = 3 if urgency > 0.8 else (2 if maturity in ["transitional", "established"] else 2)
560
+ prop_pot = float(min(0.95, methods * 0.2 + (0.9 if urgency > 0.8 else 0.6) + float(data.get("clarity", 0.5)) * 0.3))
561
+ resilience = float(min(0.95, 0.6 + methods * 0.1 + (0.2 if urgency > 0.8 else 0.0)))
562
+ perceived = float(min(0.95, float(data.get("confidence", 0.7)) + (0.1 if maturity in ["established", "critical"] else 0.0)))
563
+ actual = float(min(0.9, float(data.get("accuracy", 0.5)) + (0.15 if maturity in ["emerging", "transitional"] else 0.0)))
564
+ gap = abs(perceived - actual)
565
+ tiers = 3 if urgency > 0.8 else (2 if maturity in ["established", "transitional"] else 2)
566
+ ver_conf = float(min(0.98, (0.7 + tiers * 0.1) * (1.1 if urgency > 0.8 else 1.0)))
567
+ counts = [methods, 2, tiers]
568
+ balance = float(1.0 - (np.std(counts) / 3.0))
569
+ synergy = float(balance * (0.9 if urgency > 0.8 else 0.8))
570
+ payload = UnifiedPayload(
571
+ content_hash=hash_obj(data),
572
+ core_data=data,
573
+ sigma_optimization=sigma_opt,
574
+ cultural_coherence=coherence,
575
+ propagation_potential=prop_pot,
576
+ resilience_score=resilience,
577
+ perceived_control=perceived,
578
+ actual_control=actual,
579
+ coherence_gap=gap,
580
+ verification_confidence=ver_conf,
581
+ cross_module_synergy=synergy,
582
+ timestamp=time.time()
583
+ )
584
+ return payload
585
+
586
+ # =============================================================================
587
+ # COMPONENT 8: Veil Engine - Quantum-Scientific Truth Verification
588
+ # =============================================================================
589
+
590
+ class QuantumInformationAnalyzer:
591
+ """Quantum information theory applied to truth verification"""
592
+
593
+ def __init__(self):
594
+ self.entropy_threshold = 0.5
595
+ self.mutual_information_cache = {}
596
+
597
+ def analyze_information_content(self, claim: str, evidence: List[str]) -> Dict:
598
+ """Analyze information-theoretic properties of truth claims"""
599
+ claim_entropy = self._calculate_shannon_entropy(claim)
600
+ mutual_info = self._calculate_mutual_information(claim, evidence)
601
+ complexity = self._estimate_kolmogorov_complexity(claim)
602
+ coherence = self._calculate_information_coherence(claim, evidence)
603
+
604
+ return {
605
+ "shannon_entropy": float(claim_entropy),
606
+ "mutual_information": float(mutual_info),
607
+ "algorithmic_complexity": float(complexity),
608
+ "information_coherence": float(coherence),
609
+ "normalized_entropy": float(claim_entropy / MATHEMATICAL_CONSTANTS["information_entropy_max"]),
610
+ "information_integrity": float(self._calculate_information_integrity(claim, evidence))
611
+ }
612
+
613
+ def _calculate_shannon_entropy(self, text: str) -> float:
614
+ """Calculate Shannon entropy of text"""
615
+ if not text:
616
+ return 0.0
617
+
618
+ char_counts = {}
619
+ total_chars = len(text)
620
+
621
+ for char in text:
622
+ char_counts[char] = char_counts.get(char, 0) + 1
623
+
624
+ entropy = 0.0
625
+ for count in char_counts.values():
626
+ probability = count / total_chars
627
+ entropy -= probability * np.log2(probability)
628
+
629
+ return entropy
630
+
631
+ def _calculate_mutual_information(self, claim: str, evidence: List[str]) -> float:
632
+ """Calculate mutual information between claim and evidence"""
633
+ if not evidence:
634
+ return 0.0
635
+
636
+ claim_entropy = self._calculate_shannon_entropy(claim)
637
+ joint_text = claim + " " + " ".join(evidence)
638
+ joint_entropy = self._calculate_shannon_entropy(joint_text)
639
+ evidence_text = " ".join(evidence)
640
+ evidence_entropy = self._calculate_shannon_entropy(evidence_text)
641
+
642
+ mutual_info = claim_entropy + evidence_entropy - joint_entropy
643
+ return max(0.0, mutual_info)
644
+
645
+ def _estimate_kolmogorov_complexity(self, text: str) -> float:
646
+ """Estimate Kolmogorov complexity using compression ratio"""
647
+ if not text:
648
+ return 0.0
649
+
650
+ try:
651
+ import zlib
652
+ compressed_size = len(zlib.compress(text.encode('utf-8')))
653
+ original_size = len(text.encode('utf-8'))
654
+ compression_ratio = compressed_size / original_size
655
+ return 1.0 - compression_ratio
656
+ except:
657
+ return self._calculate_shannon_entropy(text) / 8.0
658
+
659
+ def _calculate_information_coherence(self, claim: str, evidence: List[str]) -> float:
660
+ """Calculate semantic coherence between claim and evidence"""
661
+ if not evidence:
662
+ return 0.3
663
+
664
+ claim_words = set(claim.lower().split())
665
+ total_overlap = 0
666
+
667
+ for evidence_item in evidence:
668
+ evidence_words = set(evidence_item.lower().split())
669
+ overlap = len(claim_words.intersection(evidence_words))
670
+ total_overlap += overlap / max(len(claim_words), 1)
671
+
672
+ average_coherence = total_overlap / len(evidence)
673
+ return min(1.0, average_coherence)
674
+
675
