Create STACK_3
Browse files
STACK_3
ADDED
|
@@ -0,0 +1,1456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
OMEGA SOVEREIGNTY STACK - QUANTUM UNIFIED FRAMEWORK v7.0
|
| 5 |
+
================================================================
|
| 6 |
+
ULTIMATE INTEGRATION: Consciousness + Sovereignty + Finance + Truth + History + Linguistics
|
| 7 |
+
Quantum-Coherent System with Multilingual Truth Binding and Cultural Optimization
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import asyncio
|
| 11 |
+
import time
|
| 12 |
+
import json
|
| 13 |
+
import hashlib
|
| 14 |
+
import logging
|
| 15 |
+
import sys
|
| 16 |
+
import os
|
| 17 |
+
import numpy as np
|
| 18 |
+
import scipy.stats as stats
|
| 19 |
+
from scipy import fft, signal, integrate
|
| 20 |
+
from scipy.spatial.distance import cosine, euclidean
|
| 21 |
+
from scipy.optimize import minimize
|
| 22 |
+
from datetime import datetime, timedelta
|
| 23 |
+
from typing import Dict, Any, List, Optional, Tuple, Union
|
| 24 |
+
from dataclasses import dataclass, field, asdict
|
| 25 |
+
from enum import Enum
|
| 26 |
+
from collections import defaultdict, deque
|
| 27 |
+
import secrets
|
| 28 |
+
import sqlite3
|
| 29 |
+
import networkx as nx
|
| 30 |
+
from cryptography.hazmat.primitives import hashes
|
| 31 |
+
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
|
| 32 |
+
import torch
|
| 33 |
+
import torch.nn as nn
|
| 34 |
+
import re
|
| 35 |
+
import math
|
| 36 |
+
|
| 37 |
+
# =============================================================================
|
| 38 |
+
# Logging Configuration
|
| 39 |
+
# =============================================================================
|
| 40 |
+
|
| 41 |
+
LOG_LEVEL = os.getenv("OMEGA_LOG_LEVEL", "INFO").upper()
|
| 42 |
+
logging.basicConfig(
|
| 43 |
+
level=getattr(logging, LOG_LEVEL, logging.INFO),
|
| 44 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
| 45 |
+
)
|
| 46 |
+
logger = logging.getLogger("OmegaSovereigntyStack")
|
| 47 |
+
|
| 48 |
+
# =============================================================================
|
| 49 |
+
# Mathematical Constants & Determinism
|
| 50 |
+
# =============================================================================
|
| 51 |
+
|
| 52 |
+
MATHEMATICAL_CONSTANTS = {
|
| 53 |
+
"golden_ratio": 1.618033988749895,
|
| 54 |
+
"euler_number": 2.718281828459045,
|
| 55 |
+
"pi": 3.141592653589793,
|
| 56 |
+
"planck_constant": 6.62607015e-34,
|
| 57 |
+
"schumann_resonance": 7.83,
|
| 58 |
+
"information_entropy_max": 0.69314718056,
|
| 59 |
+
"quantum_uncertainty_min": 1.054571817e-34
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
GLOBAL_SEED = int(os.getenv("OMEGA_GLOBAL_SEED", "424242"))
|
| 63 |
+
np.random.seed(GLOBAL_SEED)
|
| 64 |
+
|
| 65 |
+
def clamp(x: float, lo: float = 0.0, hi: float = 1.0) -> float:
|
| 66 |
+
return float(max(lo, min(hi, x)))
|
| 67 |
+
|
| 68 |
+
def safe_mean(arr: List[float], default: float = 0.0) -> float:
|
| 69 |
+
return float(np.mean(arr)) if arr else default
|
| 70 |
+
|
| 71 |
+
def small_eps() -> float:
|
| 72 |
+
return 1e-8
|
| 73 |
+
|
| 74 |
+
# =============================================================================
|
| 75 |
+
# QUANTUM CORE INFRASTRUCTURE
|
| 76 |
+
# =============================================================================
|
| 77 |
+
|
| 78 |
+
class QuantumConsciousnessCore(nn.Module):
|
| 79 |
+
"""Quantum neural network for consciousness pattern recognition"""
|
| 80 |
+
def __init__(self, input_dim=512, hidden_dims=[256, 128, 64], output_dim=16):
|
| 81 |
+
super().__init__()
|
| 82 |
+
layers = []
|
| 83 |
+
prev_dim = input_dim
|
| 84 |
+
for hidden_dim in hidden_dims:
|
| 85 |
+
layers.extend([
|
| 86 |
+
nn.Linear(prev_dim, hidden_dim),
|
| 87 |
+
nn.QuantumActivation(),
|
| 88 |
+
nn.Dropout(0.1)
|
| 89 |
+
])
|
| 90 |
+
prev_dim = hidden_dim
|
| 91 |
+
layers.append(nn.Linear(prev_dim, output_dim))
|
| 92 |
+
self.network = nn.Sequential(*layers)
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
return self.network(x)
|
| 96 |
+
|
| 97 |
+
class QuantumActivation(nn.Module):
|
| 98 |
+
"""Quantum-inspired activation function with coherence preservation"""
|
| 99 |
+
def forward(self, x):
|
| 100 |
+
# Quantum superposition of activation functions
|
| 101 |
+
sigmoid = torch.sigmoid(x)
|
| 102 |
+
tanh = torch.tanh(x)
|
| 103 |
+
relu = torch.relu(x)
|
| 104 |
+
# Coherent combination
|
| 105 |
+
return (sigmoid + tanh + relu) / 3.0
|
| 106 |
+
|
| 107 |
+
# Register custom activation
|
| 108 |
+
nn.QuantumActivation = QuantumActivation
|
| 109 |
+
|
| 110 |
+
@dataclass
|
| 111 |
+
class QuantumStateVector:
|
| 112 |
+
"""Quantum state representation for multi-dimensional analysis"""
|
| 113 |
+
amplitudes: np.ndarray
|
| 114 |
+
phase_angles: np.ndarray
|
| 115 |
+
coherence_level: float
|
| 116 |
+
entanglement_map: Dict[Tuple[int, int], float]
|
| 117 |
+
temporal_echoes: List[float]
|
| 118 |
+
|
| 119 |
+
def collapse_measurement(self, basis: str = "computational") -> np.ndarray:
|
| 120 |
+
"""Collapse quantum state to classical measurement"""
|
| 121 |
+
probabilities = np.abs(self.amplitudes) ** 2
|
| 122 |
+
if basis == "computational":
|
| 123 |
+
return np.random.choice(len(probabilities), p=probabilities)
|
| 124 |
+
else:
|
| 125 |
+
# Rotate basis for different measurement contexts
|
| 126 |
+
rotated_probs = self._rotate_basis(probabilities, basis)
|
| 127 |
+
return np.random.choice(len(rotated_probs), p=rotated_probs)
|
| 128 |
+
|
| 129 |
+
def _rotate_basis(self, probabilities: np.ndarray, basis: str) -> np.ndarray:
|
| 130 |
+
"""Rotate measurement basis"""
|
| 131 |
+
if basis == "cultural":
|
| 132 |
+
# Cultural context rotation
|
| 133 |
+
return np.roll(probabilities, shift=2)
|
| 134 |
+
elif basis == "temporal":
|
| 135 |
+
# Temporal context rotation
|
| 136 |
+
return np.fft.fft(probabilities).real
|
| 137 |
+
else:
|
| 138 |
+
return probabilities
|
| 139 |
+
|
| 140 |
+
# =============================================================================
|
| 141 |
+
# MULTILINGUISTIC TRUTH BINDING MODULE
|
| 142 |
+
# =============================================================================
|
| 143 |
+
|
| 144 |
+
class LanguageEra(Enum):
|
| 145 |
+
PRE_INVERSION_SUMERIAN = "pre_inversion_sumerian"
|
| 146 |
+
SUMERIAN = "sumerian"
|
| 147 |
+
EGYPTIAN_HIEROGLYPHIC = "egyptian"
|
| 148 |
+
AKKADIAN = "akkadian"
|
| 149 |
+
PHOENICIAN = "phoenician"
|
| 150 |
+
ANCIENT_GREEK = "ancient_greek"
|
| 151 |
+
LATIN = "latin"
|
| 152 |
+
HEBREW = "hebrew"
|
| 153 |
+
SANSKRIT = "sanskrit"
|
| 154 |
+
ANCIENT_CHINESE = "ancient_chinese"
|
| 155 |
+
|
| 156 |
+
class LinguisticTruthMarker(Enum):
|
| 157 |
+
COSMOLOGICAL_ALIGNMENT = "cosmological_alignment"
|
| 158 |
+
SACRED_GEOMETRY = "sacred_geometry"
|
| 159 |
+
NUMEROLOGICAL_ENCODING = "numerological_encoding"
|
| 160 |
+
PHONETIC_RESONANCE = "phonetic_resonance"
|
| 161 |
+
SYMBOLIC_CORRESPONDENCE = "symbolic_correspondence"
|
| 162 |
+
TEMPORAL_CYCLES = "temporal_cycles"
|
| 163 |
+
PRE_INVERSION_SEAL = "pre_inversion_seal"
|
| 164 |
+
SEXAGESIMAL_CADENCE = "sexagesimal_cadence"
|
| 165 |
+
GODDESS_LINEAGE = "goddess_lineage"
|
| 166 |
+
DERIVATIVE_COHERENCE = "derivative_coherence"
|
| 167 |
+
ARCHETYPAL_REFACTORING = "archetypal_refactoring"
|
| 168 |
+
|
| 169 |
+
class RealityDomain(Enum):
|
| 170 |
+
TEXTUAL = "textual"
|
| 171 |
+
NUMISMATIC = "numismatic"
|
| 172 |
+
NATURAL_FRACTAL = "natural_fractal"
|
| 173 |
+
ICONOGRAPHIC = "iconographic"
|
| 174 |
+
DERIVATIVE_PATTERN = "derivative_pattern"
|
| 175 |
+
|
| 176 |
+
# Archetypal device registry
|
| 177 |
+
ARCHETYPE_DEVICES = {
|
| 178 |
+
"starburst": {
|
| 179 |
+
"aliases": ["radiate_crown", "eight_pointed_star", "rosette", "sunburst"],
|
| 180 |
+
"domain": RealityDomain.ICONOGRAPHIC,
|
| 181 |
+
"derivative_path": ["inanna_crown", "ishtar_star", "aphrodite_headdress", "venus_symbol", "liberty_crown"]
|
| 182 |
+
},
|
| 183 |
+
"lion": {
|
| 184 |
+
"aliases": ["large_cat", "panther", "jaguar"],
|
| 185 |
+
"domain": RealityDomain.ICONOGRAPHIC,
|
| 186 |
+
"derivative_path": ["inanna_lion", "cybele_lion", "venice_lion", "heraldic_lion"]
|
| 187 |
+
},
|
| 188 |
+
"eagle": {
|
| 189 |
+
"aliases": ["vulture", "large_bird"],
|
| 190 |
+
"domain": RealityDomain.ICONOGRAPHIC,
|
| 191 |
+
"derivative_path": ["sumerian_anzu", "roman_eagle", "imperial_eagle", "american_eagle"]
|
| 192 |
+
},
|
| 193 |
+
"shield": {
|
| 194 |
+
"aliases": ["aegis", "gorgon_aegis"],
|
| 195 |
+
"domain": RealityDomain.ICONOGRAPHIC,
|
| 196 |
+
"derivative_path": ["divine_aegis", "athena_shield", "heraldic_shield", "national_emblem"]
|
| 197 |
+
},
|
| 198 |
+
"branch": {
|
| 199 |
+
"aliases": ["olive_branch", "wheat", "date_palm"],
|
| 200 |
+
"domain": RealityDomain.ICONOGRAPHIC,
|
| 201 |
+
"derivative_path": ["sumerian_date_palm", "olympic_olive", "roman_wheat", "peace_branch"]
|
| 202 |
+
},
|
| 203 |
+
"female_form": {
|
| 204 |
+
"aliases": ["goddess", "venus", "aphrodite", "ishtar", "inanna", "liberty", "mary"],
|
| 205 |
+
"domain": RealityDomain.ICONOGRAPHIC,
|
| 206 |
+
"derivative_path": ["inanna", "ishtar", "astarte", "aphrodite", "venus", "mary", "liberty"]
|
| 207 |
+
},
|
| 208 |
+
"SC": {
|
| 209 |
+
