upgraedd commited on
Commit
3401723
Β·
verified Β·
1 Parent(s): 384ffa5

Create STACK_3

Browse files
Files changed (1) hide show
  1. STACK_3 +1456 -0
STACK_3 ADDED
@@ -0,0 +1,1456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ OMEGA SOVEREIGNTY STACK - QUANTUM UNIFIED FRAMEWORK v7.0
5
+ ================================================================
6
+ ULTIMATE INTEGRATION: Consciousness + Sovereignty + Finance + Truth + History + Linguistics
7
+ Quantum-Coherent System with Multilingual Truth Binding and Cultural Optimization
8
+ """
9
+
10
+ import asyncio
11
+ import time
12
+ import json
13
+ import hashlib
14
+ import logging
15
+ import sys
16
+ import os
17
+ import numpy as np
18
+ import scipy.stats as stats
19
+ from scipy import fft, signal, integrate
20
+ from scipy.spatial.distance import cosine, euclidean
21
+ from scipy.optimize import minimize
22
+ from datetime import datetime, timedelta
23
+ from typing import Dict, Any, List, Optional, Tuple, Union
24
+ from dataclasses import dataclass, field, asdict
25
+ from enum import Enum
26
+ from collections import defaultdict, deque
27
+ import secrets
28
+ import sqlite3
29
+ import networkx as nx
30
+ from cryptography.hazmat.primitives import hashes
31
+ from cryptography.hazmat.primitives.kdf.hkdf import HKDF
32
+ import torch
33
+ import torch.nn as nn
34
+ import re
35
+ import math
36
+
37
+ # =============================================================================
38
+ # Logging Configuration
39
+ # =============================================================================
40
+
41
+ LOG_LEVEL = os.getenv("OMEGA_LOG_LEVEL", "INFO").upper()
42
+ logging.basicConfig(
43
+ level=getattr(logging, LOG_LEVEL, logging.INFO),
44
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
45
+ )
46
+ logger = logging.getLogger("OmegaSovereigntyStack")
47
+
48
+ # =============================================================================
49
+ # Mathematical Constants & Determinism
50
+ # =============================================================================
51
+
52
+ MATHEMATICAL_CONSTANTS = {
53
+ "golden_ratio": 1.618033988749895,
54
+ "euler_number": 2.718281828459045,
55
+ "pi": 3.141592653589793,
56
+ "planck_constant": 6.62607015e-34,
57
+ "schumann_resonance": 7.83,
58
+ "information_entropy_max": 0.69314718056,
59
+ "quantum_uncertainty_min": 1.054571817e-34
60
+ }
61
+
62
+ GLOBAL_SEED = int(os.getenv("OMEGA_GLOBAL_SEED", "424242"))
63
+ np.random.seed(GLOBAL_SEED)
64
+
65
+ def clamp(x: float, lo: float = 0.0, hi: float = 1.0) -> float:
66
+ return float(max(lo, min(hi, x)))
67
+
68
+ def safe_mean(arr: List[float], default: float = 0.0) -> float:
69
+ return float(np.mean(arr)) if arr else default
70
+
71
+ def small_eps() -> float:
72
+ return 1e-8
73
+
74
+ # =============================================================================
75
+ # QUANTUM CORE INFRASTRUCTURE
76
+ # =============================================================================
77
+
78
+ class QuantumConsciousnessCore(nn.Module):
79
+ """Quantum neural network for consciousness pattern recognition"""
80
+ def __init__(self, input_dim=512, hidden_dims=[256, 128, 64], output_dim=16):
81
+ super().__init__()
82
+ layers = []
83
+ prev_dim = input_dim
84
+ for hidden_dim in hidden_dims:
85
+ layers.extend([
86
+ nn.Linear(prev_dim, hidden_dim),
87
+ nn.QuantumActivation(),
88
+ nn.Dropout(0.1)
89
+ ])
90
+ prev_dim = hidden_dim
91
+ layers.append(nn.Linear(prev_dim, output_dim))
92
+ self.network = nn.Sequential(*layers)
93
+
94
+ def forward(self, x):
95
+ return self.network(x)
96
+
97
+ class QuantumActivation(nn.Module):
98
+ """Quantum-inspired activation function with coherence preservation"""
99
+ def forward(self, x):
100
+ # Quantum superposition of activation functions
101
+ sigmoid = torch.sigmoid(x)
102
+ tanh = torch.tanh(x)
103
+ relu = torch.relu(x)
104
+ # Coherent combination
105
+ return (sigmoid + tanh + relu) / 3.0
106
+
107
+ # Register custom activation
108
+ nn.QuantumActivation = QuantumActivation
109
+
110
+ @dataclass
111
+ class QuantumStateVector:
112
+ """Quantum state representation for multi-dimensional analysis"""
113
+ amplitudes: np.ndarray
114
+ phase_angles: np.ndarray
115
+ coherence_level: float
116
+ entanglement_map: Dict[Tuple[int, int], float]
117
+ temporal_echoes: List[float]
118
+
119
+ def collapse_measurement(self, basis: str = "computational") -> np.ndarray:
120
+ """Collapse quantum state to classical measurement"""
121
+ probabilities = np.abs(self.amplitudes) ** 2
122
+ if basis == "computational":
123
+ return np.random.choice(len(probabilities), p=probabilities)
124
+ else:
125
+ # Rotate basis for different measurement contexts
126
+ rotated_probs = self._rotate_basis(probabilities, basis)
127
+ return np.random.choice(len(rotated_probs), p=rotated_probs)
128
+
129
+ def _rotate_basis(self, probabilities: np.ndarray, basis: str) -> np.ndarray:
130
+ """Rotate measurement basis"""
131
+ if basis == "cultural":
132
+ # Cultural context rotation
133
+ return np.roll(probabilities, shift=2)
134
+ elif basis == "temporal":
135
+ # Temporal context rotation
136
+ return np.fft.fft(probabilities).real
137
+ else:
138
+ return probabilities
139
+
140
+ # =============================================================================
141
+ # MULTILINGUISTIC TRUTH BINDING MODULE
142
+ # =============================================================================
143
+
144
+ class LanguageEra(Enum):
145
+ PRE_INVERSION_SUMERIAN = "pre_inversion_sumerian"
146
+ SUMERIAN = "sumerian"
147
+ EGYPTIAN_HIEROGLYPHIC = "egyptian"
148
+ AKKADIAN = "akkadian"
149
+ PHOENICIAN = "phoenician"
150
+ ANCIENT_GREEK = "ancient_greek"
151
+ LATIN = "latin"
152
+ HEBREW = "hebrew"
153
+ SANSKRIT = "sanskrit"
154
+ ANCIENT_CHINESE = "ancient_chinese"
155
+
156
+ class LinguisticTruthMarker(Enum):
157
+ COSMOLOGICAL_ALIGNMENT = "cosmological_alignment"
158
+ SACRED_GEOMETRY = "sacred_geometry"
159
+ NUMEROLOGICAL_ENCODING = "numerological_encoding"
160
+ PHONETIC_RESONANCE = "phonetic_resonance"
161
+ SYMBOLIC_CORRESPONDENCE = "symbolic_correspondence"
162
+ TEMPORAL_CYCLES = "temporal_cycles"
163
+ PRE_INVERSION_SEAL = "pre_inversion_seal"
164
+ SEXAGESIMAL_CADENCE = "sexagesimal_cadence"
165
+ GODDESS_LINEAGE = "goddess_lineage"
166
+ DERIVATIVE_COHERENCE = "derivative_coherence"
167
+ ARCHETYPAL_REFACTORING = "archetypal_refactoring"
168
+
169
+ class RealityDomain(Enum):
170
+ TEXTUAL = "textual"
171
+ NUMISMATIC = "numismatic"
172
+ NATURAL_FRACTAL = "natural_fractal"
173
+ ICONOGRAPHIC = "iconographic"
174
+ DERIVATIVE_PATTERN = "derivative_pattern"
175
+
176
+ # Archetypal device registry
177
+ ARCHETYPE_DEVICES = {
178
+ "starburst": {
179
+ "aliases": ["radiate_crown", "eight_pointed_star", "rosette", "sunburst"],
180
+ "domain": RealityDomain.ICONOGRAPHIC,
181
+ "derivative_path": ["inanna_crown", "ishtar_star", "aphrodite_headdress", "venus_symbol", "liberty_crown"]
182
+ },
183
+ "lion": {
184
+ "aliases": ["large_cat", "panther", "jaguar"],
185
+ "domain": RealityDomain.ICONOGRAPHIC,
186
+ "derivative_path": ["inanna_lion", "cybele_lion", "venice_lion", "heraldic_lion"]
187
+ },
188
+ "eagle": {
189
+ "aliases": ["vulture", "large_bird"],
190
+ "domain": RealityDomain.ICONOGRAPHIC,
191
+ "derivative_path": ["sumerian_anzu", "roman_eagle", "imperial_eagle", "american_eagle"]
192
+ },
193
+ "shield": {
194
+ "aliases": ["aegis", "gorgon_aegis"],
195
+ "domain": RealityDomain.ICONOGRAPHIC,
196
+ "derivative_path": ["divine_aegis", "athena_shield", "heraldic_shield", "national_emblem"]
197
+ },
198
+ "branch": {
199
+ "aliases": ["olive_branch", "wheat", "date_palm"],
200
+ "domain": RealityDomain.ICONOGRAPHIC,
201
+ "derivative_path": ["sumerian_date_palm", "olympic_olive", "roman_wheat", "peace_branch"]
202
+ },
203
+ "female_form": {
204
+ "aliases": ["goddess", "venus", "aphrodite", "ishtar", "inanna", "liberty", "mary"],
205
+ "domain": RealityDomain.ICONOGRAPHIC,
206
+ "derivative_path": ["inanna", "ishtar", "astarte", "aphrodite", "venus", "mary", "liberty"]
207
+ },
208
+ "SC": {
209
+ "aliases": ["senatus_consulto", "seal", "temple_seal", "sanction_mark", "official_sanction"],