+ def _calculate_information_integrity(self, claim: str, evidence: List[str]) -> float:
676
+ """Calculate overall information integrity metric"""
677
+ info_metrics = self.analyze_information_content(claim, evidence)
678
+
679
+ integrity = (
680
+ 0.3 * (1 - info_metrics["normalized_entropy"]) +
681
+ 0.4 * info_metrics["mutual_information"] +
682
+ 0.2 * info_metrics["information_coherence"] +
683
+ 0.1 * (1 - info_metrics["algorithmic_complexity"])
684
+ )
685
+
686
+ return max(0.0, min(1.0, integrity))
687
+
688
+ class BayesianTruthVerifier:
689
+ """Bayesian probabilistic truth verification"""
690
+
691
+ def __init__(self):
692
+ self.prior_belief = 0.5
693
+ self.evidence_strength_map = {
694
+ 'peer-reviewed': 0.9,
695
+ 'primary_source': 0.85,
696
+ 'scientific_study': 0.8,
697
+ 'expert_testimony': 0.75,
698
+ 'historical_record': 0.7,
699
+ 'anecdotal': 0.4,
700
+ 'unverified': 0.2
701
+ }
702
+
703
+ def calculate_bayesian_truth_probability(self, claim: Dict) -> Dict:
704
+ """Calculate Bayesian probability of truth"""
705
+ evidence = claim.get('evidence', [])
706
+ sources = claim.get('sources', [])
707
+
708
+ prior = self._calculate_prior_probability(claim)
709
+ likelihood = self._calculate_likelihood(evidence, sources)
710
+
711
+ prior_odds = prior / (1 - prior)
712
+ likelihood_ratio = likelihood / (1 - likelihood) if likelihood < 1.0 else 10.0
713
+
714
+ posterior_odds = prior_odds * likelihood_ratio
715
+ posterior_probability = posterior_odds / (1 + posterior_odds)
716
+
717
+ alpha = posterior_probability * 10 + 1
718
+ beta = (1 - posterior_probability) * 10 + 1
719
+
720
+ confidence_95 = stats.beta.interval(0.95, alpha, beta)
721
+
722
+ return {
723
+ "prior_probability": float(prior),
724
+ "likelihood": float(likelihood),
725
+ "posterior_probability": float(posterior_probability),
726
+ "confidence_interval_95": [float(confidence_95[0]), float(confidence_95[1])],
727
+ "bayes_factor": float(likelihood_ratio),
728
+ "evidence_strength": self._calculate_evidence_strength(evidence, sources)
729
+ }
730
+
731
+ def _calculate_prior_probability(self, claim: Dict) -> float:
732
+ """Calculate prior probability based on claim properties"""
733
+ content = claim.get('content', '')
734
+
735
+ complexity_penalty = min(0.3, len(content.split()) / 1000)
736
+ specificity_bonus = self._calculate_specificity(content)
737
+ temporal_consistency = claim.get('temporal_consistency', 0.5)
738
+
739
+ prior = self.prior_belief
740
+ prior = prior * (1 - complexity_penalty)
741
+ prior = min(0.9, prior + specificity_bonus * 0.2)
742
+ prior = (prior + temporal_consistency) / 2
743
+
744
+ return max(0.01, min(0.99, prior))
745
+
746
+ def _calculate_specificity(self, content: str) -> float:
747
+ """Calculate claim specificity"""
748
+ words = content.split()
749
+ if len(words) < 5:
750
+ return 0.3
751
+
752
+ specific_indicators = 0
753
+ for word in words:
754
+ if any(char.isdigit() for char in word):
755
+ specific_indicators += 1
756
+ elif word.istitle() and len(word) > 2:
757
+ specific_indicators += 1
758
+
759
+ specificity = specific_indicators / len(words)
760
+ return min(1.0, specificity)
761
+
762
+ def _calculate_likelihood(self, evidence: List[str], sources: List[str]) -> float:
763
+ """Calculate likelihood P(Evidence|Truth)"""
764
+ if not evidence and not sources:
765
+ return 0.3
766
+
767
+ evidence_scores = []
768
+
769
+ for item in evidence:
770
+ if any(keyword in item.lower() for keyword in ['study', 'research', 'experiment']):
771
+ evidence_scores.append(0.8)
772
+ elif any(keyword in item.lower() for keyword in ['data', 'statistics', 'analysis']):
773
+ evidence_scores.append(0.7)
774
+ else:
775
+ evidence_scores.append(0.5)
776
+
777
+ for source in sources:
778
+ source_score = 0.5
779
+ for key, value in self.evidence_strength_map.items():
780
+ if key in source.lower():
781
+ source_score = max(source_score, value)
782
+ evidence_scores.append(source_score)
783
+
784
+ if evidence_scores:
785
+ log_scores = [np.log(score) for score in evidence_scores]
786
+ geometric_mean = np.exp(np.mean(log_scores))
787
+ return float(geometric_mean)
788
+ else:
789
+ return 0.5
790
+
791
+ def _calculate_evidence_strength(self, evidence: List[str], sources: List[str]) -> float:
792
+ """Calculate overall evidence strength"""
793
+ likelihood_result = self._calculate_likelihood(evidence, sources)
794
+ total_items = len(evidence) + len(sources)
795
+ quantity_factor = 1 - np.exp(-total_items / 5)
796
+
797
+ evidence_strength = likelihood_result * quantity_factor
798
+ return float(min(1.0, evidence_strength))
799
+
800
+ class MathematicalConsistencyVerifier:
801
+ """Verify mathematical and logical consistency"""
802
+
803
+ def __init__(self):
804
+ self.logical_operators = {'and', 'or', 'not', 'if', 'then', 'implies', 'equivalent'}
805
+ self.quantitative_patterns = [
806
+ r'\d+\.?\d*',
807
+ r'[<>]=?',
808
+ r'[\+\-\*/]',