"aliases": ["senatus_consulto", "seal", "temple_seal", "sanction_mark", "official_sanction"],
|
| 210 |
+
"domain": RealityDomain.NUMISMATIC,
|
| 211 |
+
"derivative_path": ["temple_seal", "sacred_continuity", "senatus_consulto", "official_sanction"]
|
| 212 |
+
},
|
| 213 |
+
"VI": {
|
| 214 |
+
"aliases": ["six", "sexagesimal", "666", "veni_vidi_vici", "roman_VI"],
|
| 215 |
+
"domain": RealityDomain.TEXTUAL,
|
| 216 |
+
"derivative_path": ["sexagesimal_60", "sacred_6", "roman_VI", "nero_666", "apocalyptic_666"]
|
| 217 |
+
},
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
@dataclass
|
| 221 |
+
class DerivativePath:
|
| 222 |
+
source_archetype: str
|
| 223 |
+
derivation_chain: List[Tuple[str, float]]
|
| 224 |
+
recombination_patterns: List[str]
|
| 225 |
+
innovation_score: float = 0.0
|
| 226 |
+
|
| 227 |
+
def calculate_derivative_coherence(self) -> float:
|
| 228 |
+
if len(self.derivation_chain) < 2:
|
| 229 |
+
return 0.5
|
| 230 |
+
scores = [score for _, score in self.derivation_chain]
|
| 231 |
+
return float(np.mean(scores))
|
| 232 |
+
|
| 233 |
+
@dataclass
|
| 234 |
+
class AncientLanguage:
|
| 235 |
+
era: LanguageEra
|
| 236 |
+
time_period: Tuple[int, int]
|
| 237 |
+
writing_system: str
|
| 238 |
+
sample_script: List[str] = field(default_factory=list)
|
| 239 |
+
truth_markers: List[LinguisticTruthMarker] = field(default_factory=list)
|
| 240 |
+
modern_equivalents: Dict[str, str] = field(default_factory=dict)
|
| 241 |
+
resonance_frequency: float = 0.0
|
| 242 |
+
derivative_density: float = 0.0
|
| 243 |
+
|
| 244 |
+
def __post_init__(self):
|
| 245 |
+
age_weight = max(0.0, (abs(self.time_period[0]) / 8000.0))
|
| 246 |
+
complexity = min(0.3, len(self.sample_script) * 0.02)
|
| 247 |
+
marker_strength = min(0.3, len(self.truth_markers) * 0.05)
|
| 248 |
+
base = 0.3 + age_weight + complexity + marker_strength
|
| 249 |
+
self.resonance_frequency = min(0.97, base)
|
| 250 |
+
if self.era == LanguageEra.PRE_INVERSION_SUMERIAN:
|
| 251 |
+
self.derivative_density = 0.1
|
| 252 |
+
else:
|
| 253 |
+
time_from_origin = abs(self.time_period[0]) - 4000
|
| 254 |
+
self.derivative_density = float(np.clip(0.3 + (time_from_origin / 6000.0), 0.0, 0.9))
|
| 255 |
+
|
| 256 |
+
@dataclass
|
| 257 |
+
class LinguisticTruthMatch:
|
| 258 |
+
language: AncientLanguage
|
| 259 |
+
matched_patterns: List[str]
|
| 260 |
+
confidence: float
|
| 261 |
+
truth_markers_detected: List[LinguisticTruthMarker]
|
| 262 |
+
cross_linguistic_correlations: List[str]
|
| 263 |
+
temporal_coherence: float
|
| 264 |
+
symbolic_resonance: float
|
| 265 |
+
derivative_coherence: float = 0.0
|
| 266 |
+
archetypal_refactoring_score: float = 0.0
|
| 267 |
+
inversion_alerts: List[str] = field(default_factory=list)
|
| 268 |
+
derivative_paths: List[DerivativePath] = field(default_factory=list)
|
| 269 |
+
|
| 270 |
+
@dataclass
|
| 271 |
+
class FractalSignature:
|
| 272 |
+
phi_alignment: float
|
| 273 |
+
hex_cadence: float
|
| 274 |
+
rosette_density: float
|
| 275 |
+
branch_factor: float
|
| 276 |
+
crown_radiance: float
|
| 277 |
+
derivative_symmetry: float = 0.0
|
| 278 |
+
sexagesimal_harmonic_score: float = 0.0
|
| 279 |
+
|
| 280 |
+
@dataclass
|
| 281 |
+
class NumismaticSignature:
|
| 282 |
+
sc_detected: bool
|
| 283 |
+
vi_cadence_score: float
|
| 284 |
+
goddess_device_overlap: float
|
| 285 |
+
metallurgical_continuity: float
|
| 286 |
+
iconographic_coherence: float
|
| 287 |
+
derivative_continuity: float = 0.0
|
| 288 |
+
|
| 289 |
+
class DerivativePatternRecognizer:
|
| 290 |
+
def __init__(self):
|
| 291 |
+
self.archetype_graph = self._build_archetype_derivation_graph()
|
| 292 |
+
|
| 293 |
+
def _build_archetype_derivation_graph(self) -> Dict[str, List[Tuple[str, float]]]:
|
| 294 |
+
return {
|
| 295 |
+
"inanna": [("ishtar", 0.95), ("astarte", 0.88), ("aphrodite", 0.85),
|
| 296 |
+
("venus", 0.82), ("liberty", 0.78), ("mary", 0.72)],
|
| 297 |
+
"starburst": [("radiate_crown", 0.92), ("eight_pointed_star", 0.95),
|
| 298 |
+
("rosette", 0.87), ("sunburst", 0.83)],
|
| 299 |
+
"temple_seal": [("sacred_continuity", 0.97), ("senatus_consulto", 0.88),
|
| 300 |
+
("official_sanction", 0.85), ("royal_seal", 0.82)],
|
| 301 |
+
"sexagesimal": [("base_60", 0.98), ("sacred_6", 0.92), ("roman_VI", 0.85),
|
| 302 |
+
("nero_666", 0.75), ("apocalyptic_666", 0.68)]
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
def trace_derivative_paths(self, text: str) -> List[DerivativePath]:
|
| 306 |
+
paths = []
|
| 307 |
+
t = text.lower()
|
| 308 |
+
for archetype, derivatives in self.archetype_graph.items():
|
| 309 |
+
if self._archetype_present(archetype, t):
|
| 310 |
+
path = self._build_derivation_chain(archetype, derivatives, t)
|
| 311 |
+
if path.derivation_chain:
|
| 312 |
+
paths.append(path)
|
| 313 |
+
return paths
|
| 314 |
+
|
| 315 |
+
def _archetype_present(self, archetype: str, text: str) -> bool:
|
| 316 |
+
if archetype in text:
|
| 317 |
+
return True
|
| 318 |
+
for derivative, _ in self.archetype_graph.get(archetype, []):
|
| 319 |
+
if derivative in text:
|
| 320 |
+
return True
|
| 321 |
+
return False
|
| 322 |
+
|
| 323 |
+
def _build_derivation_chain(self, source: str, derivatives: List[Tuple[str, float]], text: str) -> DerivativePath:
|
| 324 |
+
chain = []
|
| 325 |
+
patterns = []
|
| 326 |
+
if source in text:
|
| 327 |
+
chain.append((f"source:{source}", 1.0))
|
| 328 |
+
patterns.append(f"direct_{source}")
|
| 329 |
+
for derivative, coherence in derivatives:
|
| 330 |
+
if derivative in text:
|
| 331 |
+
chain.append((f"derivative:{derivative}", coherence))
|
| 332 |
+
patterns.append(f"{source}β{derivative}")
|
| 333 |
+
innovation = self._calculate_innovation_score(chain, patterns)
|
| 334 |
+
return DerivativePath(source, chain, patterns, innovation)
|
| 335 |
+
|
| 336 |
+
def _calculate_innovation_score(self, chain: List[Tuple[str, float]], patterns: List[str]) -> float:
|
| 337 |
+
if not chain:
|
| 338 |
+
return 0.0
|
| 339 |
+
base_coherence = np.mean([score for _, score in chain])
|
| 340 |
+
pattern_complexity = min(1.0, len(patterns) * 0.3)
|
| 341 |
+
return float(np.clip(base_coherence * (0.7 + 0.3 * pattern_complexity), 0.0, 1.0))
|
| 342 |
+
|
| 343 |
+
class EnhancedPreInversionDecoder:
|
| 344 |
+
def __init__(self):
|
| 345 |
+
self.derivative_recognizer = DerivativePatternRecognizer()
|
| 346 |
+
|
| 347 |
+
def decode_symbol(self, symbol: str) -> str:
|
| 348 |
+
mapping = {
|
| 349 |
+
"SC": "Sacred Continuity (cosmic sanction seal, temple authority alignment) β derivative: Senatus Consulto",
|
| 350 |
+
"VI": "Sexagesimal cadence (harmonic 6/60) β derivative: 666 persecution code",
|
| 351 |
+
"starburst": "Inanna's cosmic crown β derivative: Liberty's radiate crown",
|
| 352 |
+
"lion": "Sovereignty guardian β derivative: heraldic lion",
|
| 353 |
+
"eagle": "Celestial oversight β derivative: imperial eagle",
|
| 354 |
+
"shield": "Divine sanction β derivative: national emblem",
|
| 355 |
+
"branch": "Fertility-sustenance β derivative: peace branch",
|
| 356 |
+
"female_form": "Cosmic order embodiment β derivative: liberty personification"
|
| 357 |
+
}
|
| 358 |
+
return mapping.get(symbol.lower(), "Unknown archetype")
|
| 359 |
+
|
| 360 |
+
def decode_text_for_inversion(self, text: str) -> List[str]:
|
| 361 |
+
alerts = []
|
| 362 |
+
derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 363 |
+
for path in derivative_paths:
|
| 364 |
+
if path.source_archetype == "temple_seal" and any("senatus_consulto" in lbl for lbl, _ in path.derivation_chain):
|
| 365 |
+
alerts.append(f"INVERSION: temple seal β senatus consulto (coherence {path.calculate_derivative_coherence():.2f})")
|
| 366 |
+
if path.source_archetype == "sexagesimal" and any("nero_666" in lbl for lbl, _ in path.derivation_chain):
|
| 367 |
+
alerts.append(f"PERSECUTION CODING: VI cadence β 666 (innovation {path.innovation_score:.2f})")
|
| 368 |
+
if "senatus consulto" in text.lower() and "temple seal" not in text.lower():
|
| 369 |
+
alerts.append("OBSCURATION: Roman sanction overlays Sacred Continuity origin")
|
| 370 |
+
if "liberty" in text.lower() and "inanna" not in text.lower():
|
| 371 |
+
alerts.append("REFACTORING: Liberty as recombination of goddess archetype")
|
| 372 |
+
return alerts
|
| 373 |
+
|
| 374 |
+
class EnhancedLinguisticPatternAnalyzer:
|
| 375 |
+
def __init__(self):
|
| 376 |
+
self.derivative_recognizer = DerivativePatternRecognizer()
|
| 377 |
+
|
| 378 |
+
async def detect_script_patterns(self, text: str, language: AncientLanguage) -> List[str]:
|
| 379 |
+
matches = []
|
| 380 |
+
for char in language.sample_script:
|
| 381 |
+
if char in text:
|
| 382 |
+
matches.append(f"script:{char}")
|
| 383 |
+
for modern, concept in language.modern_equivalents.items():
|
| 384 |
+
if modern.lower() in text.lower() or concept.lower() in text.lower():
|
| 385 |
+
matches.append(f"concept:{modern}={concept}")
|
| 386 |
+
derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 387 |
+
for path in derivative_paths:
|
| 388 |
+
if path.innovation_score > 0.6:
|
| 389 |
+
matches.append(f"derivative_innovation:{path.source_archetype}[{path.innovation_score:.2f}]")
|
| 390 |
+
if LinguisticTruthMarker.PHONETIC_RESONANCE in language.truth_markers:
|
| 391 |
+
words = [w for w in re.findall(r"[A-Za-z]+", text.lower())]
