Create LINEAR_A_CIPHER
Browse filesThis was designed to decipher the "LINEAR A" Artifact
- LINEAR_A_CIPHER +507 -0
LINEAR_A_CIPHER
ADDED
|
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
QUANTUM BAYESIAN LINEAR A DECIPHERMENT ENGINE
|
| 5 |
+
Integrating Bayesian Entanglement Filter for Quantum-Linguistic Truth Binding
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
import tensorflow_probability as tfp
|
| 11 |
+
from dataclasses import dataclass, field
|
| 12 |
+
from enum import Enum
|
| 13 |
+
from typing import Dict, List, Any, Optional, Tuple
|
| 14 |
+
import re
|
| 15 |
+
from collections import Counter, defaultdict
|
| 16 |
+
import asyncio
|
| 17 |
+
import math
|
| 18 |
+
from scipy.special import logsumexp
|
| 19 |
+
import scipy.stats as stats
|
| 20 |
+
import cmath
|
| 21 |
+
|
| 22 |
+
tfd = tfp.distributions
|
| 23 |
+
tfb = tfp.bijectors
|
| 24 |
+
|
| 25 |
+
# =============================================================================
|
| 26 |
+
# QUANTUM LINGUISTIC ENTANGLEMENT FILTER
|
| 27 |
+
# =============================================================================
|
| 28 |
+
|
| 29 |
+
class BayesianEntanglementFilter:
|
| 30 |
+
"""
|
| 31 |
+
Quantum-inspired Bayesian filter that treats linguistic evidence as entangled qubits
|
| 32 |
+
Maps directly to lm_quant_veritas Conceptual Entanglement Module v7.1
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self):
|
| 36 |
+
self.entanglement_channels = {
|
| 37 |
+
"predictive_entropy": "Ξ¨_field_uncertainty",
|
| 38 |
+
"language_family_probabilities": "Ξ_linguistic",
|
| 39 |
+
"overall_uncertainty": "Ο_consciousness_flux",
|
| 40 |
+
"reconstruction_confidence": "Ξ£_truth_resonance",
|
| 41 |
+
"structural_coherence": "Ξ_pattern_integration",
|
| 42 |
+
"contextual_alignment": "Ξ¦_semantic_field"
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
def quantum_linguistic_synthesis(self, evidence_dict: Dict[str, Dict[str, float]]) -> Dict[str, Any]:
|
| 46 |
+
"""
|
| 47 |
+
Bayesian Entanglement Filter for uncertainty synthesis.
|
| 48 |
+
Treats each evidence source as an entangled qubit with amplitude and phase.
|
| 49 |
+
"""
|
| 50 |
+
# Extract quantum-linguistic amplitudes and phases
|
| 51 |
+
amplitudes = []
|
| 52 |
+
phases = []
|
| 53 |
+
quantum_states = []
|
| 54 |
+
|
| 55 |
+
for evidence_type, evidence_data in evidence_dict.items():
|
| 56 |
+
# Confidence as amplitude (0-1 scale)
|
| 57 |
+
amplitude = evidence_data.get('confidence', 0.5)
|
| 58 |
+
|
| 59 |
+
# Entropy/uncertainty as phase (0-2Ο mapping)
|
| 60 |
+
entropy = evidence_data.get('entropy', 0.5)
|
| 61 |
+
phase = 2 * np.pi * entropy # Full cycle for maximum uncertainty
|
| 62 |
+
|
| 63 |
+
amplitudes.append(amplitude)
|
| 64 |
+
phases.append(phase)
|
| 65 |
+
|
| 66 |
+
# Create complex quantum state for this evidence type
|
| 67 |
+
complex_state = amplitude * cmath.exp(1j * phase)
|
| 68 |
+
quantum_states.append({
|
| 69 |
+
'evidence_type': evidence_type,
|
| 70 |
+
'quantum_channel': self.entanglement_channels.get(evidence_type, "Ξ_unknown"),
|
| 71 |
+
'amplitude': amplitude,
|
| 72 |
+
'phase': phase,
|
| 73 |
+
'complex_state': complex_state,
|
| 74 |
+
'probability_density': abs(complex_state) ** 2
|
| 75 |
+
})
|
| 76 |
+
|
| 77 |
+
# Calculate quantum coherence of the entire linguistic system
|
| 78 |
+
complex_vector = np.array([state['complex_state'] for state in quantum_states])
|
| 79 |
+
total_coherence = abs(np.sum(complex_vector)) / len(complex_vector)
|
| 80 |
+
|
| 81 |
+
# Calculate entanglement strength (how correlated the evidence sources are)
|
| 82 |
+
correlation_matrix = self._calculate_quantum_correlations(quantum_states)
|
| 83 |
+
entanglement_strength = np.mean(np.abs(correlation_matrix))
|
| 84 |
+
|
| 85 |
+
# Quantum collapse probability (when system decoheres due to uncertainty)
|
| 86 |
+
collapse_probability = 1.0 - total_coherence
|
| 87 |
+
|
| 88 |
+
# Truth resonance frequency (fundamental vibration of linguistic certainty)
|
| 89 |
+
truth_resonance = self._calculate_truth_resonance(quantum_states)
|
| 90 |
+
|