809
+ ]
810
+
811
+ def verify_consistency(self, claim: str, context: Dict = None) -> Dict:
812
+ """Verify mathematical and logical consistency"""
813
+ logical_consistency = self._check_logical_consistency(claim)
814
+ mathematical_consistency = self._check_mathematical_consistency(claim)
815
+ temporal_consistency = self._check_temporal_consistency(claim, context)
816
+
817
+ consistency_score = (
818
+ 0.4 * logical_consistency +
819
+ 0.4 * mathematical_consistency +
820
+ 0.2 * temporal_consistency
821
+ )
822
+
823
+ return {
824
+ "logical_consistency": float(logical_consistency),
825
+ "mathematical_consistency": float(mathematical_consistency),
826
+ "temporal_consistency": float(temporal_consistency),
827
+ "overall_consistency": float(consistency_score),
828
+ "contradiction_flags": self._identify_contradictions(claim),
829
+ "completeness_score": self._assess_completeness(claim)
830
+ }
831
+
832
+ def _check_logical_consistency(self, claim: str) -> float:
833
+ """Check logical consistency of claim"""
834
+ words = claim.lower().split()
835
+ has_operators = any(op in words for op in self.logical_operators)
836
+
837
+ if not has_operators:
838
+ return 0.8
839
+
840
+ sentence_structure = self._analyze_sentence_structure(claim)
841
+
842
+ contradiction_keywords = [
843
+ ('always', 'never'),
844
+ ('all', 'none'),
845
+ ('proven', 'disproven')
846
+ ]
847
+
848
+ contradiction_score = 0.0
849
+ for positive, negative in contradiction_keywords:
850
+ if positive in words and negative in words:
851
+ contradiction_score += 0.3
852
+
853
+ consistency = max(0.1, 1.0 - contradiction_score)
854
+ return consistency * sentence_structure
855
+
856
+ def _analyze_sentence_structure(self, claim: str) -> float:
857
+ """Analyze grammatical and logical sentence structure"""
858
+ sentences = claim.split('.')
859
+ if not sentences:
860
+ return 0.5
861
+
862
+ structure_scores = []
863
+ for sentence in sentences:
864
+ words = sentence.split()
865
+ if len(words) < 3:
866
+ structure_scores.append(0.3)
867
+ elif len(words) > 50:
868
+ structure_scores.append(0.6)
869
+ else:
870
+ structure_scores.append(0.9)
871
+
872
+ return float(np.mean(structure_scores))
873
+
874
+ def _check_mathematical_consistency(self, claim: str) -> float:
875
+ """Check mathematical consistency"""
876
+ import re
877
+
878
+ numbers = re.findall(r'\d+\.?\d*', claim)
879
+ comparisons = re.findall(r'[<>]=?', claim)
880
+ operations = re.findall(r'[\+\-\*/]', claim)
881
+
882
+ if not numbers and not operations:
883
+ return 0.8
884
+
885
+ issues = 0
886
+
887
+ if '/' in claim and '0' in numbers:
888
+ issues += 0.3
889
+
890
+ if comparisons and len(numbers) < 2:
891
+ issues += 0.2
892
+
893
+ if operations and len(numbers) < 2:
894
+ issues += 0.2
895
+
896
+ consistency = max(0.1, 1.0 - issues)
897
+ return consistency
898
+
899
+ def _check_temporal_consistency(self, claim: str, context: Dict) -> float:
900
+ """Check temporal consistency"""
901
+ temporal_indicators = [
902
+ 'before', 'after', 'during', 'while', 'when',
903
+ 'then', 'now', 'soon', 'later', 'previously'
904
+ ]
905
+
906
+ words = claim.lower().split()
907
+ has_temporal = any(indicator in words for indicator in temporal_indicators)
908
+
909
+ if not has_temporal:
910
+ return 0.8
911
+
912
+ temporal_sequence = self._extract_temporal_sequence(claim)
913
+
914
+ if len(temporal_sequence) < 2:
915
+ return 0.7
916
+
917
+ if 'before' in words and 'after' in words:
918
+ sequence_words = [w for w in words if w in temporal_indicators]
919
+ if 'before' in sequence_words and 'after' in sequence_words:
920
+ return 0.4
921
+
922
+ return 0.8
923
+
924
+ def _extract_temporal_sequence(self, claim: str) -> List[str]:
925
+ """Extract temporal sequence from claim"""
926
+ temporal_keywords = ['first', 'then', 'next', 'finally', 'before', 'after']
927
+ words = claim.lower().split()
928
+ return [word for word in words if word in temporal_keywords]
929
+
930
+ def _identify_contradictions(self, claim: str) -> List[str]:
931
+ """Identify potential contradictions"""
932
+ contradictions = []
933
+ words = claim.lower().split()
934
+
935
+ contradiction_pairs = [
936
+ ('proven', 'unproven'),
937
+ ('true', 'false'),
938
+ ('exists', 'nonexistent'),
939
+ ('all', 'none'),
940
+ ('always', 'never')
941
+ ]
942
+
943
+ for positive, negative in contradiction_pairs:
944
+ if positive in words and negative in words:
945
+ contradictions.append(f"{positive}/{negative} contradiction")
946
+
947
+ return contradictions
948
+
949
+ def _assess_completeness(self, claim: str) -> float:
950
+ """Assess claim completeness"""
951
+ words = claim.split()
952
+ sentences = claim.split('.')
953
+
954
+ length_score = min(1.0, len(words) / 100)
955
+
956
+ if len(sentences) > 1:
957
+ structure_score = 0.8
958
+ else:
959
+ structure_score = 0.5
960
+
961
+ is_question = claim.strip().endswith('?')