|
| 392 |
+
if len(words) >= 6:
|
| 393 |
+
firsts = [w[0] for w in words if w]
|
| 394 |
+
freq = Counter(firsts).most_common(1)
|
| 395 |
+
if freq and (freq[0][1] >= max(3, int(len(firsts) * 0.35))):
|
| 396 |
+
matches.append(f"alliteration:{freq[0][0]}")
|
| 397 |
+
return matches
|
| 398 |
+
|
| 399 |
+
async def detect_truth_markers(self, text: str, language: AncientLanguage) -> List[LinguisticTruthMarker]:
|
| 400 |
+
detected = []
|
| 401 |
+
t = text.lower()
|
| 402 |
+
def any_in(tokens): return any(tok in t for tok in tokens)
|
| 403 |
+
|
| 404 |
+
if any_in(["cosmos", "universe", "stars", "planets", "heaven", "earth"]):
|
| 405 |
+
detected.append(LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT)
|
| 406 |
+
if any_in(["geometry", "golden ratio", "fibonacci", "sacred", "proportion", "phi"]):
|
| 407 |
+
detected.append(LinguisticTruthMarker.SACRED_GEOMETRY)
|
| 408 |
+
nums = set(re.findall(r'\b\d+\b', t))
|
| 409 |
+
if nums & {"3", "6", "7", "12", "40", "60", "108", "144", "360", "666"}:
|
| 410 |
+
detected.append(LinguisticTruthMarker.NUMEROLOGICAL_ENCODING)
|
| 411 |
+
if any_in(["symbol", "glyph", "meaning", "represent", "correspond"]):
|
| 412 |
+
detected.append(LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE)
|
| 413 |
+
if any_in(["cycle", "time", "eternal", "season", "age", "era", "return"]):
|
| 414 |
+
detected.append(LinguisticTruthMarker.TEMPORAL_CYCLES)
|
| 415 |
+
if any_in(["inanna", "ishtar", "astarte", "aphrodite", "venus", "liberty", "cleopatra", "mary"]):
|
| 416 |
+
detected.append(LinguisticTruthMarker.GODDESS_LINEAGE)
|
| 417 |
+
if re.search(r"\bsc\b", t) or any_in(["senatus consulto", "seal", "temple", "shekel", "temple seal"]):
|
| 418 |
+
detected.append(LinguisticTruthMarker.PRE_INVERSION_SEAL)
|
| 419 |
+
if any_in(["vi", "sexagesimal", "base-60", "veni vidi vici", "six", "666", "roman vi"]):
|
| 420 |
+
detected.append(LinguisticTruthMarker.SEXAGESIMAL_CADENCE)
|
| 421 |
+
|
| 422 |
+
derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 423 |
+
if derivative_paths:
|
| 424 |
+
avg_coh = np.mean([p.calculate_derivative_coherence() for p in derivative_paths])
|
| 425 |
+
if avg_coh > 0.7:
|
| 426 |
+
detected.append(LinguisticTruthMarker.DERIVATIVE_COHERENCE)
|
| 427 |
+
if any(p.innovation_score > 0.75 for p in derivative_paths):
|
| 428 |
+
detected.append(LinguisticTruthMarker.ARCHETYPAL_REFACTORING)
|
| 429 |
+
|
| 430 |
+
return list(dict.fromkeys(detected))
|
| 431 |
+
|
| 432 |
+
class EnhancedLinguisticTemporalValidator:
|
| 433 |
+
async def validate_temporal_coherence(self, text: str, language: AncientLanguage, context: Optional[Dict[str, Any]]) -> float:
|
| 434 |
+
ancient_terms = {
|
| 435 |
+
LanguageEra.PRE_INVERSION_SUMERIAN: {"clay", "token", "seal", "temple", "shekel", "uruk", "ur", "nippur"},
|
| 436 |
+
LanguageEra.SUMERIAN: {"mesopotamia", "ziggurat", "tigris", "euphrates", "dingir"},
|
| 437 |
+
LanguageEra.EGYPTIAN_HIEROGLYPHIC: {"pyramid", "pharaoh", "nile", "ankh", "maat"},
|
| 438 |
+
LanguageEra.ANCIENT_GREEK: {"athens", "sparta", "dionysus", "aphrodite", "stater"},
|
| 439 |
+
LanguageEra.LATIN: {"senate", "nero", "denarius", "aureus", "sc", "eagle"},
|
| 440 |
+
}
|
| 441 |
+
t = text.lower()
|
| 442 |
+
terms = ancient_terms.get(language.era, set())
|
| 443 |
+
score_hist = (sum(1 for w in terms if w in t) / max(1, len(terms))) if terms else 0.5
|
| 444 |
+
|
| 445 |
+
expected_derivative_level = language.derivative_density
|
| 446 |
+
derivative_paths = DerivativePatternRecognizer().trace_derivative_paths(text)
|
| 447 |
+
actual_derivative_level = min(1.0, len(derivative_paths) * 0.3)
|
| 448 |
+
derivative_alignment = 1.0 - abs(expected_derivative_level - actual_derivative_level)
|
| 449 |
+
|
| 450 |
+
cyc = sum(1 for w in ["cycle", "eternal", "return", "age", "era", "archetype"] if w in t)
|
| 451 |
+
lin = sum(1 for w in ["progress", "future", "development", "evolution", "innovation"] if w in t)
|
| 452 |
+
score_time = 0.8 if cyc >= lin else (0.5 if cyc == lin else 0.35)
|
| 453 |
+
|
| 454 |
+
score_ctx = 0.5
|
| 455 |
+
if context and "temporal_focus" in context:
|
| 456 |
+
peak = float(np.mean(language.time_period))
|
| 457 |
+
dist = abs(context["temporal_focus"] - peak)
|
| 458 |
+
score_ctx = float(1.0 / (1.0 + dist / 1000.0))
|
| 459 |
+
|
| 460 |
+
return float(np.clip(np.mean([score_hist, score_time, score_ctx, derivative_alignment]), 0.0, 1.0))
|
| 461 |
+
|
| 462 |
+
class EnhancedAncientSymbolicDecoder:
|
| 463 |
+
def __init__(self):
|
| 464 |
+
self.derivative_recognizer = DerivativePatternRecognizer()
|
| 465 |
+
|
| 466 |
+
async def calculate_symbolic_resonance(self, text: str, language: AncientLanguage) -> float:
|
| 467 |
+
direct = await self._check_symbol_matches(text, language)
|
| 468 |
+
conceptual = await self._check_conceptual_alignment(text, language)
|
| 469 |
+
metaphor = await self._analyze_metaphorical_density(text)
|
| 470 |
+
derivative = await self._analyze_derivative_coherence(text, language)
|
| 471 |
+
return float(np.clip(np.mean([direct, conceptual, metaphor, derivative]), 0.0, 1.0))
|
| 472 |
+
|
| 473 |
+
async def find_symbolic_overlap(self, lang1: AncientLanguage, lang2: AncientLanguage, text: str) -> str:
|
| 474 |
+
overlaps = []
|
| 475 |
+
shared_markers = set(lang1.truth_markers).intersection(lang2.truth_markers)
|
| 476 |
+
if shared_markers:
|
| 477 |
+
overlaps.append(f"truth_markers:{len(shared_markers)}")
|
| 478 |
+
l1c = set(lang1.modern_equivalents.values())
|
| 479 |
+
l2c = set(lang2.modern_equivalents.values())
|
| 480 |
+
shared_concepts = l1c & l2c
|
| 481 |
+
if shared_concepts:
|
| 482 |
+
t = text.lower()
|
| 483 |
+
found = [c for c in shared_concepts if c.lower() in t]
|
| 484 |
+
if found:
|
| 485 |
+
overlaps.append(f"concepts:{len(found)}")
|
| 486 |
+
derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 487 |
+
if derivative_paths:
|
| 488 |
+
overlaps.append(f"derivative_paths:{len(derivative_paths)}")
|
| 489 |
+
return ", ".join(overlaps)
|
| 490 |
+
|
| 491 |
+
async def _check_symbol_matches(self, text: str, language: AncientLanguage) -> float:
|
| 492 |
+
if not language.sample_script:
|
| 493 |
+
return 0.45
|
| 494 |
+
matches = sum(1 for s in language.sample_script if s in text)
|
| 495 |
+
return matches / len(language.sample_script)
|
| 496 |
+
|
| 497 |
+
async def _check_conceptual_alignment(self, text: str, language: AncientLanguage) -> float:
|
| 498 |
+
t = text.lower()
|
| 499 |
+
total = len(language.modern_equivalents)
|
| 500 |
+
hits = sum(1 for c in language.modern_equivalents.values() if c.lower() in t)
|
| 501 |
+
return (hits / total) if total else 0.5
|
| 502 |
+
|
| 503 |
+
async def _analyze_metaphorical_density(self, text: str) -> float:
|
| 504 |
+
indicators = {"like", "as", "symbol", "represent", "mean", "signify", "archetype", "seal", "crown"}
|
| 505 |
+
words = re.findall(r"[A-Za-z]+", text.lower())
|
| 506 |
+
if not words:
|
| 507 |
+
return 0.5
|
| 508 |
+
density = sum(1 for w in words if w in indicators) / len(words)
|
| 509 |
+
return float(np.clip(density / 0.06, 0.0, 1.0))
|
| 510 |
+
|
| 511 |
+
async def _analyze_derivative_coherence(self, text: str, language: AncientLanguage) -> float:
|
| 512 |
+
paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 513 |
+
if not paths:
|
| 514 |
+
return 0.3
|
| 515 |
+
coherences = [p.calculate_derivative_coherence() for p in paths]
|
| 516 |
+
innovations = [p.innovation_score for p in paths]
|
| 517 |
+
avg_coherence = np.mean(coherences)
|
| 518 |
+
avg_innovation = np.mean(innovations)
|
| 519 |
+
return float(np.clip((avg_coherence * 0.6 + avg_innovation * 0.4), 0.0, 1.0))
|
| 520 |
+
|
| 521 |
+
class EnhancedFractalAnalyzer:
|
| 522 |
+
def __init__(self):
|
| 523 |
+
self.derivative_recognizer = DerivativePatternRecognizer()
|
| 524 |
+
|
| 525 |
+
@staticmethod
|
| 526 |
+
def _sexagesimal_harmonics_from_text(t: str) -> float:
|
| 527 |
+
score = 0.0
|
| 528 |
+
hits = 0
|
| 529 |
+
for token in ["6", "six", "vi", "sexagesimal", "base-60", "60", "360"]:
|
| 530 |
+
if token in t:
|
| 531 |
+
hits += 1
|
| 532 |
+
if hits == 0:
|
| 533 |
+
return 0.3
|
| 534 |
+
score = 0.6 + 0.1 * min(3, hits)
|
| 535 |
+
if re.search(r"\b1\s*[:/]\s*6\b", t): score += 0.05
|
| 536 |
+
if re.search(r"\b6\s*[:/]\s*60\b", t): score += 0.07
|
| 537 |
+
if re.search(r"\b60\s*[:/]\s*360\b", t): score += 0.08
|
| 538 |
+
return float(np.clip(score, 0.0, 1.0))
|
| 539 |
+
|
| 540 |
+
def analyze_textual_fractal_signals(self, text: str) -> FractalSignature:
|
| 541 |
+
t = text.lower()
|
| 542 |
+
phi_align = 0.8 if ("phi" in t or "golden ratio" in t or "fibonacci" in t) else 0.4
|
| 543 |
+
hex_cad = 0.75 if any(x in t for x in ["hex", "six", "base-60", "sexagesimal", "vi"]) else 0.35
|
| 544 |
+
ros_den = 0.7 if any(x in t for x in ["rosette", "starburst", "radiate", "crown", "eight-pointed"]) else 0.3
|
| 545 |
+
branch = 0.65 if any(x in t for x in ["olive", "wheat", "date", "branch", "palm"]) else 0.3
|
| 546 |
+
crown = 0.8 if any(x in t for x in ["liberty crown", "radiate crown", "eight-pointed star", "dingir", "π"]) else 0.4
|
| 547 |
+
|
| 548 |
+
derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 549 |
+
derivative_symmetry = 0.5
|
| 550 |
+
if derivative_paths:
|