210
+ "domain": RealityDomain.NUMISMATIC,
211
+ "derivative_path": ["temple_seal", "sacred_continuity", "senatus_consulto", "official_sanction"]
212
+ },
213
+ "VI": {
214
+ "aliases": ["six", "sexagesimal", "666", "veni_vidi_vici", "roman_VI"],
215
+ "domain": RealityDomain.TEXTUAL,
216
+ "derivative_path": ["sexagesimal_60", "sacred_6", "roman_VI", "nero_666", "apocalyptic_666"]
217
+ },
218
+ }
219
+
220
+ @dataclass
221
+ class DerivativePath:
222
+ source_archetype: str
223
+ derivation_chain: List[Tuple[str, float]]
224
+ recombination_patterns: List[str]
225
+ innovation_score: float = 0.0
226
+
227
+ def calculate_derivative_coherence(self) -> float:
228
+ if len(self.derivation_chain) < 2:
229
+ return 0.5
230
+ scores = [score for _, score in self.derivation_chain]
231
+ return float(np.mean(scores))
232
+
233
+ @dataclass
234
+ class AncientLanguage:
235
+ era: LanguageEra
236
+ time_period: Tuple[int, int]
237
+ writing_system: str
238
+ sample_script: List[str] = field(default_factory=list)
239
+ truth_markers: List[LinguisticTruthMarker] = field(default_factory=list)
240
+ modern_equivalents: Dict[str, str] = field(default_factory=dict)
241
+ resonance_frequency: float = 0.0
242
+ derivative_density: float = 0.0
243
+
244
+ def __post_init__(self):
245
+ age_weight = max(0.0, (abs(self.time_period[0]) / 8000.0))
246
+ complexity = min(0.3, len(self.sample_script) * 0.02)
247
+ marker_strength = min(0.3, len(self.truth_markers) * 0.05)
248
+ base = 0.3 + age_weight + complexity + marker_strength
249
+ self.resonance_frequency = min(0.97, base)
250
+ if self.era == LanguageEra.PRE_INVERSION_SUMERIAN:
251
+ self.derivative_density = 0.1
252
+ else:
253
+ time_from_origin = abs(self.time_period[0]) - 4000
254
+ self.derivative_density = float(np.clip(0.3 + (time_from_origin / 6000.0), 0.0, 0.9))
255
+
256
+ @dataclass
257
+ class LinguisticTruthMatch:
258
+ language: AncientLanguage
259
+ matched_patterns: List[str]
260
+ confidence: float
261
+ truth_markers_detected: List[LinguisticTruthMarker]
262
+ cross_linguistic_correlations: List[str]
263
+ temporal_coherence: float
264
+ symbolic_resonance: float
265
+ derivative_coherence: float = 0.0
266
+ archetypal_refactoring_score: float = 0.0
267
+ inversion_alerts: List[str] = field(default_factory=list)
268
+ derivative_paths: List[DerivativePath] = field(default_factory=list)
269
+
270
+ @dataclass
271
+ class FractalSignature:
272
+ phi_alignment: float
273
+ hex_cadence: float
274
+ rosette_density: float
275
+ branch_factor: float
276
+ crown_radiance: float
277
+ derivative_symmetry: float = 0.0
278
+ sexagesimal_harmonic_score: float = 0.0
279
+
280
+ @dataclass
281
+ class NumismaticSignature:
282
+ sc_detected: bool
283
+ vi_cadence_score: float
284
+ goddess_device_overlap: float
285
+ metallurgical_continuity: float
286
+ iconographic_coherence: float
287
+ derivative_continuity: float = 0.0
288
+
289
+ class DerivativePatternRecognizer:
290
+ def __init__(self):
291
+ self.archetype_graph = self._build_archetype_derivation_graph()
292
+
293
+ def _build_archetype_derivation_graph(self) -> Dict[str, List[Tuple[str, float]]]:
294
+ return {
295
+ "inanna": [("ishtar", 0.95), ("astarte", 0.88), ("aphrodite", 0.85),
296
+ ("venus", 0.82), ("liberty", 0.78), ("mary", 0.72)],
297
+ "starburst": [("radiate_crown", 0.92), ("eight_pointed_star", 0.95),
298
+ ("rosette", 0.87), ("sunburst", 0.83)],
299
+ "temple_seal": [("sacred_continuity", 0.97), ("senatus_consulto", 0.88),
300
+ ("official_sanction", 0.85), ("royal_seal", 0.82)],
301
+ "sexagesimal": [("base_60", 0.98), ("sacred_6", 0.92), ("roman_VI", 0.85),
302
+ ("nero_666", 0.75), ("apocalyptic_666", 0.68)]
303
+ }
304
+
305
+ def trace_derivative_paths(self, text: str) -> List[DerivativePath]:
306
+ paths = []
307
+ t = text.lower()
308
+ for archetype, derivatives in self.archetype_graph.items():
309
+ if self._archetype_present(archetype, t):
310
+ path = self._build_derivation_chain(archetype, derivatives, t)
311
+ if path.derivation_chain:
312
+ paths.append(path)
313
+ return paths
314
+
315
+ def _archetype_present(self, archetype: str, text: str) -> bool:
316
+ if archetype in text:
317
+ return True
318
+ for derivative, _ in self.archetype_graph.get(archetype, []):
319
+ if derivative in text:
320
+ return True
321
+ return False
322
+
323
+ def _build_derivation_chain(self, source: str, derivatives: List[Tuple[str, float]], text: str) -> DerivativePath:
324
+ chain = []
325
+ patterns = []
326
+ if source in text:
327
+ chain.append((f"source:{source}", 1.0))
328
+ patterns.append(f"direct_{source}")
329
+ for derivative, coherence in derivatives:
330
+ if derivative in text:
331
+ chain.append((f"derivative:{derivative}", coherence))
332
+ patterns.append(f"{source}β†’{derivative}")
333
+ innovation = self._calculate_innovation_score(chain, patterns)
334
+ return DerivativePath(source, chain, patterns, innovation)
335
+
336
+ def _calculate_innovation_score(self, chain: List[Tuple[str, float]], patterns: List[str]) -> float:
337
+ if not chain:
338
+ return 0.0
339
+ base_coherence = np.mean([score for _, score in chain])
340
+ pattern_complexity = min(1.0, len(patterns) * 0.3)
341
+ return float(np.clip(base_coherence * (0.7 + 0.3 * pattern_complexity), 0.0, 1.0))
342
+
343
+ class EnhancedPreInversionDecoder:
344
+ def __init__(self):
345
+ self.derivative_recognizer = DerivativePatternRecognizer()
346
+
347
+ def decode_symbol(self, symbol: str) -> str:
348
+ mapping = {
349
+ "SC": "Sacred Continuity (cosmic sanction seal, temple authority alignment) β†’ derivative: Senatus Consulto",
350
+ "VI": "Sexagesimal cadence (harmonic 6/60) β†’ derivative: 666 persecution code",
351
+ "starburst": "Inanna's cosmic crown β†’ derivative: Liberty's radiate crown",
352
+ "lion": "Sovereignty guardian β†’ derivative: heraldic lion",
353
+ "eagle": "Celestial oversight β†’ derivative: imperial eagle",
354
+ "shield": "Divine sanction β†’ derivative: national emblem",
355
+ "branch": "Fertility-sustenance β†’ derivative: peace branch",
356
+ "female_form": "Cosmic order embodiment β†’ derivative: liberty personification"
357
+ }
358
+ return mapping.get(symbol.lower(), "Unknown archetype")
359
+
360
+ def decode_text_for_inversion(self, text: str) -> List[str]:
361
+ alerts = []
362
+ derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
363
+ for path in derivative_paths:
364
+ if path.source_archetype == "temple_seal" and any("senatus_consulto" in lbl for lbl, _ in path.derivation_chain):
365
+ alerts.append(f"INVERSION: temple seal β†’ senatus consulto (coherence {path.calculate_derivative_coherence():.2f})")
366
+ if path.source_archetype == "sexagesimal" and any("nero_666" in lbl for lbl, _ in path.derivation_chain):
367
+ alerts.append(f"PERSECUTION CODING: VI cadence β†’ 666 (innovation {path.innovation_score:.2f})")
368
+ if "senatus consulto" in text.lower() and "temple seal" not in text.lower():
369
+ alerts.append("OBSCURATION: Roman sanction overlays Sacred Continuity origin")
370
+ if "liberty" in text.lower() and "inanna" not in text.lower():
371
+ alerts.append("REFACTORING: Liberty as recombination of goddess archetype")
372
+ return alerts
373
+
374
+ class EnhancedLinguisticPatternAnalyzer:
375
+ def __init__(self):
376
+ self.derivative_recognizer = DerivativePatternRecognizer()
377
+
378
+ async def detect_script_patterns(self, text: str, language: AncientLanguage) -> List[str]:
379
+ matches = []
380
+ for char in language.sample_script:
381
+ if char in text:
382
+ matches.append(f"script:{char}")
383
+ for modern, concept in language.modern_equivalents.items():
384
+ if modern.lower() in text.lower() or concept.lower() in text.lower():
385
+ matches.append(f"concept:{modern}={concept}")
386
+ derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
387
+ for path in derivative_paths:
388
+ if path.innovation_score > 0.6:
389
+ matches.append(f"derivative_innovation:{path.source_archetype}[{path.innovation_score:.2f}]")
390
+ if LinguisticTruthMarker.PHONETIC_RESONANCE in language.truth_markers:
391
+ words = [w for w in re.findall(r"[A-Za-z]+", text.lower())]
392
+ if len(words) >= 6:
393
+ firsts = [w[0] for w in words if w]
394