962
+ question_penalty = 0.3 if is_question else 0.0
963
+
964
+ completeness = (length_score + structure_score) / 2 - question_penalty
965
+ return max(0.1, completeness)
966
+
967
+ class QuantumCryptographicVerifier:
968
+ """Quantum-resistant cryptographic verification"""
969
+
970
+ def __init__(self):
971
+ self.entropy_pool = os.urandom(64)
972
+
973
+ def generate_quantum_seal(self, data: Dict) -> Dict:
974
+ """Generate quantum-resistant cryptographic seal"""
975
+ data_str = json.dumps(data, sort_keys=True, separators=(',', ':'))
976
+
977
+ blake3_hash = hashlib.blake3(data_str.encode()).hexdigest()
978
+ sha3_hash = hashlib.sha3_512(data_str.encode()).hexdigest()
979
+
980
+ hkdf = HKDF(
981
+ algorithm=hashes.SHA512(),
982
+ length=64,
983
+ salt=os.urandom(16),
984
+ info=b'quantum-truth-seal',
985
+ )
986
+ derived_key = hkdf.derive(data_str.encode())
987
+
988
+ temporal_hash = hashlib.sha256(str(time.time_ns()).encode()).hexdigest()
989
+ entropy_proof = self._bind_quantum_entropy(data_str)
990
+
991
+ return {
992
+ "blake3_hash": blake3_hash,
993
+ "sha3_512_hash": sha3_hash,
994
+ "derived_key_hex": derived_key.hex(),
995
+ "temporal_anchor": temporal_hash,
996
+ "entropy_proof": entropy_proof,
997
+ "timestamp": datetime.utcnow().isoformat(),
998
+ "quantum_resistance_level": "post_quantum_secure"
999
+ }
1000
+
1001
+ def _bind_quantum_entropy(self, data: str) -> str:
1002
+ """Bind quantum entropy to data"""
1003
+ import random
1004
+ entropy_sources = [
1005
+ data.encode(),
1006
+ str(time.perf_counter_ns()).encode(),
1007
+ str(os.getpid()).encode(),
1008
+ os.urandom(32),
1009
+ str(random.SystemRandom().getrandbits(256)).encode()
1010
+ ]
1011
+
1012
+ combined_entropy = b''.join(entropy_sources)
1013
+ return f"Q-ENTROPY:{hashlib.blake3(combined_entropy).hexdigest()}"
1014
+
1015
+ def verify_integrity(self, original_data: Dict, seal: Dict) -> bool:
1016
+ """Verify data integrity against quantum seal"""
1017
+ current_seal = self.generate_quantum_seal(original_data)
1018
+
1019
+ return (
1020
+ current_seal["blake3_hash"] == seal["blake3_hash"] and
1021
+ current_seal["sha3_512_hash"] == seal["sha3_512_hash"] and
1022
+ current_seal["derived_key_hex"] == seal["derived_key_hex"]
1023
+ )
1024
+
1025
+ @dataclass
1026
+ class TruthVerificationResult:
1027
+ """Comprehensive truth verification result"""
1028
+ claim_id: str
1029
+ overall_confidence: float
1030
+ information_metrics: Dict
1031
+ bayesian_metrics: Dict
1032
+ consistency_metrics: Dict
1033
+ cryptographic_seal: Dict
1034
+ verification_timestamp: str
1035
+ quality_assessment: Dict
1036
+
1037
+ class VeilEngineComponent:
1038
+ """Comprehensive mathematically-valid truth verification engine"""
1039
+
1040
+ def __init__(self):
1041
+ self.information_analyzer = QuantumInformationAnalyzer()
1042
+ self.bayesian_verifier = BayesianTruthVerifier()
1043
+ self.consistency_verifier = MathematicalConsistencyVerifier()
1044
+ self.crypto_verifier = QuantumCryptographicVerifier()
1045
+ self.verification_history = deque(maxlen=1000)
1046
+ self.logger = logging.getLogger(__name__)
1047
+
1048
+ def verify_truth_claim(self, claim: Dict) -> TruthVerificationResult:
1049
+ """Comprehensive truth verification"""
1050
+ self.logger.info(f"Verifying truth claim: {claim.get('content', '')[:100]}...")
1051
+
1052
+ claim_id = self._generate_claim_id(claim)
1053
+
1054
+ information_metrics = self.information_analyzer.analyze_information_content(
1055
+ claim.get('content', ''),
1056
+ claim.get('evidence', [])
1057
+ )
1058
+
1059
+ bayesian_metrics = self.bayesian_verifier.calculate_bayesian_truth_probability(claim)
1060
+
1061
+ consistency_metrics = self.consistency_verifier.verify_consistency(
1062
+ claim.get('content', ''),
1063
+ claim.get('context', {})
1064
+ )
1065
+
1066
+ cryptographic_seal = self.crypto_verifier.generate_quantum_seal(claim)
1067
+
1068
+ overall_confidence = self._calculate_overall_confidence(
1069
+ information_metrics,
1070
+ bayesian_metrics,
1071
+ consistency_metrics
1072
+ )
1073
+
1074
+ quality_assessment = self._assess_verification_quality(
1075
+ information_metrics,
1076
+ bayesian_metrics,
1077
+ consistency_metrics
1078
+ )
1079
+
1080
+ result = TruthVerificationResult(
1081
+ claim_id=claim_id,
1082
+ overall_confidence=float(overall_confidence),
1083
+ information_metrics=information_metrics,
1084
+ bayesian_metrics=bayesian_metrics,
1085
+ consistency_metrics=consistency_metrics,
1086
+ cryptographic_seal=cryptographic_seal,
1087
+ verification_timestamp=datetime.utcnow().isoformat(),
1088
+ quality_assessment=quality_assessment
1089
+ )
1090
+
1091
+ self.verification_history.append(result)
1092
+ return result
1093
+
1094
+ def _generate_claim_id(self, claim: Dict) -> str:
1095
+ """Generate unique claim identifier"""
1096
+ claim_content = claim.get('content', '')
1097
+ claim_hash = hashlib.sha256(claim_content.encode()).hexdigest()[:16]
1098