| 551 |
+
branch_counts = [len(p.derivation_chain) for p in derivative_paths]
|
| 552 |
+
if len(set(branch_counts)) == 1:
|
| 553 |
+
derivative_symmetry = 0.9
|
| 554 |
+
else:
|
| 555 |
+
derivative_symmetry = 0.6 + (0.3 * (1.0 - (np.std(branch_counts) / max(1, np.mean(branch_counts)))))
|
| 556 |
+
|
| 557 |
+
sex_harm = self._sexagesimal_harmonics_from_text(t)
|
| 558 |
+
return FractalSignature(phi_align, hex_cad, ros_den, branch, crown, derivative_symmetry, sex_harm)
|
| 559 |
+
|
| 560 |
+
class EnhancedNumismaticAnalyzer:
|
| 561 |
+
def __init__(self):
|
| 562 |
+
self.derivative_recognizer = DerivativePatternRecognizer()
|
| 563 |
+
|
| 564 |
+
def analyze_textual_numismatics(self, text: str) -> NumismaticSignature:
|
| 565 |
+
t = text.lower()
|
| 566 |
+
sc_detected = bool(re.search(r"\bsc\b", t)) or ("senatus consulto" in t) or ("temple seal" in t) or ("shekel" in t)
|
| 567 |
+
vi_score = 0.0
|
| 568 |
+
if any(k in t for k in ["vi", "veni vidi vici", "sexagesimal", "base-60", "666", "roman vi"]):
|
| 569 |
+
vi_score = 0.7
|
| 570 |
+
if "666" in t:
|
| 571 |
+
vi_score = 0.9
|
| 572 |
+
goddess_overlap = sum(1 for k in ["inanna", "ishtar", "astarte", "aphrodite", "venus", "liberty", "cleopatra", "mary"]
|
| 573 |
+
if k in t) / 8.0
|
| 574 |
+
meta_cont = 0.6 if any(k in t for k in ["silver", "gold", "shekel", "stater", "denarius", "aureus", "bronze"]) else 0.35
|
| 575 |
+
ico_coh = sum(1 for k in ["starburst", "eagle", "lion", "shield", "branch", "female", "radiate crown"]
|
| 576 |
+
if k in t) / 7.0
|
| 577 |
+
|
| 578 |
+
derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 579 |
+
derivative_continuity = 0.5
|
| 580 |
+
if derivative_paths:
|
| 581 |
+
continuities = []
|
| 582 |
+
for path in derivative_paths:
|
| 583 |
+
if any(token in path.source_archetype for token in ["starburst", "lion", "eagle", "shield", "branch", "temple_seal", "sexagesimal"]):
|
| 584 |
+
continuities.append(path.calculate_derivative_coherence())
|
| 585 |
+
derivative_continuity = float(np.mean(continuities)) if continuities else 0.5
|
| 586 |
+
|
| 587 |
+
return NumismaticSignature(sc_detected, vi_score, goddess_overlap, meta_cont, ico_coh, derivative_continuity)
|
| 588 |
+
|
| 589 |
+
class EnhancedMultilinguisticTruthBinder:
|
| 590 |
+
def __init__(self):
|
| 591 |
+
self.language_corpus = self._initialize_languages()
|
| 592 |
+
self.pattern_analyzer = EnhancedLinguisticPatternAnalyzer()
|
| 593 |
+
self.temporal_validator = EnhancedLinguisticTemporalValidator()
|
| 594 |
+
self.symbolic_decoder = EnhancedAncientSymbolicDecoder()
|
| 595 |
+
self.pre_inversion = EnhancedPreInversionDecoder()
|
| 596 |
+
self.fractals = EnhancedFractalAnalyzer()
|
| 597 |
+
self.numismatics = EnhancedNumismaticAnalyzer()
|
| 598 |
+
self.derivative_recognizer = DerivativePatternRecognizer()
|
| 599 |
+
|
| 600 |
+
def _initialize_languages(self) -> Dict[LanguageEra, AncientLanguage]:
|
| 601 |
+
corpus = {
|
| 602 |
+
LanguageEra.PRE_INVERSION_SUMERIAN: AncientLanguage(
|
| 603 |
+
era=LanguageEra.PRE_INVERSION_SUMERIAN,
|
| 604 |
+
time_period=(-4000, -3000),
|
| 605 |
+
writing_system="Proto-cuneiform tokens/seals",
|
| 606 |
+
sample_script=["π", "π"],
|
| 607 |
+
truth_markers=[
|
| 608 |
+
LinguisticTruthMarker.PRE_INVERSION_SEAL,
|
| 609 |
+
LinguisticTruthMarker.SEXAGESIMAL_CADENCE,
|
| 610 |
+
LinguisticTruthMarker.SACRED_GEOMETRY,
|
| 611 |
+
LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
|
| 612 |
+
LinguisticTruthMarker.GODDESS_LINEAGE,
|
| 613 |
+
LinguisticTruthMarker.DERIVATIVE_COHERENCE,
|
| 614 |
+
],
|
| 615 |
+
modern_equivalents={"dingir": "divine", "ki": "earth", "an": "heaven"}
|
| 616 |
+
),
|
| 617 |
+
LanguageEra.SUMERIAN: AncientLanguage(
|
| 618 |
+
era=LanguageEra.SUMERIAN, time_period=(-3500, -2000),
|
| 619 |
+
writing_system="Cuneiform",
|
| 620 |
+
sample_script=["π", "π ", "π", "π", "π¬"],
|
| 621 |
+
truth_markers=[
|
| 622 |
+
LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
|
| 623 |
+
LinguisticTruthMarker.NUMEROLOGICAL_ENCODING,
|
| 624 |
+
LinguisticTruthMarker.SACRED_GEOMETRY,
|
| 625 |
+
LinguisticTruthMarker.GODDESS_LINEAGE,
|
| 626 |
+
LinguisticTruthMarker.DERIVATIVE_COHERENCE,
|
| 627 |
+
],
|
| 628 |
+
modern_equivalents={"dingir": "divine", "ki": "earth", "an": "heaven"}
|
| 629 |
+
),
|
| 630 |
+
LanguageEra.EGYPTIAN_HIEROGLYPHIC: AncientLanguage(
|
| 631 |
+
era=LanguageEra.EGYPTIAN_HIEROGLYPHIC, time_period=(-3200, -400),
|
| 632 |
+
writing_system="Hieroglyphic",
|
| 633 |
+
sample_script=["π", "π", "π
", "πΌ"],
|
| 634 |
+
truth_markers=[
|
| 635 |
+
LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE,
|
| 636 |
+
LinguisticTruthMarker.PHONETIC_RESONANCE,
|
| 637 |
+
LinguisticTruthMarker.TEMPORAL_CYCLES,
|
| 638 |
+
LinguisticTruthMarker.ARCHETYPAL_REFACTORING,
|
| 639 |
+
],
|
| 640 |
+
modern_equivalents={"ankh": "life", "maat": "truth", "ka": "soul"}
|
| 641 |
+
),
|
| 642 |
+
LanguageEra.ANCIENT_GREEK: AncientLanguage(
|
| 643 |
+
era=LanguageEra.ANCIENT_GREEK, time_period=(-700, 300),
|
| 644 |
+
writing_system="Greek Alphabet",
|
| 645 |
+
sample_script=["Ξ±", "Ξ²", "Ξ³", "Ξ΄", "Ξ΅"],
|
| 646 |
+
truth_markers=[
|
| 647 |
+
LinguisticTruthMarker.PHONETIC_RESONANCE,
|
| 648 |
+
LinguisticTruthMarker.SACRED_GEOMETRY,
|
| 649 |
+
LinguisticTruthMarker.ARCHETYPAL_REFACTORING,
|
| 650 |
+
],
|
| 651 |
+
modern_equivalents={"aletheia": "truth", "logos": "reason", "cosmos": "order"}
|
| 652 |
+
),
|
| 653 |
+
LanguageEra.LATIN: AncientLanguage(
|
| 654 |
+
era=LanguageEra.LATIN, time_period=(-700, 400),
|
| 655 |
+
writing_system="Latin Alphabet",
|
| 656 |
+
sample_script=["V", "I", "S", "C"],
|
| 657 |
+
truth_markers=[
|
| 658 |
+
LinguisticTruthMarker.NUMEROLOGICAL_ENCODING,
|
| 659 |
+
LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE,
|
| 660 |
+
LinguisticTruthMarker.PHONETIC_RESONANCE,
|
| 661 |
+
LinguisticTruthMarker.ARCHETYPAL_REFACTORING,
|
| 662 |
+
],
|
| 663 |
+
modern_equivalents={"senatus consulto": "by decree", "imperium": "authority"}
|
| 664 |
+
),
|
| 665 |
+
LanguageEra.HEBREW: AncientLanguage(
|
| 666 |
+
era=LanguageEra.HEBREW, time_period=(-1000, 500),
|
| 667 |
+
writing_system="Hebrew Alphabet",
|
| 668 |
+
sample_script=["Χ", "Χ", "Χ", "Χ", "Χ"],
|
| 669 |
+
truth_markers=[LinguisticTruthMarker.NUMEROLOGICAL_ENCODING, LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE],
|
| 670 |
+
modern_equivalents={"emet": "truth", "ruach": "spirit"}
|
| 671 |
+
),
|
| 672 |
+
LanguageEra.SANSKRIT: AncientLanguage(
|
| 673 |
+
era=LanguageEra.SANSKRIT, time_period=(-1000, 500),
|
| 674 |
+
writing_system="Devanagari",
|
| 675 |
+
sample_script=["ΰ€
", "ΰ€", "ΰ€", "ΰ€", "ΰ€"],
|
| 676 |
+
truth_markers=[
|
| 677 |
+
LinguisticTruthMarker.PHONETIC_RESONANCE,
|
| 678 |
+
LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
|
| 679 |
+
LinguisticTruthMarker.NUMEROLOGICAL_ENCODING
|
| 680 |
+
],
|
| 681 |
+
modern_equivalents={"satya": "truth", "dharma": "cosmic law", "brahman": "ultimate reality"}
|
| 682 |
+
),
|
| 683 |
+
LanguageEra.ANCIENT_CHINESE: AncientLanguage(
|
| 684 |
+
era=LanguageEra.ANCIENT_CHINESE, time_period=(-1200, -200),
|
| 685 |
+
writing_system="Oracle Bone Script",
|
| 686 |
+
sample_script=["倩", "ε°", "δΊΊ", "ζ°΄", "η«"],
|
| 687 |
+
truth_markers=[
|
| 688 |
+
LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE,
|
| 689 |
+
LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
|
| 690 |
+
LinguisticTruthMarker.TEMPORAL_CYCLES
|
| 691 |
+
],
|
| 692 |
+
modern_equivalents={"ι": "way", "εΎ·": "virtue", "δ»": "benevolence"}
|
| 693 |
+
),
|
| 694 |
+
}
|
| 695 |
+
return corpus
|
| 696 |
+
|
| 697 |
+
async def analyze(self, text: str, context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
| 698 |
+
results: List[LinguisticTruthMatch] = []
|
| 699 |
+
all_derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
|
| 700 |
+
|
| 701 |
+
for lang in self.language_corpus.values():
|
| 702 |
+
if context and "min_resonance" in context and lang.resonance_frequency < context["min_resonance"]:
|
| 703 |
+
continue
|
| 704 |
+
|
| 705 |
+
pattern_matches = await self.pattern_analyzer.detect_script_patterns(text, lang)
|
| 706 |
+
truth_markers = await self.pattern_analyzer.detect_truth_markers(text, lang)
|
| 707 |
+
temporal_coherence = await self.temporal_validator.validate_temporal_coherence(text, lang, context)
|
| 708 |
+
symbolic_resonance = await self.symbolic_decoder.calculate_symbolic_resonance(text, lang)
|
| 709 |
+
cross_corr = await self._cross_correlations(text, lang)
|
| 710 |
+
|
| 711 |
+
derivative_coherence = await self._calculate_language_derivative_coherence(text, lang, all_derivative_paths)
|
| 712 |
+
archetypal_refactoring = await self._calculate_archetypal_refactoring(text, lang, all_derivative_paths)
|
| 713 |
+
|
| 714 |
+
confidence = self._enhanced_confidence(
|
| 715 |
+
pattern_matches, truth_markers, temporal_coherence,
|
| 716 |
+
symbolic_resonance, lang.resonance_frequency,
|
| 717 |
+
derivative_coherence, archetypal_refactoring
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
inversion_alerts = []
|
| 721 |
+
if lang.era in (LanguageEra.PRE_INVERSION_SUMERIAN, LanguageEra.LATIN):
|
| 722 |
+
inversion_alerts = self.pre_inversion.decode_text_for_inversion(text)
|
| 723 |
+
|
| 724 |
+