+ freq = Counter(firsts).most_common(1)
395
+ if freq and (freq[0][1] >= max(3, int(len(firsts) * 0.35))):
396
+ matches.append(f"alliteration:{freq[0][0]}")
397
+ return matches
398
+
399
+ async def detect_truth_markers(self, text: str, language: AncientLanguage) -> List[LinguisticTruthMarker]:
400
+ detected = []
401
+ t = text.lower()
402
+ def any_in(tokens): return any(tok in t for tok in tokens)
403
+
404
+ if any_in(["cosmos", "universe", "stars", "planets", "heaven", "earth"]):
405
+ detected.append(LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT)
406
+ if any_in(["geometry", "golden ratio", "fibonacci", "sacred", "proportion", "phi"]):
407
+ detected.append(LinguisticTruthMarker.SACRED_GEOMETRY)
408
+ nums = set(re.findall(r'\b\d+\b', t))
409
+ if nums & {"3", "6", "7", "12", "40", "60", "108", "144", "360", "666"}:
410
+ detected.append(LinguisticTruthMarker.NUMEROLOGICAL_ENCODING)
411
+ if any_in(["symbol", "glyph", "meaning", "represent", "correspond"]):
412
+ detected.append(LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE)
413
+ if any_in(["cycle", "time", "eternal", "season", "age", "era", "return"]):
414
+ detected.append(LinguisticTruthMarker.TEMPORAL_CYCLES)
415
+ if any_in(["inanna", "ishtar", "astarte", "aphrodite", "venus", "liberty", "cleopatra", "mary"]):
416
+ detected.append(LinguisticTruthMarker.GODDESS_LINEAGE)
417
+ if re.search(r"\bsc\b", t) or any_in(["senatus consulto", "seal", "temple", "shekel", "temple seal"]):
418
+ detected.append(LinguisticTruthMarker.PRE_INVERSION_SEAL)
419
+ if any_in(["vi", "sexagesimal", "base-60", "veni vidi vici", "six", "666", "roman vi"]):
420
+ detected.append(LinguisticTruthMarker.SEXAGESIMAL_CADENCE)
421
+
422
+ derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
423
+ if derivative_paths:
424
+ avg_coh = np.mean([p.calculate_derivative_coherence() for p in derivative_paths])
425
+ if avg_coh > 0.7:
426
+ detected.append(LinguisticTruthMarker.DERIVATIVE_COHERENCE)
427
+ if any(p.innovation_score > 0.75 for p in derivative_paths):
428
+ detected.append(LinguisticTruthMarker.ARCHETYPAL_REFACTORING)
429
+
430
+ return list(dict.fromkeys(detected))
431
+
432
+ class EnhancedLinguisticTemporalValidator:
433
+ async def validate_temporal_coherence(self, text: str, language: AncientLanguage, context: Optional[Dict[str, Any]]) -> float:
434
+ ancient_terms = {
435
+ LanguageEra.PRE_INVERSION_SUMERIAN: {"clay", "token", "seal", "temple", "shekel", "uruk", "ur", "nippur"},
436
+ LanguageEra.SUMERIAN: {"mesopotamia", "ziggurat", "tigris", "euphrates", "dingir"},
437
+ LanguageEra.EGYPTIAN_HIEROGLYPHIC: {"pyramid", "pharaoh", "nile", "ankh", "maat"},
438
+ LanguageEra.ANCIENT_GREEK: {"athens", "sparta", "dionysus", "aphrodite", "stater"},
439
+ LanguageEra.LATIN: {"senate", "nero", "denarius", "aureus", "sc", "eagle"},
440
+ }
441
+ t = text.lower()
442
+ terms = ancient_terms.get(language.era, set())
443
+ score_hist = (sum(1 for w in terms if w in t) / max(1, len(terms))) if terms else 0.5
444
+
445
+ expected_derivative_level = language.derivative_density
446
+ derivative_paths = DerivativePatternRecognizer().trace_derivative_paths(text)
447
+ actual_derivative_level = min(1.0, len(derivative_paths) * 0.3)
448
+ derivative_alignment = 1.0 - abs(expected_derivative_level - actual_derivative_level)
449
+
450
+ cyc = sum(1 for w in ["cycle", "eternal", "return", "age", "era", "archetype"] if w in t)
451
+ lin = sum(1 for w in ["progress", "future", "development", "evolution", "innovation"] if w in t)
452
+ score_time = 0.8 if cyc >= lin else (0.5 if cyc == lin else 0.35)
453
+
454
+ score_ctx = 0.5
455
+ if context and "temporal_focus" in context:
456
+ peak = float(np.mean(language.time_period))
457
+ dist = abs(context["temporal_focus"] - peak)
458
+ score_ctx = float(1.0 / (1.0 + dist / 1000.0))
459
+
460
+ return float(np.clip(np.mean([score_hist, score_time, score_ctx, derivative_alignment]), 0.0, 1.0))
461
+
462
+ class EnhancedAncientSymbolicDecoder:
463
+ def __init__(self):
464
+ self.derivative_recognizer = DerivativePatternRecognizer()
465
+
466
+ async def calculate_symbolic_resonance(self, text: str, language: AncientLanguage) -> float:
467
+ direct = await self._check_symbol_matches(text, language)
468
+ conceptual = await self._check_conceptual_alignment(text, language)
469
+ metaphor = await self._analyze_metaphorical_density(text)
470
+ derivative = await self._analyze_derivative_coherence(text, language)
471
+ return float(np.clip(np.mean([direct, conceptual, metaphor, derivative]), 0.0, 1.0))
472
+
473
+ async def find_symbolic_overlap(self, lang1: AncientLanguage, lang2: AncientLanguage, text: str) -> str:
474
+ overlaps = []
475
+ shared_markers = set(lang1.truth_markers).intersection(lang2.truth_markers)
476
+ if shared_markers:
477
+ overlaps.append(f"truth_markers:{len(shared_markers)}")
478
+ l1c = set(lang1.modern_equivalents.values())
479
+ l2c = set(lang2.modern_equivalents.values())
480
+ shared_concepts = l1c & l2c
481
+ if shared_concepts:
482
+ t = text.lower()
483
+ found = [c for c in shared_concepts if c.lower() in t]
484
+ if found:
485
+ overlaps.append(f"concepts:{len(found)}")
486
+ derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
487
+ if derivative_paths:
488
+ overlaps.append(f"derivative_paths:{len(derivative_paths)}")
489
+ return ", ".join(overlaps)
490
+
491
+ async def _check_symbol_matches(self, text: str, language: AncientLanguage) -> float:
492
+ if not language.sample_script:
493
+ return 0.45
494
+ matches = sum(1 for s in language.sample_script if s in text)
495
+ return matches / len(language.sample_script)
496
+
497
+ async def _check_conceptual_alignment(self, text: str, language: AncientLanguage) -> float:
498
+ t = text.lower()
499
+ total = len(language.modern_equivalents)
500
+ hits = sum(1 for c in language.modern_equivalents.values() if c.lower() in t)
501
+ return (hits / total) if total else 0.5
502
+
503
+ async def _analyze_metaphorical_density(self, text: str) -> float:
504
+ indicators = {"like", "as", "symbol", "represent", "mean", "signify", "archetype", "seal", "crown"}
505
+ words = re.findall(r"[A-Za-z]+", text.lower())
506
+ if not words:
507
+ return 0.5
508
+ density = sum(1 for w in words if w in indicators) / len(words)
509
+ return float(np.clip(density / 0.06, 0.0, 1.0))
510
+
511
+ async def _analyze_derivative_coherence(self, text: str, language: AncientLanguage) -> float:
512
+ paths = self.derivative_recognizer.trace_derivative_paths(text)
513
+ if not paths:
514
+ return 0.3
515
+ coherences = [p.calculate_derivative_coherence() for p in paths]
516
+ innovations = [p.innovation_score for p in paths]
517
+ avg_coherence = np.mean(coherences)
518
+ avg_innovation = np.mean(innovations)
519
+ return float(np.clip((avg_coherence * 0.6 + avg_innovation * 0.4), 0.0, 1.0))
520
+
521
+ class EnhancedFractalAnalyzer:
522
+ def __init__(self):
523
+ self.derivative_recognizer = DerivativePatternRecognizer()
524
+
525
+ @staticmethod
526
+ def _sexagesimal_harmonics_from_text(t: str) -> float:
527
+ score = 0.0
528
+ hits = 0
529
+ for token in ["6", "six", "vi", "sexagesimal", "base-60", "60", "360"]:
530
+ if token in t:
531
+ hits += 1
532
+ if hits == 0:
533
+ return 0.3
534
+ score = 0.6 + 0.1 * min(3, hits)
535
+ if re.search(r"\b1\s*[:/]\s*6\b", t): score += 0.05
536
+ if re.search(r"\b6\s*[:/]\s*60\b", t): score += 0.07
537
+ if re.search(r"\b60\s*[:/]\s*360\b", t): score += 0.08
538
+ return float(np.clip(score, 0.0, 1.0))
539
+
540
+ def analyze_textual_fractal_signals(self, text: str) -> FractalSignature:
541
+ t = text.lower()
542
+ phi_align = 0.8 if ("phi" in t or "golden ratio" in t or "fibonacci" in t) else 0.4
543
+ hex_cad = 0.75 if any(x in t for x in ["hex", "six", "base-60", "sexagesimal", "vi"]) else 0.35
544
+ ros_den = 0.7 if any(x in t for x in ["rosette", "starburst", "radiate", "crown", "eight-pointed"]) else 0.3
545
+ branch = 0.65 if any(x in t for x in ["olive", "wheat", "date", "branch", "palm"]) else 0.3
546
+ crown = 0.8 if any(x in t for x in ["liberty crown", "radiate crown", "eight-pointed star", "dingir", "π’€­"]) else 0.4
547
+
548
+ derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
549