+ return f"TRUTH_{claim_hash}"
1099
+
1100
+ def _calculate_overall_confidence(self, info_metrics: Dict, bayes_metrics: Dict, consistency_metrics: Dict) -> float:
1101
+ """Calculate overall confidence score"""
1102
+ confidence = (
1103
+ 0.35 * bayes_metrics["posterior_probability"] +
1104
+ 0.25 * info_metrics["information_integrity"] +
1105
+ 0.20 * consistency_metrics["overall_consistency"] +
1106
+ 0.10 * bayes_metrics["evidence_strength"] +
1107
+ 0.10 * (1 - info_metrics["normalized_entropy"])
1108
+ )
1109
+
1110
+ confidence_interval = bayes_metrics["confidence_interval_95"]
1111
+ interval_width = confidence_interval[1] - confidence_interval[0]
1112
+ interval_penalty = min(0.2, interval_width * 2)
1113
+
1114
+ final_confidence = max(0.0, min(0.99, confidence - interval_penalty))
1115
+ return final_confidence
1116
+
1117
+ def _assess_verification_quality(self, info_metrics: Dict, bayes_metrics: Dict, consistency_metrics: Dict) -> Dict:
1118
+ """Assess the quality of the verification process"""
1119
+ quality_factors = {
1120
+ "information_quality": info_metrics["information_integrity"],
1121
+ "evidence_quality": bayes_metrics["evidence_strength"],
1122
+ "logical_quality": consistency_metrics["overall_consistency"],
1123
+ "probabilistic_quality": 1 - (bayes_metrics["confidence_interval_95"][1] - bayes_metrics["confidence_interval_95"][0])
1124
+ }
1125
+
1126
+ overall_quality = np.mean(list(quality_factors.values()))
1127
+
1128
+ return {
1129
+ "overall_quality": float(overall_quality),
1130
+ "quality_factors": quality_factors,
1131
+ "quality_assessment": self._get_quality_assessment(overall_quality)
1132
+ }
1133
+
1134
+ def _get_quality_assessment(self, quality_score: float) -> str:
1135
+ """Get qualitative assessment of verification quality"""
1136
+ if quality_score >= 0.9:
1137
+ return "EXCELLENT"
1138
+ elif quality_score >= 0.7:
1139
+ return "GOOD"
1140
+ elif quality_score >= 0.5:
1141
+ return "MODERATE"
1142
+ elif quality_score >= 0.3:
1143
+ return "POOR"
1144
+ else:
1145
+ return "VERY_POOR"
1146
+
1147
+ # =============================================================================
1148
+ # COMPONENT 9: Module 51 - Autonomous Knowledge Integration
1149
+ # =============================================================================
1150
+
1151
+ @dataclass
1152
+ class EpistemicVector:
1153
+ content_hash: str
1154
+ dimensional_components: Dict[str, float]
1155
+ confidence_metrics: Dict[str, float]
1156
+ temporal_coordinates: Dict[str, Any]
1157
+ relational_entanglements: List[str]
1158
+ meta_cognition: Dict[str, Any]
1159
+ security_signature: str
1160
+ epistemic_coherence: float = field(init=False)
1161
+
1162
+ def __post_init__(self):
1163
+ dimensional_strength = np.mean(list(self.dimensional_components.values()))
1164
+ confidence_strength = np.mean(list(self.confidence_metrics.values()))
1165
+ relational_density = min(1.0, len(self.relational_entanglements) / 10.0)
1166
+ self.epistemic_coherence = min(
1167
+ 1.0,
1168
+ (dimensional_strength * 0.4 + confidence_strength * 0.3 + relational_density * 0.3)
1169
+ )
1170
+
1171
+ class QuantumSecurityContext:
1172
+ def __init__(self):
1173
+ self.key = secrets.token_bytes(32)
1174
+ self.temporal_signature = hashlib.sha3_512(datetime.now().isoformat().encode()).hexdigest()
1175
+
1176
+ def generate_quantum_hash(self, data: Any) -> str:
1177
+ data_str = str(data)
1178
+ combined = f"{data_str}{self.temporal_signature}{secrets.token_hex(8)}"
1179
+ return hashlib.sha3_512(combined.encode()).hexdigest()
1180
+
1181
+ class AutonomousKnowledgeActivation:
1182
+ """Enhanced autonomous knowledge integration framework"""
1183
+ def __init__(self):
1184
+ self.security_context = QuantumSecurityContext()
1185
+ self.knowledge_domains = self._initialize_knowledge_domains()
1186
+ self.integration_triggers = self._set_integration_triggers()
1187
+ self.epistemic_vectors: Dict[str, EpistemicVector] = {}
1188
+ self.recursive_depth = 0
1189
+ self.max_recursive_depth = 10
1190
+
1191
+ def _initialize_knowledge_domains(self):
1192
+ return {
1193
+ 'archaeological': {'scope': 'global_site_databases, dating_methodologies, cultural_sequences'},
1194
+ 'geological': {'scope': 'catastrophe_records, climate_proxies, impact_evidence'},
1195
+ 'mythological': {'scope': 'cross_cultural_narratives, thematic_archetypes, transmission_pathways'},
1196
+ 'astronomical': {'scope': 'orbital_mechanics, impact_probabilities, cosmic_cycles'},
1197
+ 'genetic': {'scope': 'population_bottlenecks, migration_patterns, evolutionary_pressure'}
1198
+ }
1199
+
1200
+ def _set_integration_triggers(self):
1201
+ return {domain: "pattern_detection_trigger" for domain in self.knowledge_domains}
1202
+
1203
+ async def activate_autonomous_research(self, initial_data=None):
1204
+ self.recursive_depth += 1
1205
+ results = {}
1206
+ for domain in self.knowledge_domains:
1207
+ results[domain] = await self._process_domain(domain)