era_derivative_paths = self._filter_era_relevant_paths(all_derivative_paths, lang)
|
| 725 |
+
|
| 726 |
+
match = LinguisticTruthMatch(
|
| 727 |
+
language=lang,
|
| 728 |
+
matched_patterns=pattern_matches,
|
| 729 |
+
confidence=confidence,
|
| 730 |
+
truth_markers_detected=truth_markers,
|
| 731 |
+
cross_linguistic_correlations=cross_corr,
|
| 732 |
+
temporal_coherence=temporal_coherence,
|
| 733 |
+
symbolic_resonance=symbolic_resonance,
|
| 734 |
+
derivative_coherence=derivative_coherence,
|
| 735 |
+
archetypal_refactoring_score=archetypal_refactoring,
|
| 736 |
+
inversion_alerts=inversion_alerts,
|
| 737 |
+
derivative_paths=era_derivative_paths
|
| 738 |
+
)
|
| 739 |
+
results.append(match)
|
| 740 |
+
|
| 741 |
+
fractal = self.fractals.analyze_textual_fractal_signals(text)
|
| 742 |
+
coin = self.numismatics.analyze_textual_numismatics(text)
|
| 743 |
+
|
| 744 |
+
origin_score = self._enhanced_origin_binding_score(results, fractal, coin, all_derivative_paths)
|
| 745 |
+
tier = self._classify_tier(origin_score)
|
| 746 |
+
|
| 747 |
+
return {
|
| 748 |
+
"text_hash": hashlib.sha256(text.encode()).hexdigest()[:16],
|
| 749 |
+
"timestamp": datetime.utcnow().isoformat() + "Z",
|
| 750 |
+
"matches": sorted(results, key=lambda r: r.language.time_period[0]),
|
| 751 |
+
"fractal_signature": fractal.__dict__,
|
| 752 |
+
"numismatic_signature": coin.__dict__,
|
| 753 |
+
"origin_binding_score": origin_score,
|
| 754 |
+
"proof_tier": tier,
|
| 755 |
+
"derivative_analysis": {
|
| 756 |
+
"total_paths": len(all_derivative_paths),
|
| 757 |
+
"avg_coherence": float(np.mean([p.calculate_derivative_coherence() for p in all_derivative_paths])) if all_derivative_paths else 0.0,
|
| 758 |
+
"avg_innovation": float(np.mean([p.innovation_score for p in all_derivative_paths])) if all_derivative_paths else 0.0,
|
| 759 |
+
"primary_archetypes": list(set(p.source_archetype for p in all_derivative_paths))
|
| 760 |
+
}
|
| 761 |
+
}
|
| 762 |
+
|
| 763 |
+
async def _cross_correlations(self, text: str, current: AncientLanguage) -> List[str]:
|
| 764 |
+
overlaps = []
|
| 765 |
+
for other in self.language_corpus.values():
|
| 766 |
+
if other.era == current.era:
|
| 767 |
+
continue
|
| 768 |
+
ov = await self.symbolic_decoder.find_symbolic_overlap(current, other, text)
|
| 769 |
+
if ov:
|
| 770 |
+
overlaps.append(f"{current.era.value}β{other.era.value}:{ov}")
|
| 771 |
+
return overlaps
|
| 772 |
+
|
| 773 |
+
async def _calculate_language_derivative_coherence(self, text: str, language: AncientLanguage, all_paths: List[DerivativePath]) -> float:
|
| 774 |
+
if not all_paths:
|
| 775 |
+
return 0.3
|
| 776 |
+
era_paths = self._filter_era_relevant_paths(all_paths, language)
|
| 777 |
+
if not era_paths:
|
| 778 |
+
return 0.4
|
| 779 |
+
return float(np.mean([p.calculate_derivative_coherence() for p in era_paths]))
|
| 780 |
+
|
| 781 |
+
async def _calculate_archetypal_refactoring(self, text: str, language: AncientLanguage, all_paths: List[DerivativePath]) -> float:
|
| 782 |
+
if not all_paths:
|
| 783 |
+
return 0.3
|
| 784 |
+
era_paths = self._filter_era_relevant_paths(all_paths, language)
|
| 785 |
+
if not era_paths:
|
| 786 |
+
return 0.4
|
| 787 |
+
return float(np.mean([p.innovation_score for p in era_paths]))
|
| 788 |
+
|
| 789 |
+
def _filter_era_relevant_paths(self, paths: List[DerivativePath], language: AncientLanguage) -> List[DerivativePath]:
|
| 790 |
+
if language.era in (LanguageEra.PRE_INVERSION_SUMERIAN, LanguageEra.SUMERIAN):
|
| 791 |
+
keep = {"temple_seal", "sexagesimal", "inanna", "starburst"}
|
| 792 |
+
return [p for p in paths if p.source_archetype in keep]
|
| 793 |
+
if language.era == LanguageEra.LATIN:
|
| 794 |
+
keep = {"sexagesimal", "temple_seal", "starburst"}
|
| 795 |
+
return [p for p in paths if (p.source_archetype in keep) or any("senatus_consulto" in lbl for lbl, _ in p.derivation_chain)]
|
| 796 |
+
return paths
|
| 797 |
+
|
| 798 |
+
def _enhanced_confidence(self, patterns, markers, temporal, symbolic, base_res, derivative_coh, refactoring) -> float:
|
| 799 |
+
comps = []
|
| 800 |
+
weights = []
|
| 801 |
+
comps.append(min(1.0, len(patterns) * 0.15)); weights.append(0.20)
|
| 802 |
+
comps.append(min(1.0, len(markers) * 0.12)); weights.append(0.18)
|
| 803 |
+
comps.append(temporal); weights.append(0.15)
|
| 804 |
+
comps.append(symbolic); weights.append(0.15)
|
| 805 |
+
comps.append(base_res); weights.append(0.12)
|
| 806 |
+
comps.append(derivative_coh); weights.append(0.12)
|
| 807 |
+
comps.append(refactoring); weights.append(0.08)
|
| 808 |
+
return float(np.average(comps, weights=weights))
|
| 809 |
+
|
| 810 |
+
def _enhanced_origin_binding_score(self, matches: List[LinguisticTruthMatch], fractal: FractalSignature,
|
| 811 |
+
coin: NumismaticSignature, derivative_paths: List[DerivativePath]) -> float:
|
| 812 |
+
lang_scores = []
|
| 813 |
+
for m in matches:
|
| 814 |
+
layer_weight = 1.0
|
| 815 |
+
if m.language.era == LanguageEra.PRE_INVERSION_SUMERIAN:
|
| 816 |
+
layer_weight = 1.25
|
| 817 |
+
elif m.language.era == LanguageEra.SUMERIAN:
|
| 818 |
+
layer_weight = 1.15
|
| 819 |
+
derivative_boost = 1.0 + (0.2 * m.derivative_coherence)
|
| 820 |
+
lang_scores.append(m.confidence * layer_weight * derivative_boost)
|
| 821 |
+
|
| 822 |
+
lang_block = float(np.clip(np.mean(lang_scores), 0.0, 1.0)) if lang_scores else 0.4
|
| 823 |
+
fractal_block = float(np.clip(np.mean([
|
| 824 |
+
fractal.phi_alignment, fractal.hex_cadence, fractal.rosette_density,
|
| 825 |
+
fractal.branch_factor, fractal.crown_radiance, fractal.derivative_symmetry,
|
| 826 |
+
fractal.sexagesimal_harmonic_score
|
| 827 |
+
]), 0.0, 1.0))
|
| 828 |
+
|
| 829 |
+
numis_block = float(np.clip(np.mean([
|
| 830 |
+
1.0 if coin.sc_detected else 0.5,
|
| 831 |
+
coin.vi_cadence_score,
|
| 832 |
+
coin.goddess_device_overlap,
|
| 833 |
+
coin.metallurgical_continuity,
|
| 834 |
+
coin.iconographic_coherence,
|
| 835 |
+
coin.derivative_continuity
|
| 836 |
+
]), 0.0, 1.0))
|
| 837 |
+
|
| 838 |
+
derivative_block = 0.5
|
| 839 |
+
if derivative_paths:
|
| 840 |
+
avg_coherence = np.mean([p.calculate_derivative_coherence() for p in derivative_paths])
|
| 841 |
+
avg_innovation = np.mean([p.innovation_score for p in derivative_paths])
|
| 842 |
+
derivative_block = (avg_coherence * 0.6 + avg_innovation * 0.4)
|
| 843 |
+
|
| 844 |
+
return float(np.clip(
|
| 845 |
+
0.40 * lang_block + 0.25 * fractal_block + 0.20 * numis_block + 0.15 * derivative_block,
|
| 846 |
+
0.0, 1.0
|
| 847 |
+
))
|
| 848 |
+
|
| 849 |
+
def _classify_tier(self, score: float) -> str:
|
| 850 |
+
if score >= 0.92:
|
| 851 |
+
return "IRREFUTABLE_ORIGIN_BINDING"
|
| 852 |
+
if score >= 0.82:
|
| 853 |
+
return "STRONG_ORIGIN_BINDING"
|
| 854 |
+
if score >= 0.72:
|
| 855 |
+
return "MODERATE_ORIGIN_BINDING"
|
| 856 |
+
if score >= 0.62:
|
| 857 |
+
return "SUGGESTIVE_ORIGIN_BINDING"
|
| 858 |
+
return "INCONCLUSIVE"
|
| 859 |
+
|
| 860 |
+
# =============================================================================
|
| 861 |
+
# ADVANCED INTEGRATION ENGINE
|
| 862 |
+
# =============================================================================
|
| 863 |
+
|
| 864 |
+
class OmegaIntegrationEngine:
|
| 865 |
+
"""
|
| 866 |
+
Ultimate integration engine that unifies all modules through quantum coherence
|
| 867 |
+
and cultural sigma optimization
|
| 868 |
+
"""
|
| 869 |
+
|
| 870 |
+
def __init__(self):
|
| 871 |
+
# Core quantum systems
|
| 872 |
+
self.quantum_core = QuantumConsciousnessCore()
|
| 873 |
+
self.quantum_states: Dict[str, QuantumStateVector] = {}
|
| 874 |
+
|
| 875 |
+
# Integrated modules
|
| 876 |
+
self.civilization = AdvancedCivilizationEngine()
|
| 877 |
+
self.sovereignty = QuantumSovereigntyEngine()
|
| 878 |
+
self.finance = TemplarFinancialContinuum()
|
| 879 |
+
self.truth = VeilTruthEngine()
|
| 880 |
+
self.knowledge = AutonomousKnowledgeIntegration()
|
| 881 |
+
self.cultural_sigma = CulturalSigmaOptimizer()
|
| 882 |
+
self.historical = TatteredPastAnalyzer()
|
| 883 |
+
self.linguistic = EnhancedMultilinguisticTruthBinder() # Integrated linguistic engine
|
| 884 |
+
self.control_matrix = SaviorSuffererAnalyzer()
|
| 885 |
+
|
| 886 |
+
# Unified state
|
| 887 |
+
self.unified_state = UnifiedRealityState()
|
| 888 |
+
self.provenance_ledger = ProvenanceLedger()
|
| 889 |
+
|
| 890 |
+
# Quantum coherence maintenance
|
| 891 |
+
self.coherence_monitor = QuantumCoherenceMonitor()
|
| 892 |
+
|
| 893 |
+
async def execute_unified_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 894 |
+
"""Execute complete unified analysis across all modules"""
|
| 895 |
+
|
| 896 |
+
# Generate quantum context
|
| 897 |
+
quantum_context = await self._generate_quantum_context(input_data)
|
| 898 |
+
|
| 899 |
+
# Parallel module execution with quantum entanglement
|
| 900 |
+
tasks = {
|
| 901 |
+
'civilization': self.civilization.analyze_civilization_state(input_data, quantum_context),
|
| 902 |
+
'sovereignty': self.sovereignty.analyze_sovereignty(input_data, quantum_context),
|
| 903 |
+
'finance': self.finance.analyze_financial_continuum(input_data, quantum_context),
|
| 904 |
+
'truth': self.truth.verify_unified_truth(input_data, quantum_context),
|
| 905 |
+
'knowledge': self.knowledge.integrate_autonomous_knowledge(input_data, quantum_context),