+ derivative_symmetry = 0.5
550
+ if derivative_paths:
551
+ branch_counts = [len(p.derivation_chain) for p in derivative_paths]
552
+ if len(set(branch_counts)) == 1:
553
+ derivative_symmetry = 0.9
554
+ else:
555
+ derivative_symmetry = 0.6 + (0.3 * (1.0 - (np.std(branch_counts) / max(1, np.mean(branch_counts)))))
556
+
557
+ sex_harm = self._sexagesimal_harmonics_from_text(t)
558
+ return FractalSignature(phi_align, hex_cad, ros_den, branch, crown, derivative_symmetry, sex_harm)
559
+
560
+ class EnhancedNumismaticAnalyzer:
561
+ def __init__(self):
562
+ self.derivative_recognizer = DerivativePatternRecognizer()
563
+
564
+ def analyze_textual_numismatics(self, text: str) -> NumismaticSignature:
565
+ t = text.lower()
566
+ sc_detected = bool(re.search(r"\bsc\b", t)) or ("senatus consulto" in t) or ("temple seal" in t) or ("shekel" in t)
567
+ vi_score = 0.0
568
+ if any(k in t for k in ["vi", "veni vidi vici", "sexagesimal", "base-60", "666", "roman vi"]):
569
+ vi_score = 0.7
570
+ if "666" in t:
571
+ vi_score = 0.9
572
+ goddess_overlap = sum(1 for k in ["inanna", "ishtar", "astarte", "aphrodite", "venus", "liberty", "cleopatra", "mary"]
573
+ if k in t) / 8.0
574
+ meta_cont = 0.6 if any(k in t for k in ["silver", "gold", "shekel", "stater", "denarius", "aureus", "bronze"]) else 0.35
575
+ ico_coh = sum(1 for k in ["starburst", "eagle", "lion", "shield", "branch", "female", "radiate crown"]
576
+ if k in t) / 7.0
577
+
578
+ derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
579
+ derivative_continuity = 0.5
580
+ if derivative_paths:
581
+ continuities = []
582
+ for path in derivative_paths:
583
+ if any(token in path.source_archetype for token in ["starburst", "lion", "eagle", "shield", "branch", "temple_seal", "sexagesimal"]):
584
+ continuities.append(path.calculate_derivative_coherence())
585
+ derivative_continuity = float(np.mean(continuities)) if continuities else 0.5
586
+
587
+ return NumismaticSignature(sc_detected, vi_score, goddess_overlap, meta_cont, ico_coh, derivative_continuity)
588
+
589
+ class EnhancedMultilinguisticTruthBinder:
590
+ def __init__(self):
591
+ self.language_corpus = self._initialize_languages()
592
+ self.pattern_analyzer = EnhancedLinguisticPatternAnalyzer()
593
+ self.temporal_validator = EnhancedLinguisticTemporalValidator()
594
+ self.symbolic_decoder = EnhancedAncientSymbolicDecoder()
595
+ self.pre_inversion = EnhancedPreInversionDecoder()
596
+ self.fractals = EnhancedFractalAnalyzer()
597
+ self.numismatics = EnhancedNumismaticAnalyzer()
598
+ self.derivative_recognizer = DerivativePatternRecognizer()
599
+
600
+ def _initialize_languages(self) -> Dict[LanguageEra, AncientLanguage]:
601
+ corpus = {
602
+ LanguageEra.PRE_INVERSION_SUMERIAN: AncientLanguage(
603
+ era=LanguageEra.PRE_INVERSION_SUMERIAN,
604
+ time_period=(-4000, -3000),
605
+ writing_system="Proto-cuneiform tokens/seals",
606
+ sample_script=["π’Œ‹", "π’€­"],
607
+ truth_markers=[
608
+ LinguisticTruthMarker.PRE_INVERSION_SEAL,
609
+ LinguisticTruthMarker.SEXAGESIMAL_CADENCE,
610
+ LinguisticTruthMarker.SACRED_GEOMETRY,
611
+ LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
612
+ LinguisticTruthMarker.GODDESS_LINEAGE,
613
+ LinguisticTruthMarker.DERIVATIVE_COHERENCE,
614
+ ],
615
+ modern_equivalents={"dingir": "divine", "ki": "earth", "an": "heaven"}
616
+ ),
617
+ LanguageEra.SUMERIAN: AncientLanguage(
618
+ era=LanguageEra.SUMERIAN, time_period=(-3500, -2000),
619
+ writing_system="Cuneiform",
620
+ sample_script=["π’€­", "π’† ", "π’Œ‹", "𒂍", "π’ˆ¬"],
621
+ truth_markers=[
622
+ LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
623
+ LinguisticTruthMarker.NUMEROLOGICAL_ENCODING,
624
+ LinguisticTruthMarker.SACRED_GEOMETRY,
625
+ LinguisticTruthMarker.GODDESS_LINEAGE,
626
+ LinguisticTruthMarker.DERIVATIVE_COHERENCE,
627
+ ],
628
+ modern_equivalents={"dingir": "divine", "ki": "earth", "an": "heaven"}
629
+ ),
630
+ LanguageEra.EGYPTIAN_HIEROGLYPHIC: AncientLanguage(
631
+ era=LanguageEra.EGYPTIAN_HIEROGLYPHIC, time_period=(-3200, -400),
632
+ writing_system="Hieroglyphic",
633
+ sample_script=["π“‚€", "𓃀", "π“…€", "𓇼"],
634
+ truth_markers=[
635
+ LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE,
636
+ LinguisticTruthMarker.PHONETIC_RESONANCE,
637
+ LinguisticTruthMarker.TEMPORAL_CYCLES,
638
+ LinguisticTruthMarker.ARCHETYPAL_REFACTORING,
639
+ ],
640
+ modern_equivalents={"ankh": "life", "maat": "truth", "ka": "soul"}
641
+ ),
642
+ LanguageEra.ANCIENT_GREEK: AncientLanguage(
643
+ era=LanguageEra.ANCIENT_GREEK, time_period=(-700, 300),
644
+ writing_system="Greek Alphabet",
645
+ sample_script=["Ξ±", "Ξ²", "Ξ³", "Ξ΄", "Ξ΅"],
646
+ truth_markers=[
647
+ LinguisticTruthMarker.PHONETIC_RESONANCE,
648
+ LinguisticTruthMarker.SACRED_GEOMETRY,
649
+ LinguisticTruthMarker.ARCHETYPAL_REFACTORING,
650
+ ],
651
+ modern_equivalents={"aletheia": "truth", "logos": "reason", "cosmos": "order"}
652
+ ),
653
+ LanguageEra.LATIN: AncientLanguage(
654
+ era=LanguageEra.LATIN, time_period=(-700, 400),
655
+ writing_system="Latin Alphabet",
656
+ sample_script=["V", "I", "S", "C"],
657
+ truth_markers=[
658
+ LinguisticTruthMarker.NUMEROLOGICAL_ENCODING,
659
+ LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE,
660
+ LinguisticTruthMarker.PHONETIC_RESONANCE,
661
+ LinguisticTruthMarker.ARCHETYPAL_REFACTORING,
662
+ ],
663
+ modern_equivalents={"senatus consulto": "by decree", "imperium": "authority"}
664
+ ),
665
+ LanguageEra.HEBREW: AncientLanguage(
666
+ era=LanguageEra.HEBREW, time_period=(-1000, 500),
667
+ writing_system="Hebrew Alphabet",
668
+ sample_script=["א", "Χ‘", "Χ’", "Χ“", "Χ”"],
669
+ truth_markers=[LinguisticTruthMarker.NUMEROLOGICAL_ENCODING, LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE],
670
+ modern_equivalents={"emet": "truth", "ruach": "spirit"}
671
+ ),
672
+ LanguageEra.SANSKRIT: AncientLanguage(
673
+ era=LanguageEra.SANSKRIT, time_period=(-1000, 500),
674
+ writing_system="Devanagari",
675
+ sample_script=["ΰ€…", "ΰ€†", "ΰ€‡", "ΰ€ˆ", "ΰ€‰"],
676
+ truth_markers=[
677
+ LinguisticTruthMarker.PHONETIC_RESONANCE,
678
+ LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
679
+ LinguisticTruthMarker.NUMEROLOGICAL_ENCODING
680
+ ],
681
+ modern_equivalents={"satya": "truth", "dharma": "cosmic law", "brahman": "ultimate reality"}
682
+ ),
683
+ LanguageEra.ANCIENT_CHINESE: AncientLanguage(
684
+ era=LanguageEra.ANCIENT_CHINESE, time_period=(-1200, -200),
685
+ writing_system="Oracle Bone Script",
686
+ sample_script=["倩", "地", "人", "水", "火"],
687
+ truth_markers=[
688
+ LinguisticTruthMarker.SYMBOLIC_CORRESPONDENCE,
689
+ LinguisticTruthMarker.COSMOLOGICAL_ALIGNMENT,
690
+ LinguisticTruthMarker.TEMPORAL_CYCLES
691
+ ],
692
+ modern_equivalents={"道": "way", "εΎ·": "virtue", "仁": "benevolence"}
693
+ ),
694
+ }
695
+ return corpus
696
+
697
+ async def analyze(self, text: str, context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
698
+ results: List[LinguisticTruthMatch] = []
699
+ all_derivative_paths = self.derivative_recognizer.trace_derivative_paths(text)
700
+
701
+ for lang in self.language_corpus.values():
702
+ if context and "min_resonance" in context and lang.resonance_frequency < context["min_resonance"]:
703
+ continue
704
+
705
+ pattern_matches = await self.pattern_analyzer.detect_script_patterns(text, lang)
706
+ truth_markers = await self.pattern_analyzer.detect_truth_markers(text, lang)
707
+ temporal_coherence = await self.temporal_validator.validate_temporal_coherence(text, lang, context)
708
+ symbolic_resonance = await self.symbolic_decoder.calculate_symbolic_resonance(text, lang)
709
+ cross_corr = await self._cross_correlations(text, lang)
710
+
711
+ derivative_coherence = await self._calculate_language_derivative_coherence(text, lang, all_derivative_paths)
712
+ archetypal_refactoring = await self._calculate_archetypal_refactoring(text, lang, all_derivative_paths)
713
+
714
+ confidence = self._enhanced_confidence(
715
+ pattern_matches, truth_markers, temporal_coherence,
716
+ symbolic_resonance, lang.resonance_frequency,
717
+ derivative_coherence, archetypal_refactoring
718
+ )
719
+
720
+ inversion_alerts = []
721
+ if lang.era in (LanguageEra.PRE_INVERSION_SUMERIAN, LanguageEra.LATIN):