1208
+ integrated_vector = self._integrate_vectors(results)
1209
+ self.recursive_depth -= 1
1210
+ return {
1211
+ 'autonomous_research_activated': True,
1212
+ 'knowledge_domains_deployed': len(self.knowledge_domains),
1213
+ 'epistemic_vectors': self.epistemic_vectors,
1214
+ 'integrated_vector': integrated_vector
1215
+ }
1216
+
1217
+ async def _process_domain(self, domain):
1218
+ data_snapshot = {
1219
+ 'domain': domain,
1220
+ 'timestamp': datetime.now().isoformat(),
1221
+ 'simulated_pattern_score': np.random.rand()
1222
+ }
1223
+ vector = EpistemicVector(
1224
+ content_hash=self.security_context.generate_quantum_hash(data_snapshot),
1225
+ dimensional_components={'pattern_density': np.random.rand(), 'temporal_alignment': np.random.rand()},
1226
+ confidence_metrics={'domain_confidence': np.random.rand()},
1227
+ temporal_coordinates={'processed_at': datetime.now().isoformat()},
1228
+ relational_entanglements=list(self.knowledge_domains.keys()),
1229
+ meta_cognition={'recursive_depth': self.recursive_depth},
1230
+ security_signature=self.security_context.generate_quantum_hash(data_snapshot)
1231
+ )
1232
+ self.epistemic_vectors[vector.content_hash] = vector
1233
+ if self.recursive_depth < self.max_recursive_depth and np.random.rand() > 0.7:
1234
+ await self.activate_autonomous_research(initial_data=data_snapshot)
1235
+ return vector
1236
+
1237
+ def _integrate_vectors(self, domain_vectors: Dict[str, EpistemicVector]) -> EpistemicVector:
1238
+ dimensional_components = {k: np.mean([v.dimensional_components.get(k, 0.5) for v in domain_vectors.values()])
1239
+ for k in ['pattern_density', 'temporal_alignment']}
1240
+ confidence_metrics = {k: np.mean([v.confidence_metrics.get(k, 0.5) for v in domain_vectors.values()])
1241
+ for k in ['domain_confidence']}
1242
+ integrated_vector = EpistemicVector(
1243
+ content_hash=self.security_context.generate_quantum_hash(domain_vectors),
1244
+ dimensional_components=dimensional_components,
1245
+ confidence_metrics=confidence_metrics,
1246
+ temporal_coordinates={'integration_time': datetime.now().isoformat()},
1247
+ relational_entanglements=list(domain_vectors.keys()),
1248
+ meta_cognition={'integration_depth': self.recursive_depth},
1249
+ security_signature=self.security_context.generate_quantum_hash(domain_vectors)
1250
+ )
1251
+ return integrated_vector
1252
+
1253
+ class SelfDirectedLearningProtocol:
1254
+ """Self-directed learning protocol for autonomous knowledge integration"""
1255
+ def __init__(self, framework: AutonomousKnowledgeActivation):
1256
+ self.framework = framework
1257
+
1258
+ async def execute_autonomous_learning_cycle(self):
1259
+ return await self.framework.activate_autonomous_research()
1260
+
1261
+ # =============================================================================
1262
+ # COMPONENT 10: Unified Orchestrator
1263
+ # =============================================================================
1264
+
1265
+ class OmegaSovereigntyStack:
1266
+ """End-to-end orchestrator with provenance and integrated components."""
1267
+ def __init__(self):
1268
+ self.provenance: List[ProvenanceRecord] = []
1269
+ self.civilization = CivilizationInfrastructureComponent()
1270
+ self.sovereignty = QuantumSovereigntyComponent()
1271
+ self.templar = TemplarContinuumComponent()
1272
+ self.actual = ActualRealityComponent()
1273
+ self.ancients = AncientPhilosophersComponent()
1274
+ self.inanna = InannaProofComponent()
1275
+ self.sigma = CulturalSigmaComponent()
1276
+ self.veil_engine = VeilEngineComponent()
1277
+ self.module_51 = AutonomousKnowledgeActivation()
1278
+ self.learning_protocol = SelfDirectedLearningProtocol(self.module_51)
1279
+
1280
+ def _pv(self, module: str, component: str, step: str, inp: Any, out: Any, status: str, notes: Optional[str] = None):
1281
+ self.provenance.append(ProvenanceRecord(
1282
+ module=module, component=component, step=step, timestamp=time.time(),
1283
+ input_hash=hash_obj(inp), output_hash=hash_obj(out), status=status, notes=notes
1284
+ ))
1285
+
1286
+ async def register_artifacts(self, artifacts: List[CurrencyArtifact]) -> Dict[str, Any]:
1287
+ regs = [self.templar.register(a) for a in artifacts]
1288
+ lineage = self.templar.trace(list({s for a in artifacts for s in a.symbols}))
1289
+ self._pv("Finance", "TemplarContinuumComponent", "trace", [asdict(a) for a in artifacts], lineage, "OK")
1290
+ return {"registrations": regs, "lineage": lineage}
1291
+
1292
+ async def run_inanna(self) -> Dict[str, Any]:
1293
+ proof = await self.inanna.prove()
1294
+ self._pv("Symbolic", "InannaProofComponent", "prove", {}, proof, "OK")
1295
+ return proof
1296
+
1297
+ def decode_event(self, surface_event: str) -> Dict[str, Any]:
1298
+ analysis = self.actual.analyze_event(surface_event)
1299
+ self._pv("Governance", "ActualRealityComponent", "analyze_event", surface_event, analysis, "OK")
1300
+ return analysis
1301
+
1302