| 91 |
+
return {
|
| 92 |
+
"entangled_confidence": float(total_coherence),
|
| 93 |
+
"collapse_probability": float(collapse_probability),
|
| 94 |
+
"entanglement_strength": float(entanglement_strength),
|
| 95 |
+
"truth_resonance_frequency": float(truth_resonance),
|
| 96 |
+
"quantum_state_vector": [s['complex_state'] for s in quantum_states],
|
| 97 |
+
"evidence_entanglement": quantum_states,
|
| 98 |
+
"linguistic_superposition": self._calculate_superposition_state(quantum_states),
|
| 99 |
+
"veritas_certification_level": self._calculate_veritas_certification(total_coherence, truth_resonance)
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
def _calculate_quantum_correlations(self, quantum_states: List[Dict]) -> np.ndarray:
|
| 103 |
+
"""Calculate quantum correlation matrix between evidence sources"""
|
| 104 |
+
n = len(quantum_states)
|
| 105 |
+
corr_matrix = np.zeros((n, n), dtype=complex)
|
| 106 |
+
|
| 107 |
+
for i in range(n):
|
| 108 |
+
for j in range(n):
|
| 109 |
+
# Quantum inner product representing entanglement
|
| 110 |
+
state_i = quantum_states[i]['complex_state']
|
| 111 |
+
state_j = quantum_states[j]['complex_state']
|
| 112 |
+
corr_matrix[i, j] = state_i * np.conj(state_j)
|
| 113 |
+
|
| 114 |
+
return corr_matrix
|
| 115 |
+
|
| 116 |
+
def _calculate_truth_resonance(self, quantum_states: List[Dict]) -> float:
|
| 117 |
+
"""Calculate the fundamental resonance frequency of linguistic truth"""
|
| 118 |
+
# Use spectral analysis of quantum states
|
| 119 |
+
frequencies = []
|
| 120 |
+
for state in quantum_states:
|
| 121 |
+
# Higher amplitude + specific phase angles create resonant frequencies
|
| 122 |
+
amplitude = state['amplitude']
|
| 123 |
+
phase = state['phase']
|
| 124 |
+
|
| 125 |
+
# Resonance occurs when amplitude is high and phase is aligned with truth harmonics
|
| 126 |
+
# Truth harmonics are at Ο/4, Ο/2, 3Ο/4 (45Β°, 90Β°, 135Β° in phase space)
|
| 127 |
+
truth_harmonics = [np.pi/4, np.pi/2, 3*np.pi/4]
|
| 128 |
+
harmonic_alignment = max([1 - abs(phase - harmonic)/(np.pi/2) for harmonic in truth_harmonics])
|
| 129 |
+
|
| 130 |
+
resonance = amplitude * harmonic_alignment
|
| 131 |
+
frequencies.append(resonance)
|
| 132 |
+
|
| 133 |
+
return float(np.mean(frequencies)) if frequencies else 0.5
|
| 134 |
+
|
| 135 |
+
def _calculate_superposition_state(self, quantum_states: List[Dict]) -> Dict[str, float]:
|
| 136 |
+
"""Calculate the superposition state across linguistic hypotheses"""
|
| 137 |
+
# Represents the quantum state before measurement/collapse
|
| 138 |
+
total_probability = sum([state['probability_density'] for state in quantum_states])
|
| 139 |
+
|
| 140 |
+
if total_probability > 0:
|
| 141 |
+
normalized_states = {
|
| 142 |
+
state['evidence_type']: state['probability_density'] / total_probability
|
| 143 |
+
for state in quantum_states
|
| 144 |
+
}
|
| 145 |
+
else:
|
| 146 |
+
normalized_states = {state['evidence_type']: 1.0/len(quantum_states) for state in quantum_states}
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
'superposition_weights': normalized_states,
|
| 150 |
+
'superposition_entropy': -sum([p * math.log(p) for p in normalized_states.values()]),
|
| 151 |
+
'readiness_for_collapse': min(0.95, max(normalized_states.values()) / sum(normalized_states.values()))
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
def _calculate_veritas_certification(self, coherence: float, resonance: float) -> str:
|
| 155 |
+
"""Calculate Veritas certification level based on quantum linguistic coherence"""
|
| 156 |
+
veritas_score = coherence * resonance
|
| 157 |
+
|
| 158 |
+
if veritas_score >= 0.9:
|
| 159 |
+
return "VERITAS_CERTIFIED_QUANTUM"
|
| 160 |
+
elif veritas_score >= 0.8:
|
| 161 |
+
return "VERITAS_HIGH_CONFIDENCE"
|
| 162 |
+
elif veritas_score >= 0.7:
|
| 163 |
+
return "VERITAS_MEDIUM_CONFIDENCE"
|
| 164 |
+
elif veritas_score >= 0.6:
|
| 165 |
+
return "VERITAS_LOW_CONFIDENCE"
|
| 166 |
+
else:
|
| 167 |
+
return "VERITAS_UNCERTAIN"
|
| 168 |
+
|
| 169 |
+
# =============================================================================
|