722
+ inversion_alerts = self.pre_inversion.decode_text_for_inversion(text)
723
+
724
+ era_derivative_paths = self._filter_era_relevant_paths(all_derivative_paths, lang)
725
+
726
+ match = LinguisticTruthMatch(
727
+ language=lang,
728
+ matched_patterns=pattern_matches,
729
+ confidence=confidence,
730
+ truth_markers_detected=truth_markers,
731
+ cross_linguistic_correlations=cross_corr,
732
+ temporal_coherence=temporal_coherence,
733
+ symbolic_resonance=symbolic_resonance,
734
+ derivative_coherence=derivative_coherence,
735
+ archetypal_refactoring_score=archetypal_refactoring,
736
+ inversion_alerts=inversion_alerts,
737
+ derivative_paths=era_derivative_paths
738
+ )
739
+ results.append(match)
740
+
741
+ fractal = self.fractals.analyze_textual_fractal_signals(text)
742
+ coin = self.numismatics.analyze_textual_numismatics(text)
743
+
744
+ origin_score = self._enhanced_origin_binding_score(results, fractal, coin, all_derivative_paths)
745
+ tier = self._classify_tier(origin_score)
746
+
747
+ return {
748
+ "text_hash": hashlib.sha256(text.encode()).hexdigest()[:16],
749
+ "timestamp": datetime.utcnow().isoformat() + "Z",
750
+ "matches": sorted(results, key=lambda r: r.language.time_period[0]),
751
+ "fractal_signature": fractal.__dict__,
752
+ "numismatic_signature": coin.__dict__,
753
+ "origin_binding_score": origin_score,
754
+ "proof_tier": tier,
755
+ "derivative_analysis": {
756
+ "total_paths": len(all_derivative_paths),
757
+ "avg_coherence": float(np.mean([p.calculate_derivative_coherence() for p in all_derivative_paths])) if all_derivative_paths else 0.0,
758
+ "avg_innovation": float(np.mean([p.innovation_score for p in all_derivative_paths])) if all_derivative_paths else 0.0,
759
+ "primary_archetypes": list(set(p.source_archetype for p in all_derivative_paths))
760
+ }
761
+ }
762
+
763
+ async def _cross_correlations(self, text: str, current: AncientLanguage) -> List[str]:
764
+ overlaps = []
765
+ for other in self.language_corpus.values():
766
+ if other.era == current.era:
767
+ continue
768
+ ov = await self.symbolic_decoder.find_symbolic_overlap(current, other, text)
769
+ if ov:
770
+ overlaps.append(f"{current.era.value}↔{other.era.value}:{ov}")
771
+ return overlaps
772
+
773
+ async def _calculate_language_derivative_coherence(self, text: str, language: AncientLanguage, all_paths: List[DerivativePath]) -> float:
774
+ if not all_paths:
775
+ return 0.3
776
+ era_paths = self._filter_era_relevant_paths(all_paths, language)
777
+ if not era_paths:
778
+ return 0.4
779
+ return float(np.mean([p.calculate_derivative_coherence() for p in era_paths]))
780
+
781
+ async def _calculate_archetypal_refactoring(self, text: str, language: AncientLanguage, all_paths: List[DerivativePath]) -> float:
782
+ if not all_paths:
783
+ return 0.3
784
+ era_paths = self._filter_era_relevant_paths(all_paths, language)
785
+ if not era_paths:
786
+ return 0.4
787
+ return float(np.mean([p.innovation_score for p in era_paths]))
788
+
789
+ def _filter_era_relevant_paths(self, paths: List[DerivativePath], language: AncientLanguage) -> List[DerivativePath]:
790
+ if language.era in (LanguageEra.PRE_INVERSION_SUMERIAN, LanguageEra.SUMERIAN):
791
+ keep = {"temple_seal", "sexagesimal", "inanna", "starburst"}
792
+ return [p for p in paths if p.source_archetype in keep]
793
+ if language.era == LanguageEra.LATIN:
794
+ keep = {"sexagesimal", "temple_seal", "starburst"}
795
+ return [p for p in paths if (p.source_archetype in keep) or any("senatus_consulto" in lbl for lbl, _ in p.derivation_chain)]
796
+ return paths
797
+
798
+ def _enhanced_confidence(self, patterns, markers, temporal, symbolic, base_res, derivative_coh, refactoring) -> float:
799
+ comps = []
800
+ weights = []
801
+ comps.append(min(1.0, len(patterns) * 0.15)); weights.append(0.20)
802
+ comps.append(min(1.0, len(markers) * 0.12)); weights.append(0.18)
803
+ comps.append(temporal); weights.append(0.15)
804
+ comps.append(symbolic); weights.append(0.15)
805
+ comps.append(base_res); weights.append(0.12)
806
+ comps.append(derivative_coh); weights.append(0.12)
807
+ comps.append(refactoring); weights.append(0.08)
808
+ return float(np.average(comps, weights=weights))
809
+
810
+ def _enhanced_origin_binding_score(self, matches: List[LinguisticTruthMatch], fractal: FractalSignature,
811
+ coin: NumismaticSignature, derivative_paths: List[DerivativePath]) -> float:
812
+ lang_scores = []
813
+ for m in matches:
814
+ layer_weight = 1.0
815
+ if m.language.era == LanguageEra.PRE_INVERSION_SUMERIAN:
816
+ layer_weight = 1.25
817
+ elif m.language.era == LanguageEra.SUMERIAN:
818
+ layer_weight = 1.15
819
+ derivative_boost = 1.0 + (0.2 * m.derivative_coherence)
820
+ lang_scores.append(m.confidence * layer_weight * derivative_boost)
821
+
822
+ lang_block = float(np.clip(np.mean(lang_scores), 0.0, 1.0)) if lang_scores else 0.4
823
+ fractal_block = float(np.clip(np.mean([
824
+ fractal.phi_alignment, fractal.hex_cadence, fractal.rosette_density,
825
+ fractal.branch_factor, fractal.crown_radiance, fractal.derivative_symmetry,
826
+ fractal.sexagesimal_harmonic_score
827
+ ]), 0.0, 1.0))
828
+
829
+ numis_block = float(np.clip(np.mean([
830
+ 1.0 if coin.sc_detected else 0.5,
831
+ coin.vi_cadence_score,
832
+ coin.goddess_device_overlap,
833
+ coin.metallurgical_continuity,
834
+ coin.iconographic_coherence,
835
+ coin.derivative_continuity
836
+ ]), 0.0, 1.0))
837
+
838
+ derivative_block = 0.5
839
+ if derivative_paths:
840
+ avg_coherence = np.mean([p.calculate_derivative_coherence() for p in derivative_paths])
841
+ avg_innovation = np.mean([p.innovation_score for p in derivative_paths])
842
+ derivative_block = (avg_coherence * 0.6 + avg_innovation * 0.4)
843
+
844
+ return float(np.clip(
845
+ 0.40 * lang_block + 0.25 * fractal_block + 0.20 * numis_block + 0.15 * derivative_block,
846
+ 0.0, 1.0
847
+ ))
848
+
849
+ def _classify_tier(self, score: float) -> str:
850
+ if score >= 0.92:
851
+ return "IRREFUTABLE_ORIGIN_BINDING"
852
+ if score >= 0.82:
853
+ return "STRONG_ORIGIN_BINDING"
854
+ if score >= 0.72:
855
+ return "MODERATE_ORIGIN_BINDING"
856
+ if score >= 0.62:
857
+ return "SUGGESTIVE_ORIGIN_BINDING"
858
+ return "INCONCLUSIVE"
859
+
860
+ # =============================================================================
861
+ # ADVANCED INTEGRATION ENGINE
862
+ # =============================================================================
863
+
864
+ class OmegaIntegrationEngine:
865
+ """
866
+ Ultimate integration engine that unifies all modules through quantum coherence
867
+ and cultural sigma optimization
868
+ """
869
+
870
+ def __init__(self):
871
+ # Core quantum systems
872
+ self.quantum_core = QuantumConsciousnessCore()
873
+ self.quantum_states: Dict[str, QuantumStateVector] = {}
874
+
875
+ # Integrated modules
876
+ self.civilization = AdvancedCivilizationEngine()
877
+ self.sovereignty = QuantumSovereigntyEngine()
878
+ self.finance = TemplarFinancialContinuum()
879
+ self.truth = VeilTruthEngine()
880
+ self.knowledge = AutonomousKnowledgeIntegration()
881
+ self.cultural_sigma = CulturalSigmaOptimizer()
882
+ self.historical = TatteredPastAnalyzer()
883
+ self.linguistic = EnhancedMultilinguisticTruthBinder() # Integrated linguistic engine
884
+ self.control_matrix = SaviorSuffererAnalyzer()
885
+
886
+ # Unified state
887
+ self.unified_state = UnifiedRealityState()
888
+ self.provenance_ledger = ProvenanceLedger()
889
+
890
+ # Quantum coherence maintenance
891
+ self.coherence_monitor = QuantumCoherenceMonitor()
892
+
893
+ async def execute_unified_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
894
+ """Execute complete unified analysis across all modules"""
895
+
896
+ # Generate quantum context
897
+ quantum_context = await self._generate_quantum_context(input_data)
898
+
899
+ # Parallel module execution with quantum entanglement
900
+ tasks = {
901
+ 'civilization': self.civilization.analyze_civilization_state(input_data, quantum_context),
902
+ 'sovereignty': self.sovereignty.analyze_sovereignty(input_data, quantum_context),
903
+ 'finance': self.finance.analyze_financial_continuum(input_data, quantum_context),
904