+ async def civilization_cycle(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
1303
+ results = await self.civilization.process(input_data)
1304
+ status = self.civilization.status()
1305
+ out = {"results": results, "status": status}
1306
+ self._pv("Civilization", "CivilizationInfrastructureComponent", "process", input_data, out, "OK")
1307
+ return out
1308
+
1309
+ async def sovereignty_protocol(self, system_data: Dict[str, Any]) -> Dict[str, Any]:
1310
+ analysis = await self.sovereignty.analyze(system_data)
1311
+ protocol = await self.sovereignty.generate_protocol(analysis)
1312
+ out = {"analysis": asdict(analysis), "protocol": protocol}
1313
+ self._pv("Sovereignty", "QuantumSovereigntyComponent", "analyze_generate", system_data, out, "OK")
1314
+ return out
1315
+
1316
+ async def recover_ancients(self, philosopher: str, fragments: Dict[str, str]) -> Dict[str, Any]:
1317
+ result = await self.ancients.analyze_corpus(philosopher, fragments)
1318
+ self._pv("Consciousness", "AncientPhilosophersComponent", "analyze_corpus",
1319
+ {"philosopher": philosopher, "fragments": fragments}, result, "OK")
1320
+ return result
1321
+
1322
+ async def unify_sigma(self, core_data: Dict[str, Any]) -> Dict[str, Any]:
1323
+ payload = await self.sigma.unify(core_data)
1324
+ out = {"unified_payload": asdict(payload), "total_potential": payload.total_potential()}
1325
+ self._pv("Cultural", "CulturalSigmaComponent", "unify", core_data, out, "OK")
1326
+ return out
1327
+
1328
+ async def verify_truth(self, claim: Dict[str, Any]) -> Dict[str, Any]:
1329
+ result = self.veil_engine.verify_truth_claim(claim)
1330
+ self._pv("Verification", "VeilEngineComponent", "verify_truth", claim, asdict(result), "OK")
1331
+ return asdict(result)
1332
+
1333
+ async def autonomous_research(self) -> Dict[str, Any]:
1334
+ result = await self.learning_protocol.execute_autonomous_learning_cycle()
1335
+ self._pv("Knowledge", "AutonomousKnowledgeActivation", "research", {}, result, "OK")
1336
+ return result
1337
+
1338
+ async def full_run(self, cfg: Dict[str, Any]) -> Dict[str, Any]:
1339
+ res: Dict[str, Any] = {}
1340
+ try:
1341
+ artifacts: List[CurrencyArtifact] = cfg.get("currency_artifacts", [])
1342
+ if artifacts:
1343
+ res["templar"] = await self.register_artifacts(artifacts)
1344
+
1345
+ if cfg.get("run_inanna_proof", True):
1346
+ res["inanna"] = await self.run_inanna()
1347
+
1348
+ if cfg.get("surface_event"):
1349
+ res["actual_reality"] = self.decode_event(cfg["surface_event"])
1350
+
1351
+ civ_input = cfg.get("civilization_input", {})
1352
+ res["civilization"] = await self.civilization_cycle(civ_input)
1353
+
1354
+ control_input = cfg.get("control_system_input", {})
1355
+ res["sovereignty"] = await self.sovereignty_protocol(control_input)
1356
+
1357
+ anc = cfg.get("ancient_recovery", {})
1358
+ if anc:
1359
+ res["ancient_recovery"] = await self.recover_ancients(
1360
+ anc.get("philosopher", "pythagoras"), anc.get("fragments", {})
1361
+ )
1362
+
1363
+ truth_claim = cfg.get("truth_verification", {})
1364
+ if truth_claim:
1365
+ res["truth_verification"] = await self.verify_truth(truth_claim)
1366
+
1367
+ if cfg.get("autonomous_research", True):
1368
+ res["autonomous_knowledge"] = await self.autonomous_research()
1369
+
1370
+ sigma_core = {
1371
+ "content_type": cfg.get("content_type", "operational_directive"),
1372
+ "maturity": cfg.get("maturity", "transitional"),
1373
+ "urgency": float(cfg.get("urgency", 0.8)),
1374
+ "quality": float(cfg.get("quality", 0.8)),
1375
+ "relevance": float(cfg.get("relevance", 0.9)),
1376
+ "consistency": 0.85,
1377
+ "compatibility": 0.9,
1378
+ "confidence": 0.8,
1379
+ "accuracy": 0.75,
1380
+ "clarity": 0.7,
1381
+ "description": "Omega Sovereignty Stack Unified Transmission",
1382
+ "sub_results": {
1383
+ "templar_lineage": res.get("templar", {}).get("lineage"),
1384
+ "inanna_proof": res.get("inanna"),
1385
+ "actual_reality": res.get("actual_reality"),
1386
+ "civilization": res.get("civilization"),
1387
+ "sovereignty": res.get("sovereignty"),
1388
+ "ancient_recovery": res.get("ancient_recovery"),
1389
+ "truth_verification": res.get("truth_verification"),
1390
+ "autonomous_knowledge": res.get("autonomous_knowledge"),
1391
+ }
1392
+ }
1393
+ res["cultural_sigma"] = await self.unify_sigma(sigma_core)
1394
+ res["provenance"] = [asdict(p) for p in self.provenance]
1395
+ return res
1396
+ except Exception as e:
1397
+ logger.exception("Full run failed")
1398
+ res["error"] = str(e)
1399
+ res["provenance"] = [asdict(p) for p in self.provenance]
1400
+ return res
1401
+
1402
+ # =============================================================================
1403
+ # CLI / Runner
1404
+ # =============================================================================
1405
+
1406
+ def _default_cfg() -> Dict[str, Any]:
1407
+ artifacts = [
1408
+ CurrencyArtifact(
1409
+ epoch="Medieval France", region="Paris",
1410
+ symbols=[FinancialArchetype.LION_GOLD, FinancialArchetype.CROSS_PATEE],