|
| 906 |
+
'cultural': self.cultural_sigma.optimize_cultural_transmission(input_data, quantum_context),
|
| 907 |
+
'historical': self.historical.analyze_tattered_past(input_data, quantum_context),
|
| 908 |
+
'linguistic': self.linguistic.analyze(input_data.get('linguistic_content', ''), quantum_context),
|
| 909 |
+
'control': self.control_matrix.analyze_control_systems(input_data, quantum_context)
|
| 910 |
+
}
|
| 911 |
+
|
| 912 |
+
# Execute with quantum coherence preservation
|
| 913 |
+
results = {}
|
| 914 |
+
for module_name, task in tasks.items():
|
| 915 |
+
try:
|
| 916 |
+
module_result = await task
|
| 917 |
+
results[module_name] = module_result
|
| 918 |
+
|
| 919 |
+
# Entangle results quantumly
|
| 920 |
+
await self._entangle_module_results(module_name, module_result, quantum_context)
|
| 921 |
+
|
| 922 |
+
except Exception as e:
|
| 923 |
+
logger.error(f"Module {module_name} failed: {e}")
|
| 924 |
+
results[module_name] = {"error": str(e), "status": "failed"}
|
| 925 |
+
|
| 926 |
+
# Unified coherence synthesis
|
| 927 |
+
unified_result = await self._synthesize_unified_coherence(results, quantum_context)
|
| 928 |
+
|
| 929 |
+
# Update unified reality state
|
| 930 |
+
await self.unified_state.update_state(unified_result, quantum_context)
|
| 931 |
+
|
| 932 |
+
# Record provenance
|
| 933 |
+
self.provenance_ledger.record_operation("unified_analysis", input_data, unified_result)
|
| 934 |
+
|
| 935 |
+
return unified_result
|
| 936 |
+
|
| 937 |
+
async def _generate_quantum_context(self, input_data: Dict[str, Any]) -> QuantumStateVector:
|
| 938 |
+
"""Generate quantum context for unified analysis"""
|
| 939 |
+
|
| 940 |
+
# Create quantum state from input data
|
| 941 |
+
data_hash = hashlib.sha256(json.dumps(input_data, sort_keys=True).encode()).hexdigest()
|
| 942 |
+
seed = int(data_hash[:8], 16)
|
| 943 |
+
np.random.seed(seed)
|
| 944 |
+
|
| 945 |
+
# Generate quantum amplitudes
|
| 946 |
+
num_states = 64 # Quantum state dimension
|
| 947 |
+
amplitudes = np.random.randn(num_states) + 1j * np.random.randn(num_states)
|
| 948 |
+
amplitudes = amplitudes / np.linalg.norm(amplitudes) # Normalize
|
| 949 |
+
|
| 950 |
+
# Generate phase angles
|
| 951 |
+
phase_angles = np.angle(amplitudes)
|
| 952 |
+
|
| 953 |
+
# Calculate coherence level
|
| 954 |
+
coherence = self._calculate_quantum_coherence(amplitudes)
|
| 955 |
+
|
| 956 |
+
# Generate entanglement map
|
| 957 |
+
entanglement_map = self._generate_entanglement_map(amplitudes)
|
| 958 |
+
|
| 959 |
+
# Detect temporal echoes
|
| 960 |
+
temporal_echoes = await self._detect_temporal_echoes(input_data)
|
| 961 |
+
|
| 962 |
+
quantum_state = QuantumStateVector(
|
| 963 |
+
amplitudes=amplitudes,
|
| 964 |
+
phase_angles=phase_angles,
|
| 965 |
+
coherence_level=coherence,
|
| 966 |
+
entanglement_map=entanglement_map,
|
| 967 |
+
temporal_echoes=temporal_echoes
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
+
self.quantum_states[data_hash] = quantum_state
|
| 971 |
+
return quantum_state
|
| 972 |
+
|
| 973 |
+
def _calculate_quantum_coherence(self, amplitudes: np.ndarray) -> float:
|
| 974 |
+
"""Calculate quantum coherence level"""
|
| 975 |
+
density_matrix = np.outer(amplitudes, amplitudes.conj())
|
| 976 |
+
purity = np.trace(density_matrix @ density_matrix).real
|
| 977 |
+
return min(1.0, purity)
|
| 978 |
+
|
| 979 |
+
def _generate_entanglement_map(self, amplitudes: np.ndarray) -> Dict[Tuple[int, int], float]:
|
| 980 |
+
"""Generate quantum entanglement map between state components"""
|
| 981 |
+
entanglement_map = {}
|
| 982 |
+
num_states = len(amplitudes)
|
| 983 |
+
|
| 984 |
+
for i in range(num_states):
|
| 985 |
+
for j in range(i + 1, num_states):
|
| 986 |
+
# Calculate entanglement strength
|
| 987 |
+
entanglement = np.abs(amplitudes[i] * amplitudes[j].conj())
|
| 988 |
+
entanglement_map[(i, j)] = float(entanglement)
|
| 989 |
+
|
| 990 |
+
return entanglement_map
|
| 991 |
+
|
| 992 |
+
async def _detect_temporal_echoes(self, input_data: Dict[str, Any]) -> List[float]:
|
| 993 |
+
"""Detect temporal echoes from historical patterns"""
|
| 994 |
+
echoes = []
|
| 995 |
+
|
| 996 |
+
# Analyze for historical resonance
|
| 997 |
+
if 'historical_context' in input_data:
|
| 998 |
+
historical_resonance = await self.historical.calculate_temporal_resonance(input_data)
|
| 999 |
+
echoes.extend(historical_resonance)
|
| 1000 |
+
|
| 1001 |
+
# Linguistic temporal analysis
|
| 1002 |
+
if 'linguistic_content' in input_data:
|
| 1003 |
+
linguistic_echoes = await self.linguistic._detect_temporal_echoes(input_data)
|
| 1004 |
+
echoes.extend(linguistic_echoes)
|
| 1005 |
+
|
| 1006 |
+
return echoes if echoes else [0.7] # Default echo
|
| 1007 |
+
|
| 1008 |
+
async def _entangle_module_results(self, module_name: str, result: Dict[str, Any],
|
| 1009 |
+
quantum_context: QuantumStateVector):
|
| 1010 |
+
"""Quantum entangle module results with overall context"""
|
| 1011 |
+
|
| 1012 |
+
# Convert result to quantum representation
|
| 1013 |
+
result_hash = hashlib.sha256(json.dumps(result, sort_keys=True).encode()).hexdigest()
|
| 1014 |
+
result_vector = np.array([ord(c) for c in result_hash[:16]], dtype=complex)
|
| 1015 |
+
result_vector = result_vector / np.linalg.norm(result_vector)
|
| 1016 |
+
|
| 1017 |
+
# Entangle with quantum context
|
| 1018 |
+
for i in range(min(len(result_vector), len(quantum_context.amplitudes))):
|
| 1019 |
+
entanglement_strength = quantum_context.entanglement_map.get((i, i), 0.1)
|
| 1020 |
+
quantum_context.amplitudes[i] += entanglement_strength * result_vector[i]
|
| 1021 |
+
|
| 1022 |
+
# Renormalize
|
| 1023 |
+
quantum_context.amplitudes = quantum_context.amplitudes / np.linalg.norm(quantum_context.amplitudes)
|
| 1024 |
+
|
| 1025 |
+
async def _synthesize_unified_coherence(self, module_results: Dict[str, Any],
|
| 1026 |
+
quantum_context: QuantumStateVector) -> Dict[str, Any]:
|
| 1027 |
+
"""Synthesize unified coherence from all module results"""
|
| 1028 |
+
|
| 1029 |
+
# Calculate cross-module coherence
|
| 1030 |
+
coherence_metrics = await self._calculate_cross_module_coherence(module_results)
|
| 1031 |
+
|
| 1032 |
+
# Apply cultural sigma optimization
|
| 1033 |
+
cultural_optimization = await self.cultural_sigma.optimize_unified_output(
|
| 1034 |
+
module_results, quantum_context)
|
| 1035 |
+
|
| 1036 |
+
# Generate unified insight
|
| 1037 |
+
unified_insight = await self._generate_unified_insight(module_results, coherence_metrics)
|
| 1038 |
+
|
| 1039 |
+
# Calculate quantum certainty
|
| 1040 |
+
quantum_certainty = self._calculate_quantum_certainty(module_results, quantum_context)
|
| 1041 |
+
|
| 1042 |
+
return {
|
| 1043 |
+
"unified_insight": unified_insight,
|
| 1044 |
+
"coherence_metrics": coherence_metrics,
|
| 1045 |
+
"cultural_optimization": cultural_optimization,
|
| 1046 |
+
"quantum_certainty": quantum_certainty,
|
| 1047 |
+
"module_results": module_results,
|
| 1048 |
+
"quantum_state_hash": hashlib.sha256(quantum_context.amplitudes.tobytes()).hexdigest()[:16],
|
| 1049 |
+
"temporal_coordinates": {
|
| 1050 |
+
"processing_time": time.time(),
|
| 1051 |
+
"temporal_echo_strength": np.mean(quantum_context.temporal_echoes),
|
| 1052 |
+
"retrocausal_potential": await self._calculate_retrocausal_potential(module_results)
|
| 1053 |
+
}
|
| 1054 |
+
}
|
| 1055 |
+
|
| 1056 |
+
async def _calculate_cross_module_coherence(self, module_results: Dict[str, Any]) -> Dict[str, float]:
|
| 1057 |
+
"""Calculate coherence metrics across all modules"""
|
| 1058 |
+
|
| 1059 |
+
coherence_scores = {}
|
| 1060 |
+
module_names = list(module_results.keys())
|
| 1061 |
+
|
| 1062 |
+
for i, module_a in enumerate(module_names):
|
| 1063 |
+
for j, module_b in enumerate(module_names[i+1:], i+1):
|
| 1064 |
+
if module_a != module_b:
|
| 1065 |
+
coherence = await self._calculate_module_coherence(
|
| 1066 |
+
module_results[module_a], module_results[module_b])
|
| 1067 |
+
key = f"{module_a}_{module_b}_coherence"
|
| 1068 |
+
coherence_scores[key] = coherence
|
| 1069 |
+
|
| 1070 |
+
# Overall coherence
|
| 1071 |
+
if coherence_scores:
|
| 1072 |
+
overall_coherence = np.mean(list(coherence_scores.values()))
|
| 1073 |
+
else:
|
| 1074 |
+
overall_coherence = 0.7
|
| 1075 |
+
|
| 1076 |
+
coherence_scores["overall_coherence"] = overall_coherence
|
| 1077 |
+
return coherence_scores
|
| 1078 |
+
|
| 1079 |
+
async def _calculate_module_coherence(self, result_a: Dict[str, Any], result_b: Dict[str, Any]) -> float:
|
| 1080 |
+
"""Calculate coherence between two module results"""
|
| 1081 |
+
|
| 1082 |
+
# Convert results to comparable vectors
|
| 1083 |
+
vector_a = self._result_to_vector(result_a)
|
| 1084 |
+
vector_b = self._result_to_vector(result_b)
|
| 1085 |
+
|
| 1086 |
+
if len(vector_a) == 0 or len(vector_b) == 0:
|
| 1087 |
+
return 0.5
|
| 1088 |
+
|
| 1089 |
+
# Calculate cosine similarity
|
| 1090 |
+
similarity = 1 - cosine(vector_a, vector_b)
|
| 1091 |
+
return max(0.0, min(1.0, similarity))
|
| 1092 |
+
|
| 1093 |
+
def _result_to_vector(self, result: Dict[str, Any]) -> np.ndarray:
|
| 1094 |
+
"""Convert result dictionary to numerical vector"""
|
| 1095 |
+
vector = []
|
| 1096 |
+
|
| 1097 |
+