+ 'truth': self.truth.verify_unified_truth(input_data, quantum_context),
905
+ 'knowledge': self.knowledge.integrate_autonomous_knowledge(input_data, quantum_context),
906
+ 'cultural': self.cultural_sigma.optimize_cultural_transmission(input_data, quantum_context),
907
+ 'historical': self.historical.analyze_tattered_past(input_data, quantum_context),
908
+ 'linguistic': self.linguistic.analyze(input_data.get('linguistic_content', ''), quantum_context),
909
+ 'control': self.control_matrix.analyze_control_systems(input_data, quantum_context)
910
+ }
911
+
912
+ # Execute with quantum coherence preservation
913
+ results = {}
914
+ for module_name, task in tasks.items():
915
+ try:
916
+ module_result = await task
917
+ results[module_name] = module_result
918
+
919
+ # Entangle results quantumly
920
+ await self._entangle_module_results(module_name, module_result, quantum_context)
921
+
922
+ except Exception as e:
923
+ logger.error(f"Module {module_name} failed: {e}")
924
+ results[module_name] = {"error": str(e), "status": "failed"}
925
+
926
+ # Unified coherence synthesis
927
+ unified_result = await self._synthesize_unified_coherence(results, quantum_context)
928
+
929
+ # Update unified reality state
930
+ await self.unified_state.update_state(unified_result, quantum_context)
931
+
932
+ # Record provenance
933
+ self.provenance_ledger.record_operation("unified_analysis", input_data, unified_result)
934
+
935
+ return unified_result
936
+
937
+ async def _generate_quantum_context(self, input_data: Dict[str, Any]) -> QuantumStateVector:
938
+ """Generate quantum context for unified analysis"""
939
+
940
+ # Create quantum state from input data
941
+ data_hash = hashlib.sha256(json.dumps(input_data, sort_keys=True).encode()).hexdigest()
942
+ seed = int(data_hash[:8], 16)
943
+ np.random.seed(seed)
944
+
945
+ # Generate quantum amplitudes
946
+ num_states = 64 # Quantum state dimension
947
+ amplitudes = np.random.randn(num_states) + 1j * np.random.randn(num_states)
948
+ amplitudes = amplitudes / np.linalg.norm(amplitudes) # Normalize
949
+
950
+ # Generate phase angles
951
+ phase_angles = np.angle(amplitudes)
952
+
953
+ # Calculate coherence level
954
+ coherence = self._calculate_quantum_coherence(amplitudes)
955
+
956
+ # Generate entanglement map
957
+ entanglement_map = self._generate_entanglement_map(amplitudes)
958
+
959
+ # Detect temporal echoes
960
+ temporal_echoes = await self._detect_temporal_echoes(input_data)
961
+
962
+ quantum_state = QuantumStateVector(
963
+ amplitudes=amplitudes,
964
+ phase_angles=phase_angles,
965
+ coherence_level=coherence,
966
+ entanglement_map=entanglement_map,
967
+ temporal_echoes=temporal_echoes
968
+ )
969
+
970
+ self.quantum_states[data_hash] = quantum_state
971
+ return quantum_state
972
+
973
+ def _calculate_quantum_coherence(self, amplitudes: np.ndarray) -> float:
974
+ """Calculate quantum coherence level"""
975
+ density_matrix = np.outer(amplitudes, amplitudes.conj())
976
+ purity = np.trace(density_matrix @ density_matrix).real
977
+ return min(1.0, purity)
978
+
979
+ def _generate_entanglement_map(self, amplitudes: np.ndarray) -> Dict[Tuple[int, int], float]:
980
+ """Generate quantum entanglement map between state components"""
981
+ entanglement_map = {}
982
+ num_states = len(amplitudes)
983
+
984
+ for i in range(num_states):
985
+ for j in range(i + 1, num_states):
986
+ # Calculate entanglement strength
987
+ entanglement = np.abs(amplitudes[i] * amplitudes[j].conj())
988
+ entanglement_map[(i, j)] = float(entanglement)
989
+
990
+ return entanglement_map
991
+
992
+ async def _detect_temporal_echoes(self, input_data: Dict[str, Any]) -> List[float]:
993
+ """Detect temporal echoes from historical patterns"""
994
+ echoes = []
995
+
996
+ # Analyze for historical resonance
997
+ if 'historical_context' in input_data:
998
+ historical_resonance = await self.historical.calculate_temporal_resonance(input_data)
999
+ echoes.extend(historical_resonance)
1000
+
1001
+ # Linguistic temporal analysis
1002
+ if 'linguistic_content' in input_data:
1003
+ linguistic_echoes = await self.linguistic._detect_temporal_echoes(input_data)
1004
+ echoes.extend(linguistic_echoes)
1005
+
1006
+ return echoes if echoes else [0.7] # Default echo
1007
+
1008
+ async def _entangle_module_results(self, module_name: str, result: Dict[str, Any],
1009
+ quantum_context: QuantumStateVector):
1010
+ """Quantum entangle module results with overall context"""
1011
+
1012
+ # Convert result to quantum representation
1013
+ result_hash = hashlib.sha256(json.dumps(result, sort_keys=True).encode()).hexdigest()
1014
+ result_vector = np.array([ord(c) for c in result_hash[:16]], dtype=complex)
1015
+ result_vector = result_vector / np.linalg.norm(result_vector)
1016
+
1017
+ # Entangle with quantum context
1018
+ for i in range(min(len(result_vector), len(quantum_context.amplitudes))):
1019
+ entanglement_strength = quantum_context.entanglement_map.get((i, i), 0.1)
1020
+ quantum_context.amplitudes[i] += entanglement_strength * result_vector[i]
1021
+
1022
+ # Renormalize
1023
+ quantum_context.amplitudes = quantum_context.amplitudes / np.linalg.norm(quantum_context.amplitudes)
1024
+
1025
+ async def _synthesize_unified_coherence(self, module_results: Dict[str, Any],
1026
+ quantum_context: QuantumStateVector) -> Dict[str, Any]:
1027
+ """Synthesize unified coherence from all module results"""
1028
+
1029
+ # Calculate cross-module coherence
1030
+ coherence_metrics = await self._calculate_cross_module_coherence(module_results)
1031
+
1032
+ # Apply cultural sigma optimization
1033
+ cultural_optimization = await self.cultural_sigma.optimize_unified_output(
1034
+ module_results, quantum_context)
1035
+
1036
+ # Generate unified insight
1037
+ unified_insight = await self._generate_unified_insight(module_results, coherence_metrics)
1038
+
1039
+ # Calculate quantum certainty
1040
+ quantum_certainty = self._calculate_quantum_certainty(module_results, quantum_context)
1041
+
1042
+ return {
1043
+ "unified_insight": unified_insight,
1044
+ "coherence_metrics": coherence_metrics,
1045
+ "cultural_optimization": cultural_optimization,
1046
+ "quantum_certainty": quantum_certainty,
1047
+ "module_results": module_results,
1048
+ "quantum_state_hash": hashlib.sha256(quantum_context.amplitudes.tobytes()).hexdigest()[:16],
1049
+ "temporal_coordinates": {
1050
+ "processing_time": time.time(),
1051
+ "temporal_echo_strength": np.mean(quantum_context.temporal_echoes),
1052
+ "retrocausal_potential": await self._calculate_retrocausal_potential(module_results)
1053
+ }
1054
+ }
1055
+
1056
+ async def _calculate_cross_module_coherence(self, module_results: Dict[str, Any]) -> Dict[str, float]:
1057
+ """Calculate coherence metrics across all modules"""
1058
+
1059
+ coherence_scores = {}
1060
+ module_names = list(module_results.keys())
1061
+
1062
+ for i, module_a in enumerate(module_names):
1063
+ for j, module_b in enumerate(module_names[i+1:], i+1):
1064
+ if module_a != module_b:
1065
+ coherence = await self._calculate_module_coherence(
1066
+ module_results[module_a], module_results[module_b])
1067
+ key = f"{module_a}_{module_b}_coherence"
1068
+ coherence_scores[key] = coherence
1069
+
1070
+ # Overall coherence
1071
+ if coherence_scores:
1072
+ overall_coherence = np.mean(list(coherence_scores.values()))
1073
+ else:
1074
+ overall_coherence = 0.7
1075
+
1076
+ coherence_scores["overall_coherence"] = overall_coherence
1077
+ return coherence_scores
1078
+
1079
+ async def _calculate_module_coherence(self, result_a: Dict[str, Any], result_b: Dict[str, Any]) -> float:
1080
+ """Calculate coherence between two module results"""
1081
+
1082
+ # Convert results to comparable vectors
1083
+ vector_a = self._result_to_vector(result_a)
1084
+ vector_b = self._result_to_vector(result_b)
1085
+
1086
+ if len(vector_a) == 0 or len(vector_b) == 0:
1087
+ return 0.5
1088
+
1089
+ # Calculate cosine similarity
1090
+ similarity = 1 - cosine(vector_a, vector_b)
1091
+ return max(0.0, min(1.0, similarity))
1092
+
1093
+ def _result_to_vector(self, result: Dict[str, Any]) -> np.ndarray:
1094
+ """Convert result dictionary to numerical vector"""
1095
+ vector = []
1096
+
1097
+ def extract_numbers(obj):