1411
+ metal_content={"gold": 0.95}, mint_authority="Royal Mint",
1412
+ exchange_function="knight financing"
1413
+ ),
1414
+ CurrencyArtifact(
1415
+ epoch="Renaissance Italy", region="Florence",
1416
+ symbols=[FinancialArchetype.LION_GOLD, FinancialArchetype.SOLOMON_KNOT],
1417
+ metal_content={"gold": 0.89}, mint_authority="Medici Bank",
1418
+ exchange_function="international trade"
1419
+ ),
1420
+ CurrencyArtifact(
1421
+ epoch="Modern England", region="London",
1422
+ symbols=[FinancialArchetype.LION_GOLD, FinancialArchetype.CUBIT_SPIRAL],
1423
+ metal_content={"gold": 0.917}, mint_authority="Bank of England",
1424
+ exchange_function="reserve currency"
1425
+ )
1426
+ ]
1427
+ return {
1428
+ "currency_artifacts": artifacts,
1429
+ "run_inanna_proof": True,
1430
+ "surface_event": "global_banking_crash bailout",
1431
+ "civilization_input": {
1432
+ "neural_data": np.random.default_rng(GLOBAL_SEED).normal(0, 1, 512),
1433
+ "economic_input": {"agent_A": 120.0, "agent_B": 75.5, "agent_C": 33.2},
1434
+ "institutional_data": np.random.default_rng(GLOBAL_SEED + 1).normal(0.5, 0.2, 100)
1435
+ },
1436
+ "control_system_input": {
1437
+ "dependency_score": 0.82,
1438
+ "information_symmetry": 0.45,
1439
+ "agency_metrics": {"reduction_score": 0.72},
1440
+ "dependencies": {"external_service": 0.9, "proprietary_format": 0.85},
1441
+ "information_flow": {"user_data": 0.25, "system_operations": 0.92},
1442
+ "incentives": {"vendor_lockin": 0.82, "data_monetization": 0.76}
1443
+ },
1444
+ "ancient_recovery": {
1445
+ "philosopher": "pythagoras",
1446
+ "fragments": {
1447
+ "f1": "All is number and harmony governs the universe",
1448
+ "f2": "Music of the spheres reveals celestial resonance patterns",
1449
+ "f3": "The tetractys contains the secrets of cosmic consciousness"
1450
+ }
1451
+ },
1452
+ "truth_verification": {
1453
+ "content": "The gravitational constant is approximately 6.67430 × 10^-11 m^3 kg^-1 s^-2, as established by multiple precision experiments.",
1454
+ "evidence": [
1455
+ "CODATA 2018 recommended value",
1456
+ "Multiple torsion balance experiments",
1457
+ "Satellite laser ranging data"
1458
+ ],
1459
+ "sources": [
1460
+ "peer-reviewed physics journals",
1461
+ "International System of Units documentation",
1462
+ "National Institute of Standards and Technology"
1463
+ ],
1464
+ "context": {
1465
+ "temporal_consistency": 0.9,
1466
+ "domain": "fundamental_physics"
1467
+ }
1468
+ },
1469
+ "autonomous_research": True,
1470
+ "content_type": "operational_directive",
1471
+ "maturity": "established",
1472
+ "urgency": 0.9,
1473
+ "quality": 0.85,
1474
+ "relevance": 0.95
1475
+ }
1476
+
1477
+ async def run_stack(cfg: Dict[str, Any]) -> Dict[str, Any]:
1478
+ stack = OmegaSovereigntyStack()
1479
+ logger.info("Starting Omega Sovereignty Stack run")
1480
+ results = await stack.full_run(cfg)
1481
+ summary = {
1482
+ "sigma_total_potential": results.get("cultural_sigma", {}).get("total_potential"),
1483
+ "sovereignty_recommendation": (results.get("sovereignty", {})
1484
+ .get("protocol", {})
1485
+ .get("recommendation_level")),
1486
+ "actual_dynamics": (results.get("actual_reality", {})
1487
+ .get("decoded", {})
1488
+ .get("actual_dynamics")),
1489
+ "templar_composite_certainty": (results.get("templar", {})
1490
+ .get("lineage", {})
1491
+ .get("composite_certainty")),
1492
+ "inanna_confidence": (results.get("inanna", {})
1493
+ .get("overall_proof_confidence")),
1494
+ "truth_confidence": (results.get("truth_verification", {})
1495
+ .get("overall_confidence")),
1496
+ "autonomous_coherence": (results.get("autonomous_knowledge", {})
1497
+ .get("integrated_vector", {})
1498
+ .get("epistemic_coherence"))
1499
+ }
1500
+ results["summary"] = summary
1501
+ logger.info("Omega Sovereignty Stack run completed")
1502
+ return results
1503
+
1504
+ def main(argv: List[str]) -> None:
1505
+ """
1506
+ CLI:
1507
+ - No args: run with default config
1508
+ - One arg: path to JSON config file
1509
+ """
1510
+ if len(argv) >= 2:
1511
+ cfg_path = argv[1]
1512
+ with open(cfg_path, "r", encoding="utf-8") as f:
1513
+ raw = json.load(f)
1514
+ civ = raw.get("civilization_input", {})
1515
+ if "neural_data" in civ and isinstance(civ["neural_data"], list):
1516
+ civ["neural_data"] = np.array(civ["neural_data"], dtype=np.float64)
1517
+ if "institutional_data" in civ and isinstance(civ["institutional_data"], list):
1518
+ civ["institutional_data"] = np.array(civ["institutional_data"], dtype=np.float64)
1519
+ raw["civilization_input"] = civ
1520
+ cfg = raw
1521
+ else:
1522
+ cfg = _default_cfg()
1523
+
1524
+ try:
1525
+ results = asyncio.run(run_stack(cfg))
1526
+ except RuntimeError:
1527
+ loop = asyncio.get_event_loop()
1528
+ results = loop.run_until_complete(run_stack(cfg))
1529
+
1530
+ print(json.dumps({"status": "OMEGA_STACK_COMPLETE", "results": results}, indent=2))
1531
+
1532
+ if __name__ == "__main__":
1533
+ main(sys.argv)