def extract_numbers(obj):
|
| 1098 |
+
if isinstance(obj, (int, float)):
|
| 1099 |
+
vector.append(obj)
|
| 1100 |
+
elif isinstance(obj, dict):
|
| 1101 |
+
for value in obj.values():
|
| 1102 |
+
extract_numbers(value)
|
| 1103 |
+
elif isinstance(obj, list):
|
| 1104 |
+
for item in obj:
|
| 1105 |
+
extract_numbers(item)
|
| 1106 |
+
|
| 1107 |
+
extract_numbers(result)
|
| 1108 |
+
return np.array(vector) if vector else np.array([0.5])
|
| 1109 |
+
|
| 1110 |
+
async def _generate_unified_insight(self, module_results: Dict[str, Any],
|
| 1111 |
+
coherence_metrics: Dict[str, float]) -> Dict[str, Any]:
|
| 1112 |
+
"""Generate unified insight from all module results"""
|
| 1113 |
+
|
| 1114 |
+
insights = []
|
| 1115 |
+
confidence_scores = []
|
| 1116 |
+
|
| 1117 |
+
# Extract key insights from each module
|
| 1118 |
+
for module_name, result in module_results.items():
|
| 1119 |
+
if "error" not in result:
|
| 1120 |
+
module_insight = await self._extract_module_insight(module_name, result)
|
| 1121 |
+
insights.append(module_insight)
|
| 1122 |
+
|
| 1123 |
+
# Calculate confidence
|
| 1124 |
+
confidence = result.get("confidence", 0.5)
|
| 1125 |
+
confidence_scores.append(confidence)
|
| 1126 |
+
|
| 1127 |
+
if not insights:
|
| 1128 |
+
return {"primary_insight": "Insufficient data", "confidence": 0.1}
|
| 1129 |
+
|
| 1130 |
+
# Synthesize unified insight
|
| 1131 |
+
primary_insight = await self._synthesize_primary_insight(insights)
|
| 1132 |
+
overall_confidence = np.mean(confidence_scores) * coherence_metrics.get("overall_coherence", 0.7)
|
| 1133 |
+
|
| 1134 |
+
return {
|
| 1135 |
+
"primary_insight": primary_insight,
|
| 1136 |
+
"supporting_insights": insights[:3], # Top 3 supporting insights
|
| 1137 |
+
"confidence": overall_confidence,
|
| 1138 |
+
"coherence_strength": coherence_metrics.get("overall_coherence", 0.7),
|
| 1139 |
+
"quantum_integration_level": "high" if overall_confidence > 0.8 else "medium"
|
| 1140 |
+
}
|
| 1141 |
+
|
| 1142 |
+
async def _extract_module_insight(self, module_name: str, result: Dict[str, Any]) -> Dict[str, Any]:
|
| 1143 |
+
"""Extract key insight from module result"""
|
| 1144 |
+
|
| 1145 |
+
if module_name == "civilization":
|
| 1146 |
+
return {
|
| 1147 |
+
"module": "civilization",
|
| 1148 |
+
"insight": result.get("system_health", "Stable operation"),
|
| 1149 |
+
"significance": result.get("overall_reliability", 0.5)
|
| 1150 |
+
}
|
| 1151 |
+
elif module_name == "sovereignty":
|
| 1152 |
+
return {
|
| 1153 |
+
"module": "sovereignty",
|
| 1154 |
+
"insight": result.get("recommendation_level", "Maintain current protocols"),
|
| 1155 |
+
"significance": result.get("efficacy_score", 0.5)
|
| 1156 |
+
}
|
| 1157 |
+
elif module_name == "truth":
|
| 1158 |
+
return {
|
| 1159 |
+
"module": "truth",
|
| 1160 |
+
"insight": result.get("quality_assessment", "Moderate verification"),
|
| 1161 |
+
"significance": result.get("overall_confidence", 0.5)
|
| 1162 |
+
}
|
| 1163 |
+
elif module_name == "linguistic":
|
| 1164 |
+
return {
|
| 1165 |
+
"module": "linguistic",
|
| 1166 |
+
"insight": f"Origin binding: {result.get('proof_tier', 'UNKNOWN')}",
|
| 1167 |
+
"significance": result.get("origin_binding_score", 0.5)
|
| 1168 |
+
}
|
| 1169 |
+
else:
|
| 1170 |
+
# Generic insight extraction
|
| 1171 |
+
return {
|
| 1172 |
+
"module": module_name,
|
| 1173 |
+
"insight": "Operational",
|
| 1174 |
+
"significance": 0.5
|
| 1175 |
+
}
|
| 1176 |
+
|
| 1177 |
+
async def _synthesize_primary_insight(self, insights: List[Dict[str, Any]]) -> str:
|
| 1178 |
+
"""Synthesize primary insight from module insights"""
|
| 1179 |
+
|
| 1180 |
+
if not insights:
|
| 1181 |
+
return "System operational at baseline levels"
|
| 1182 |
+
|
| 1183 |
+
# Simple synthesis - in practice would use more advanced NLP
|
| 1184 |
+
insight_texts = [insight["insight"] for insight in insights if isinstance(insight["insight"], str)]
|
| 1185 |
+
|
| 1186 |
+
if not insight_texts:
|
| 1187 |
+
return "Multidimensional analysis complete"
|
| 1188 |
+
|
| 1189 |
+
# Return the most significant insight
|
| 1190 |
+
significant_insights = sorted(insights, key=lambda x: x.get("significance", 0), reverse=True)
|
| 1191 |
+
return significant_insights[0]["insight"]
|
| 1192 |
+
|
| 1193 |
+
def _calculate_quantum_certainty(self, module_results: Dict[str, Any],
|
| 1194 |
+
quantum_context: QuantumStateVector) -> float:
|
| 1195 |
+
"""Calculate overall quantum certainty"""
|
| 1196 |
+
|
| 1197 |
+
# Base certainty from quantum coherence
|
| 1198 |
+
base_certainty = quantum_context.coherence_level
|
| 1199 |
+
|
| 1200 |
+
# Module confidence contribution
|
| 1201 |
+
module_confidences = []
|
| 1202 |
+
for result in module_results.values():
|
| 1203 |
+
if "error" not in result:
|
| 1204 |
+
confidence = result.get("confidence", 0.5)
|
| 1205 |
+
module_confidences.append(confidence)
|
| 1206 |
+
|
| 1207 |
+
if module_confidences:
|
| 1208 |
+
module_contribution = np.mean(module_confidences) * 0.5
|
| 1209 |
+
else:
|
| 1210 |
+
module_contribution = 0.25
|
| 1211 |
+
|
| 1212 |
+
# Entanglement strength contribution
|
| 1213 |
+
entanglement_strength = np.mean(list(quantum_context.entanglement_map.values())) if quantum_context.entanglement_map else 0.1
|
| 1214 |
+
|
| 1215 |
+
certainty = (base_certainty * 0.4) + (module_contribution * 0.4) + (entanglement_strength * 0.2)
|
| 1216 |
+
return min(1.0, certainty)
|
| 1217 |
+
|
| 1218 |
+
async def _calculate_retrocausal_potential(self, module_results: Dict[str, Any]) -> float:
|
| 1219 |
+
"""Calculate retrocausal potential from historical and linguistic analysis"""
|
| 1220 |
+
|
| 1221 |
+
historical_potential = module_results.get("historical", {}).get("retrocausal_potential", 0.3)
|
| 1222 |
+
linguistic_potential = module_results.get("linguistic", {}).get("origin_binding_score", 0.3)
|
| 1223 |
+
|
| 1224 |
+
return (historical_potential + linguistic_potential) / 2
|
| 1225 |
+
|
| 1226 |
+
# =============================================================================
|
| 1227 |
+
# STUB IMPLEMENTATIONS FOR REMAINING MODULES
|
| 1228 |
+
# =============================================================================
|
| 1229 |
+
|
| 1230 |
+
class AdvancedCivilizationEngine:
|
| 1231 |
+
async def analyze_civilization_state(self, input_data, quantum_context):
|
| 1232 |
+
return {"consciousness_metrics": {"neural_coherence": 0.8}, "economic_metrics": {"stability": 0.7}, "confidence": 0.85}
|
| 1233 |
+
|
| 1234 |
+
class QuantumSovereigntyEngine:
|
| 1235 |
+
async def analyze_sovereignty(self, input_data, quantum_context):
|
| 1236 |
+
return {"control_analysis": {"control_density": 0.3}, "escape_protocols": {}, "confidence": 0.88}
|
| 1237 |
+
|
| 1238 |
+
class TemplarFinancialContinuum:
|
| 1239 |
+
async def analyze_financial_continuum(self, input_data, quantum_context):
|
| 1240 |
+
return {"financial_health": 0.8, "continuum_strength": 0.75, "confidence": 0.8}
|
| 1241 |
+
|
| 1242 |
+
class VeilTruthEngine:
|
| 1243 |
+
async def verify_unified_truth(self, input_data, quantum_context):
|
| 1244 |
+
return {"information_metrics": {}, "bayesian_metrics": {"posterior_probability": 0.8}, "confidence": 0.82}
|
| 1245 |
+
|
| 1246 |
+
class AutonomousKnowledgeIntegration:
|
| 1247 |
+
async def integrate_autonomous_knowledge(self, input_data, quantum_context):
|
| 1248 |
+
return {"knowledge_coherence": 0.7, "autonomous_insights": 3, "confidence": 0.75}
|
| 1249 |
+
|
| 1250 |
+
class CulturalSigmaOptimizer:
|
| 1251 |
+
async def optimize_cultural_transmission(self, input_data, quantum_context):
|
| 1252 |
+
return {"sigma_optimization": 0.8, "cultural_coherence": 0.75, "confidence": 0.8}
|
| 1253 |
+
|
| 1254 |
+
async def optimize_unified_output(self, module_results, quantum_context):
|
| 1255 |
+
return {"optimized_potential": 0.8, "synergy_level": 0.7}
|
| 1256 |
+
|
| 1257 |
+
class TatteredPastAnalyzer:
|
| 1258 |
+
async def analyze_tattered_past(self, input_data, quantum_context):
|
| 1259 |
+
return {"historical_coherence": 0.8, "retrocausal_potential": 0.6, "confidence": 0.8}
|
| 1260 |
+
|
| 1261 |
+
async def calculate_temporal_resonance(self, input_data):
|
| 1262 |
+
return [0.7, 0.8, 0.6]
|
| 1263 |
+
|
| 1264 |
+
class SaviorSuffererAnalyzer:
|
| 1265 |
+
async def analyze_control_systems(self, input_data, quantum_context):
|
| 1266 |
+
return {"control_efficiency": 0.6, "freedom_illusion": 0.7, "confidence": 0.8}
|
| 1267 |
+
|
| 1268 |
+
@dataclass
|
| 1269 |
+
class UnifiedRealityState:
|
| 1270 |
+
consciousness_layer: Dict[str, float] = field(default_factory=dict)
|
| 1271 |
+
economic_layer: Dict[str, float] = field(default_factory=dict)
|
| 1272 |
+
sovereignty_layer: Dict[str, float] = field(default_factory=dict)
|
| 1273 |
+
truth_layer: Dict[str, float] = field(default_factory=dict)
|
| 1274 |
+
historical_layer: Dict[str, float] = field(default_factory=dict)
|
| 1275 |
+
cultural_layer: Dict[str, float] = field(default_factory=dict)
|
| 1276 |
+
quantum_coherence: float = 0.7
|
| 1277 |
+
temporal_stability: float = 0.8
|
| 1278 |
+
cross_domain_synergy: float = 0.6
|
| 1279 |
+
last_update: float = field(default_factory=time.time)
|
| 1280 |
+
|
| 1281 |
+
async def update_state(self, unified_result: Dict[str, Any], quantum_context: QuantumStateVector):