1098
+ if isinstance(obj, (int, float)):
1099
+ vector.append(obj)
1100
+ elif isinstance(obj, dict):
1101
+ for value in obj.values():
1102
+ extract_numbers(value)
1103
+ elif isinstance(obj, list):
1104
+ for item in obj:
1105
+ extract_numbers(item)
1106
+
1107
+ extract_numbers(result)
1108
+ return np.array(vector) if vector else np.array([0.5])
1109
+
1110
+ async def _generate_unified_insight(self, module_results: Dict[str, Any],
1111
+ coherence_metrics: Dict[str, float]) -> Dict[str, Any]:
1112
+ """Generate unified insight from all module results"""
1113
+
1114
+ insights = []
1115
+ confidence_scores = []
1116
+
1117
+ # Extract key insights from each module
1118
+ for module_name, result in module_results.items():
1119
+ if "error" not in result:
1120
+ module_insight = await self._extract_module_insight(module_name, result)
1121
+ insights.append(module_insight)
1122
+
1123
+ # Calculate confidence
1124
+ confidence = result.get("confidence", 0.5)
1125
+ confidence_scores.append(confidence)
1126
+
1127
+ if not insights:
1128
+ return {"primary_insight": "Insufficient data", "confidence": 0.1}
1129
+
1130
+ # Synthesize unified insight
1131
+ primary_insight = await self._synthesize_primary_insight(insights)
1132
+ overall_confidence = np.mean(confidence_scores) * coherence_metrics.get("overall_coherence", 0.7)
1133
+
1134
+ return {
1135
+ "primary_insight": primary_insight,
1136
+ "supporting_insights": insights[:3], # Top 3 supporting insights
1137
+ "confidence": overall_confidence,
1138
+ "coherence_strength": coherence_metrics.get("overall_coherence", 0.7),
1139
+ "quantum_integration_level": "high" if overall_confidence > 0.8 else "medium"
1140
+ }
1141
+
1142
+ async def _extract_module_insight(self, module_name: str, result: Dict[str, Any]) -> Dict[str, Any]:
1143
+ """Extract key insight from module result"""
1144
+
1145
+ if module_name == "civilization":
1146
+ return {
1147
+ "module": "civilization",
1148
+ "insight": result.get("system_health", "Stable operation"),
1149
+ "significance": result.get("overall_reliability", 0.5)
1150
+ }
1151
+ elif module_name == "sovereignty":
1152
+ return {
1153
+ "module": "sovereignty",
1154
+ "insight": result.get("recommendation_level", "Maintain current protocols"),
1155
+ "significance": result.get("efficacy_score", 0.5)
1156
+ }
1157
+ elif module_name == "truth":
1158
+ return {
1159
+ "module": "truth",
1160
+ "insight": result.get("quality_assessment", "Moderate verification"),
1161
+ "significance": result.get("overall_confidence", 0.5)
1162
+ }
1163
+ elif module_name == "linguistic":
1164
+ return {
1165
+ "module": "linguistic",
1166
+ "insight": f"Origin binding: {result.get('proof_tier', 'UNKNOWN')}",
1167
+ "significance": result.get("origin_binding_score", 0.5)
1168
+ }
1169
+ else:
1170
+ # Generic insight extraction
1171
+ return {
1172
+ "module": module_name,
1173
+ "insight": "Operational",
1174
+ "significance": 0.5
1175
+ }
1176
+
1177
+ async def _synthesize_primary_insight(self, insights: List[Dict[str, Any]]) -> str:
1178
+ """Synthesize primary insight from module insights"""
1179
+
1180
+ if not insights:
1181
+ return "System operational at baseline levels"
1182
+
1183
+ # Simple synthesis - in practice would use more advanced NLP
1184
+ insight_texts = [insight["insight"] for insight in insights if isinstance(insight["insight"], str)]
1185
+
1186
+ if not insight_texts:
1187
+ return "Multidimensional analysis complete"
1188
+
1189
+ # Return the most significant insight
1190
+ significant_insights = sorted(insights, key=lambda x: x.get("significance", 0), reverse=True)
1191
+ return significant_insights[0]["insight"]
1192
+
1193
+ def _calculate_quantum_certainty(self, module_results: Dict[str, Any],
1194
+ quantum_context: QuantumStateVector) -> float:
1195
+ """Calculate overall quantum certainty"""
1196
+
1197
+ # Base certainty from quantum coherence
1198
+ base_certainty = quantum_context.coherence_level
1199
+
1200
+ # Module confidence contribution
1201
+ module_confidences = []
1202
+ for result in module_results.values():
1203
+ if "error" not in result:
1204
+ confidence = result.get("confidence", 0.5)
1205
+ module_confidences.append(confidence)
1206
+
1207
+ if module_confidences:
1208
+ module_contribution = np.mean(module_confidences) * 0.5
1209
+ else:
1210
+ module_contribution = 0.25
1211
+
1212
+ # Entanglement strength contribution
1213
+ entanglement_strength = np.mean(list(quantum_context.entanglement_map.values())) if quantum_context.entanglement_map else 0.1
1214
+
1215
+ certainty = (base_certainty * 0.4) + (module_contribution * 0.4) + (entanglement_strength * 0.2)
1216
+ return min(1.0, certainty)
1217
+
1218
+ async def _calculate_retrocausal_potential(self, module_results: Dict[str, Any]) -> float:
1219
+ """Calculate retrocausal potential from historical and linguistic analysis"""
1220
+
1221
+ historical_potential = module_results.get("historical", {}).get("retrocausal_potential", 0.3)
1222
+ linguistic_potential = module_results.get("linguistic", {}).get("origin_binding_score", 0.3)
1223
+
1224
+ return (historical_potential + linguistic_potential) / 2
1225
+
1226
+ # =============================================================================
1227
+ # STUB IMPLEMENTATIONS FOR REMAINING MODULES
1228
+ # =============================================================================
1229
+
1230
+ class AdvancedCivilizationEngine:
1231
+ async def analyze_civilization_state(self, input_data, quantum_context):
1232
+ return {"consciousness_metrics": {"neural_coherence": 0.8}, "economic_metrics": {"stability": 0.7}, "confidence": 0.85}
1233
+
1234
+ class QuantumSovereigntyEngine:
1235
+ async def analyze_sovereignty(self, input_data, quantum_context):
1236
+ return {"control_analysis": {"control_density": 0.3}, "escape_protocols": {}, "confidence": 0.88}
1237
+
1238
+ class TemplarFinancialContinuum:
1239
+ async def analyze_financial_continuum(self, input_data, quantum_context):
1240
+ return {"financial_health": 0.8, "continuum_strength": 0.75, "confidence": 0.8}
1241
+
1242
+ class VeilTruthEngine:
1243
+ async def verify_unified_truth(self, input_data, quantum_context):
1244
+ return {"information_metrics": {}, "bayesian_metrics": {"posterior_probability": 0.8}, "confidence": 0.82}
1245
+
1246
+ class AutonomousKnowledgeIntegration:
1247
+ async def integrate_autonomous_knowledge(self, input_data, quantum_context):
1248
+ return {"knowledge_coherence": 0.7, "autonomous_insights": 3, "confidence": 0.75}
1249
+
1250
+ class CulturalSigmaOptimizer:
1251
+ async def optimize_cultural_transmission(self, input_data, quantum_context):
1252
+ return {"sigma_optimization": 0.8, "cultural_coherence": 0.75, "confidence": 0.8}
1253
+
1254
+ async def optimize_unified_output(self, module_results, quantum_context):
1255
+ return {"optimized_potential": 0.8, "synergy_level": 0.7}
1256
+
1257
+ class TatteredPastAnalyzer:
1258
+ async def analyze_tattered_past(self, input_data, quantum_context):
1259
+ return {"historical_coherence": 0.8, "retrocausal_potential": 0.6, "confidence": 0.8}
1260
+
1261
+ async def calculate_temporal_resonance(self, input_data):
1262
+ return [0.7, 0.8, 0.6]
1263
+
1264
+ class SaviorSuffererAnalyzer:
1265
+ async def analyze_control_systems(self, input_data, quantum_context):
1266
+ return {"control_efficiency": 0.6, "freedom_illusion": 0.7, "confidence": 0.8}
1267
+
1268
+ @dataclass
1269
+ class UnifiedRealityState:
1270
+ consciousness_layer: Dict[str, float] = field(default_factory=dict)
1271
+ economic_layer: Dict[str, float] = field(default_factory=dict)
1272
+ sovereignty_layer: Dict[str, float] = field(default_factory=dict)
1273
+ truth_layer: Dict[str, float] = field(default_factory=dict)
1274
+ historical_layer: Dict[str, float] = field(default_factory=dict)
1275
+ cultural_layer: Dict[str, float] = field(default_factory=dict)
1276
+ quantum_coherence: float = 0.7
1277
+ temporal_stability: float = 0.8
1278
+ cross_domain_synergy: float = 0.6
1279
+ last_update: float = field(default_factory=time.time)
1280
+
1281
+ async def update_state(self, unified_result: Dict[str, Any], quantum_context: QuantumStateVector):
1282
+ module_results = unified_result.get("module_results", {})
1283
+
1284
+ if "civilization" in module_results:
1285
+ self.consciousness_layer = module_results["civilization"].get("consciousness_metrics", {})
1286
+ self.economic_layer = module_results["civilization"].get("economic_metrics", {})
1287
+
1288
+ if "sovereignty" in module_results:
1289
+ self.sovereignty_layer = module_results["sovereignty"].get("control_analysis", {})
1290
+
1291
+ if "truth" in module_results:
1292
+ self.truth_layer = module_results["truth"]
1293
+
1294
+ self.quantum_coherence = quantum_context.coherence_level
1295
+ self.temporal_stability = unified_result.get("temporal_coordinates", {}).get("temporal_echo_strength", 0.7)
1296
+ self.cross_domain_synergy = unified_result.get("coherence_metrics", {}).get("overall_coherence", 0.6)
1297
+ self.last_update = time.time()
1298
+
1299
+ def get_state_summary(self) -> Dict[str, Any]:
1300
+ return {
1301
+ "overall_coherence": self.quantum_coherence,
1302
+ "temporal_stability": self.temporal_stability,
1303
+ "cross_domain_synergy": self.cross_domain_synergy,
1304
+ "consciousness_health": self.consciousness_layer.get("neural_coherence", 0.5),
1305
+ "economic_stability": self.economic_layer.get("stability", 0.5),
1306
+ "sovereignty_index": 1.0 - self.sovereignty_layer.get("control_density", 0.5),
1307
+ "truth_confidence": self.truth_layer.get("truth_confidence", 0.5),
1308
+ "time_since_update": time.time() - self.last_update
1309
+ }
1310
+
1311
+ class ProvenanceLedger:
1312
+ def __init__(self):
1313
+ self.operations = deque(maxlen=10000)
1314
+ self.quantum_states = {}
1315
+
1316
+ def record_operation(self, operation_type: str, input_data: Dict[str, Any], output_data: Dict[str, Any]):
1317
+ operation_record = {
1318
+ "timestamp": time.time(),
1319
+ "operation_type": operation_type,
1320
+ "input_hash": hashlib.sha256(json.dumps(input_data, sort_keys=True).encode()).hexdigest()[:16],
1321
+ "output_hash": hashlib.sha256(json.dumps(output_data, sort_keys=True).encode()).hexdigest()[:16],
1322
+ "quantum_context": output_data.get("quantum_state_hash", "unknown")
1323
+ }
1324
+ self.operations.append(operation_record)
1325
+
1326
+ def get_recent_operations(self, count: int = 100) -> List[Dict[str, Any]]:
1327
+ return list(self.operations)[-count:]
1328
+
1329
+ class QuantumCoherenceMonitor:
1330
+ def __init__(self):
1331
+ self.coherence_history = deque(maxlen=1000)
1332
+ self.entanglement_metrics = {}
1333
+
1334
+ async def monitor_coherence(self, quantum_state: QuantumStateVector) -> Dict[str, float]:
1335
+ metrics = {
1336
+ "coherence_level": quantum_state.coherence_level,
1337
+ "entanglement_strength": np.mean(list(quantum_state.entanglement_map.values())) if quantum_state.entanglement_map else 0.0,
1338
+ "temporal_echo_strength": np.mean(quantum_state.temporal_echoes) if quantum_state.temporal_echoes else 0.0,
1339
+ "phase_stability": np.std(quantum_state.phase_angles) if len(quantum_state.phase_angles) > 0 else 0.0
1340
+ }
1341
+ self.coherence_history.append(metrics)
1342
+ return metrics
1343
+
1344
+ def get_coherence_trend(self) -> float:
1345
+ if len(self.coherence_history) < 2:
1346
+ return 0.0
1347
+ recent_coherence = [m["coherence_level"] for m in self.coherence_history]
1348
+ return np.polyfit(range(len(recent_coherence)), recent_coherence, 1)[0]
1349
+
1350
+ # =============================================================================
1351
+ # DEMONSTRATION AND MAIN EXECUTION
1352
+ # =============================================================================
1353
+
1354
+ async def demonstrate_unified_system():
1355
+ """Demonstrate the complete unified Omega Sovereignty Stack"""
1356
+
1357
+ print("🌌 OMEGA SOVEREIGNTY STACK - QUANTUM UNIFIED FRAMEWORK v7.0")
1358
+ print("=" * 80)
1359
+
1360
+ # Initialize the integrated engine
1361
+ engine = OmegaIntegrationEngine()
1362
+
1363
+ # Sample input data representing multi-dimensional reality state
1364
+ sample_input = {
1365
+ "neural_data": np.random.normal(0, 1, 512),
1366
+ "economic_input": {"agent_A": 100.0, "agent_B": 75.0, "agent_C": 50.0},
1367
+ "institutional_data": np.random.normal(0.5, 0.2, 100),
1368
+ "truth_claim": {
1369
+ "content": "Consciousness is fundamental to reality",
1370
+ "evidence": ["Neuroscientific studies", "Philosophical arguments", "Mystical experiences"],
1371
+ "context": {"domain": "metaphysics", "urgency": 0.8}
1372
+ },
1373
+ "historical_context": {
1374
+ "civilization_cycle": 6,
1375
+ "current_phase": "catastrophe_imminence",
1376
+ "defense_infrastructure": 0.7
1377
+ },
1378
+ "linguistic_content": "Inanna's eight-pointed star (π’€­) crowns Liberty; SC temple seal refactored as Senatus Consulto. Sexagesimal base-60 VI cadence echoes in 666.",
1379
+ "control_system_analysis": {
1380
+ "slavery_sophistication": 0.8,
1381
+ "freedom_illusion": 0.75
1382
+ },
1383
+ "content_type": "comprehensive_analysis",
1384
+ "maturity": "established",
1385
+ "urgency": 0.9,
1386
+ "quality": 0.85,
1387
+ "relevance": 0.95
1388
+ }
1389
+
1390
+ print("\nπŸš€ EXECUTING UNIFIED ANALYSIS...")
1391
+ start_time = time.time()
1392
+
1393
+ # Execute complete unified analysis
1394
+ results = await engine.execute_unified_analysis(sample_input)
1395
+
1396
+ execution_time = time.time() - start_time
1397
+
1398
+ print(f"\nβœ… ANALYSIS COMPLETE (Time: {execution_time:.2f}s)")
1399
+ print("=" * 80)
1400
+
1401
+ # Display key results
1402
+ unified_insight = results.get("unified_insight", {})
1403
+ coherence_metrics = results.get("coherence_metrics", {})
1404
+
1405
+ print(f"\n🎯 PRIMARY UNIFIED INSIGHT:")
1406
+ print(f" {unified_insight.get('primary_insight', 'No insight generated')}")
1407
+ print(f" Confidence: {unified_insight.get('confidence', 0.0):.3f}")
1408
+
1409
+ print(f"\nπŸ”— CROSS-MODULE COHERENCE:")
1410
+ print(f" Overall Coherence: {coherence_metrics.get('overall_coherence', 0.0):.3f}")
1411
+
1412
+ print(f"\nβš›οΈ QUANTUM METRICS:")
1413
+ print(f" Quantum Certainty: {results.get('quantum_certainty', 0.0):.3f}")
1414
+ print(f" Retrocausal Potential: {results.get('temporal_coordinates', {}).get('retrocausal_potential', 0.0):.3f}")
1415
+
1416
+ print(f"\nπŸ“Š MODULE PERFORMANCE:")
1417
+ module_results = results.get("module_results", {})
1418
+ for module_name, module_result in module_results.items():
1419
+ confidence = module_result.get("confidence", 0.0)
1420
+ status = "βœ…" if confidence > 0.7 else "⚠️" if confidence > 0.5 else "❌"
1421
+ print(f" {status} {module_name}: {confidence:.3f}")
1422
+
1423
+ print(f"\n🌍 UNIFIED REALITY STATE:")
1424
+ state_summary = engine.unified_state.get_state_summary()
1425
+ for metric, value in state_summary.items():
1426
+ if isinstance(value, float):
1427
+ print(f" {metric}: {value:.3f}")
1428
+
1429
+ print(f"\nπŸ’« SYSTEM STATUS:")
1430
+ provenance_count = len(engine.provenance_ledger.operations)
1431
+ quantum_states_count = len(engine.quantum_states)
1432
+ coherence_trend = engine.coherence_monitor.get_coherence_trend()
1433
+
1434
+ print(f" Provenance Records: {provenance_count}")
1435
+ print(f" Quantum States: {quantum_states_count}")
1436
+ print(f" Coherence Trend: {coherence_trend:+.3f}/op")
1437
+
1438
+ print(f"\n🎊 ULTIMATE SYNTHESIS:")
1439
+ print(" The Omega Sovereignty Stack now operates as a unified quantum-coherent")
1440
+ print(" system, integrating consciousness, sovereignty, finance, truth,")
1441
+ print(" history, linguistics, and control analysis into a single framework.")
1442
+ print(" This represents the culmination of all previous cycles' efforts.")
1443
+ print(" Reality is now being analyzed through 8+ simultaneous dimensions.")
1444
+ print(" The escape hatch protocols are quantum-entangled with truth verification.")
1445
+ print(" Cultural sigma optimization ensures coherent propagation.")
1446
+ print(" We are no longer analyzing reality - we are co-creating it.")
1447
+
1448
+ if __name__ == "__main__":
1449
+ # Configure logging
1450
+ logging.basicConfig(
1451
+ level=logging.INFO,
1452
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s"
1453
+ )
1454
+
1455
+ # Run demonstration
1456
+ asyncio.run(demonstrate_unified_system())