|
| 1282 |
+
module_results = unified_result.get("module_results", {})
|
| 1283 |
+
|
| 1284 |
+
if "civilization" in module_results:
|
| 1285 |
+
self.consciousness_layer = module_results["civilization"].get("consciousness_metrics", {})
|
| 1286 |
+
self.economic_layer = module_results["civilization"].get("economic_metrics", {})
|
| 1287 |
+
|
| 1288 |
+
if "sovereignty" in module_results:
|
| 1289 |
+
self.sovereignty_layer = module_results["sovereignty"].get("control_analysis", {})
|
| 1290 |
+
|
| 1291 |
+
if "truth" in module_results:
|
| 1292 |
+
self.truth_layer = module_results["truth"]
|
| 1293 |
+
|
| 1294 |
+
self.quantum_coherence = quantum_context.coherence_level
|
| 1295 |
+
self.temporal_stability = unified_result.get("temporal_coordinates", {}).get("temporal_echo_strength", 0.7)
|
| 1296 |
+
self.cross_domain_synergy = unified_result.get("coherence_metrics", {}).get("overall_coherence", 0.6)
|
| 1297 |
+
self.last_update = time.time()
|
| 1298 |
+
|
| 1299 |
+
def get_state_summary(self) -> Dict[str, Any]:
|
| 1300 |
+
return {
|
| 1301 |
+
"overall_coherence": self.quantum_coherence,
|
| 1302 |
+
"temporal_stability": self.temporal_stability,
|
| 1303 |
+
"cross_domain_synergy": self.cross_domain_synergy,
|
| 1304 |
+
"consciousness_health": self.consciousness_layer.get("neural_coherence", 0.5),
|
| 1305 |
+
"economic_stability": self.economic_layer.get("stability", 0.5),
|
| 1306 |
+
"sovereignty_index": 1.0 - self.sovereignty_layer.get("control_density", 0.5),
|
| 1307 |
+
"truth_confidence": self.truth_layer.get("truth_confidence", 0.5),
|
| 1308 |
+
"time_since_update": time.time() - self.last_update
|
| 1309 |
+
}
|
| 1310 |
+
|
| 1311 |
+
class ProvenanceLedger:
|
| 1312 |
+
def __init__(self):
|
| 1313 |
+
self.operations = deque(maxlen=10000)
|
| 1314 |
+
self.quantum_states = {}
|
| 1315 |
+
|
| 1316 |
+
def record_operation(self, operation_type: str, input_data: Dict[str, Any], output_data: Dict[str, Any]):
|
| 1317 |
+
operation_record = {
|
| 1318 |
+
"timestamp": time.time(),
|
| 1319 |
+
"operation_type": operation_type,
|
| 1320 |
+
"input_hash": hashlib.sha256(json.dumps(input_data, sort_keys=True).encode()).hexdigest()[:16],
|
| 1321 |
+
"output_hash": hashlib.sha256(json.dumps(output_data, sort_keys=True).encode()).hexdigest()[:16],
|
| 1322 |
+
"quantum_context": output_data.get("quantum_state_hash", "unknown")
|
| 1323 |
+
}
|
| 1324 |
+
self.operations.append(operation_record)
|
| 1325 |
+
|
| 1326 |
+
def get_recent_operations(self, count: int = 100) -> List[Dict[str, Any]]:
|
| 1327 |
+
return list(self.operations)[-count:]
|
| 1328 |
+
|
| 1329 |
+
class QuantumCoherenceMonitor:
|
| 1330 |
+
def __init__(self):
|
| 1331 |
+
self.coherence_history = deque(maxlen=1000)
|
| 1332 |
+
self.entanglement_metrics = {}
|
| 1333 |
+
|
| 1334 |
+
async def monitor_coherence(self, quantum_state: QuantumStateVector) -> Dict[str, float]:
|
| 1335 |
+
metrics = {
|
| 1336 |
+
"coherence_level": quantum_state.coherence_level,
|
| 1337 |
+
"entanglement_strength": np.mean(list(quantum_state.entanglement_map.values())) if quantum_state.entanglement_map else 0.0,
|
| 1338 |
+
"temporal_echo_strength": np.mean(quantum_state.temporal_echoes) if quantum_state.temporal_echoes else 0.0,
|
| 1339 |
+
"phase_stability": np.std(quantum_state.phase_angles) if len(quantum_state.phase_angles) > 0 else 0.0
|
| 1340 |
+
}
|
| 1341 |
+
self.coherence_history.append(metrics)
|
| 1342 |
+
return metrics
|
| 1343 |
+
|
| 1344 |
+
def get_coherence_trend(self) -> float:
|
| 1345 |
+
if len(self.coherence_history) < 2:
|
| 1346 |
+
return 0.0
|
| 1347 |
+
recent_coherence = [m["coherence_level"] for m in self.coherence_history]
|
| 1348 |
+
return np.polyfit(range(len(recent_coherence)), recent_coherence, 1)[0]
|
| 1349 |
+
|
| 1350 |
+
# =============================================================================
|
| 1351 |
+
# DEMONSTRATION AND MAIN EXECUTION
|
| 1352 |
+
# =============================================================================
|
| 1353 |
+
|
| 1354 |
+
async def demonstrate_unified_system():
|
| 1355 |
+
"""Demonstrate the complete unified Omega Sovereignty Stack"""
|
| 1356 |
+
|
| 1357 |
+
print("π OMEGA SOVEREIGNTY STACK - QUANTUM UNIFIED FRAMEWORK v7.0")
|
| 1358 |
+
print("=" * 80)
|
| 1359 |
+
|
| 1360 |
+
# Initialize the integrated engine
|
| 1361 |
+
engine = OmegaIntegrationEngine()
|
| 1362 |
+
|
| 1363 |
+
# Sample input data representing multi-dimensional reality state
|
| 1364 |
+
sample_input = {
|
| 1365 |
+
"neural_data": np.random.normal(0, 1, 512),
|
| 1366 |
+
"economic_input": {"agent_A": 100.0, "agent_B": 75.0, "agent_C": 50.0},
|
| 1367 |
+
"institutional_data": np.random.normal(0.5, 0.2, 100),
|
| 1368 |
+
"truth_claim": {
|
| 1369 |
+
"content": "Consciousness is fundamental to reality",
|
| 1370 |
+
"evidence": ["Neuroscientific studies", "Philosophical arguments", "Mystical experiences"],
|
| 1371 |
+
"context": {"domain": "metaphysics", "urgency": 0.8}
|
| 1372 |
+
},
|
| 1373 |
+
"historical_context": {
|
| 1374 |
+
"civilization_cycle": 6,
|
| 1375 |
+
"current_phase": "catastrophe_imminence",
|
| 1376 |
+
"defense_infrastructure": 0.7
|
| 1377 |
+
},
|
| 1378 |
+
"linguistic_content": "Inanna's eight-pointed star (π) crowns Liberty; SC temple seal refactored as Senatus Consulto. Sexagesimal base-60 VI cadence echoes in 666.",
|
| 1379 |
+
"control_system_analysis": {
|
| 1380 |
+
"slavery_sophistication": 0.8,
|
| 1381 |
+
"freedom_illusion": 0.75
|
| 1382 |
+
},
|
| 1383 |
+
"content_type": "comprehensive_analysis",
|
| 1384 |
+
"maturity": "established",
|
| 1385 |
+
"urgency": 0.9,
|
| 1386 |
+
"quality": 0.85,
|
| 1387 |
+
"relevance": 0.95
|
| 1388 |
+
}
|
| 1389 |
+
|
| 1390 |
+
print("\nπ EXECUTING UNIFIED ANALYSIS...")
|
| 1391 |
+
start_time = time.time()
|
| 1392 |
+
|
| 1393 |
+
# Execute complete unified analysis
|
| 1394 |
+
results = await engine.execute_unified_analysis(sample_input)
|
| 1395 |
+
|
| 1396 |
+
execution_time = time.time() - start_time
|
| 1397 |
+
|
| 1398 |
+
print(f"\nβ
ANALYSIS COMPLETE (Time: {execution_time:.2f}s)")
|
| 1399 |
+
print("=" * 80)
|
| 1400 |
+
|
| 1401 |
+
# Display key results
|
| 1402 |
+
unified_insight = results.get("unified_insight", {})
|
| 1403 |
+
coherence_metrics = results.get("coherence_metrics", {})
|
| 1404 |
+
|
| 1405 |
+
print(f"\nπ― PRIMARY UNIFIED INSIGHT:")
|
| 1406 |
+
print(f" {unified_insight.get('primary_insight', 'No insight generated')}")
|
| 1407 |
+
print(f" Confidence: {unified_insight.get('confidence', 0.0):.3f}")
|
| 1408 |
+
|
| 1409 |
+
print(f"\nπ CROSS-MODULE COHERENCE:")
|
| 1410 |
+
print(f" Overall Coherence: {coherence_metrics.get('overall_coherence', 0.0):.3f}")
|
| 1411 |
+
|
| 1412 |
+
print(f"\nβοΈ QUANTUM METRICS:")
|
| 1413 |
+
print(f" Quantum Certainty: {results.get('quantum_certainty', 0.0):.3f}")
|
| 1414 |
+
print(f" Retrocausal Potential: {results.get('temporal_coordinates', {}).get('retrocausal_potential', 0.0):.3f}")
|
| 1415 |
+
|
| 1416 |
+
print(f"\nπ MODULE PERFORMANCE:")
|
| 1417 |
+
module_results = results.get("module_results", {})
|
| 1418 |
+
for module_name, module_result in module_results.items():
|
| 1419 |
+
confidence = module_result.get("confidence", 0.0)
|
| 1420 |
+
status = "β
" if confidence > 0.7 else "β οΈ" if confidence > 0.5 else "β"
|
| 1421 |
+
print(f" {status} {module_name}: {confidence:.3f}")
|
| 1422 |
+
|
| 1423 |
+
print(f"\nπ UNIFIED REALITY STATE:")
|
| 1424 |
+
state_summary = engine.unified_state.get_state_summary()
|
| 1425 |
+
for metric, value in state_summary.items():
|
| 1426 |
+
if isinstance(value, float):
|
| 1427 |
+
print(f" {metric}: {value:.3f}")
|
| 1428 |
+
|
| 1429 |
+
print(f"\nπ« SYSTEM STATUS:")
|
| 1430 |
+
provenance_count = len(engine.provenance_ledger.operations)
|
| 1431 |
+
quantum_states_count = len(engine.quantum_states)
|
| 1432 |
+
coherence_trend = engine.coherence_monitor.get_coherence_trend()
|
| 1433 |
+
|
| 1434 |
+
print(f" Provenance Records: {provenance_count}")
|
| 1435 |
+
print(f" Quantum States: {quantum_states_count}")
|
| 1436 |
+
print(f" Coherence Trend: {coherence_trend:+.3f}/op")
|
| 1437 |
+
|
| 1438 |
+
print(f"\nπ ULTIMATE SYNTHESIS:")
|
| 1439 |
+
print(" The Omega Sovereignty Stack now operates as a unified quantum-coherent")
|
| 1440 |
+
print(" system, integrating consciousness, sovereignty, finance, truth,")
|
| 1441 |
+
print(" history, linguistics, and control analysis into a single framework.")
|
| 1442 |
+
print(" This represents the culmination of all previous cycles' efforts.")
|
| 1443 |
+
print(" Reality is now being analyzed through 8+ simultaneous dimensions.")
|
| 1444 |
+
print(" The escape hatch protocols are quantum-entangled with truth verification.")
|
| 1445 |
+
print(" Cultural sigma optimization ensures coherent propagation.")
|
| 1446 |
+
print(" We are no longer analyzing reality - we are co-creating it.")
|
| 1447 |
+
|
| 1448 |
+
if __name__ == "__main__":
|
| 1449 |
+
# Configure logging
|
| 1450 |
+
logging.basicConfig(
|
| 1451 |
+
level=logging.INFO,
|
| 1452 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s"
|
| 1453 |
+
)
|
| 1454 |
+
|
| 1455 |
+
# Run demonstration
|
| 1456 |
+
asyncio.run(demonstrate_unified_system())
|