| 170 |
+
# ENHANCED QUANTUM BAYESIAN DECIPHERMENT ENGINE
|
| 171 |
+
# =============================================================================
|
| 172 |
+
|
| 173 |
+
class QuantumLinearADeciphermentEngine:
|
| 174 |
+
"""
|
| 175 |
+
Quantum Bayesian decipherment engine with entanglement filtering
|
| 176 |
+
Integrates directly with lm_quant_veritas truth-binding architecture
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
def __init__(self):
|
| 180 |
+
self.corpus = LinearACorpusBayesian()
|
| 181 |
+
self.ngram_model = BayesianNGramModel(n=3)
|
| 182 |
+
self.entanglement_filter = BayesianEntanglementFilter()
|
| 183 |
+
self.language_hypotheses = self._initialize_language_hypotheses()
|
| 184 |
+
|
| 185 |
+
async def quantum_decipher_inscription(self, inscription_id: str) -> Dict[str, Any]:
|
| 186 |
+
"""
|
| 187 |
+
Quantum Bayesian decipherment with entanglement synthesis
|
| 188 |
+
Returns truth-bound linguistic interpretation with Veritas certification
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
if inscription_id not in self.corpus.inscriptions:
|
| 192 |
+
return {"error": "Inscription not found", "veritas_certification": "VERITAS_INVALID"}
|
| 193 |
+
|
| 194 |
+
inscription_data = self.corpus.inscriptions[inscription_id]
|
| 195 |
+
text = inscription_data["text"]
|
| 196 |
+
sequence = await self._text_to_sequence(text)
|
| 197 |
+
|
| 198 |
+
# Phase 1: Conventional Bayesian analysis
|
| 199 |
+
bayesian_results = await self._run_bayesian_analysis(text, sequence)
|
| 200 |
+
|
| 201 |
+
# Phase 2: Quantum entanglement synthesis
|
| 202 |
+
quantum_synthesis = await self._perform_quantum_synthesis(bayesian_results)
|
| 203 |
+
|
| 204 |
+
# Phase 3: Truth-binding verification
|
| 205 |
+
truth_verification = await self._verify_truth_binding(quantum_synthesis, bayesian_results)
|
| 206 |
+
|
| 207 |
+
# Final integrated results
|
| 208 |
+
return {
|
| 209 |
+
"inscription_id": inscription_id,
|
| 210 |
+
"text": text,
|
| 211 |
+
"bayesian_analysis": bayesian_results,
|
| 212 |
+
"quantum_linguistic_entanglement": quantum_synthesis,
|
| 213 |
+
"truth_verification": truth_verification,
|
| 214 |
+
"final_interpretation": await self._generate_final_interpretation(quantum_synthesis, bayesian_results),
|
| 215 |
+
"lm_quant_veritas_integration": await self._prepare_veritas_integration(quantum_synthesis)
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
async def _run_bayesian_analysis(self, text: str, sequence: List[int]) -> Dict[str, Any]:
|
| 219 |
+
"""Run comprehensive Bayesian analysis"""
|
| 220 |
+
return {
|
| 221 |
+
"frequency_analysis": await self._bayesian_frequency_analysis(text, sequence),
|
| 222 |
+
"comparative_analysis": await self._monte_carlo_comparative_analysis(text, sequence),
|
| 223 |
+
"structural_analysis": await self._structural_analysis(text, sequence),
|
| 224 |
+
"contextual_analysis": await self._contextual_analysis(text, sequence),
|
| 225 |
+
"phonetic_reconstruction": await self._bayesian_phonetic_reconstruction(text, sequence)
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
async def _perform_quantum_synthesis(self, bayesian_results: Dict) -> Dict[str, Any]:
|
| 229 |
+
"""Perform quantum entanglement synthesis of all Bayesian evidence"""
|
| 230 |
+
|
| 231 |
+
# Prepare evidence for quantum entanglement
|
| 232 |
+
evidence_dict = {}
|
| 233 |
+
|
| 234 |
+
# Frequency evidence
|
| 235 |
+
freq_data = bayesian_results['frequency_analysis']
|
| 236 |
+
evidence_dict['frequency'] = {
|
| 237 |
+
'confidence': freq_data.get('sign_distribution_confidence', 0.5),
|
| 238 |
+
'entropy': freq_data.get('bayesian_entropy', 0.5) / 4.0, # Normalize to [0,1]
|
| 239 |
+
'amplitude': min(1.0, freq_data.get('unique_signs', 0) / 20.0) # Diversity measure
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
# Comparative evidence
|
| 243 |
+
comp_data = bayesian_results['comparative_analysis']
|
| 244 |
+
evidence_dict['comparative'] = {
|
| 245 |
+
'confidence': 1.0 - comp_data.get('overall_uncertainty', 0.5),
|
| 246 |
+
'entropy': comp_data.get('predictive_entropy', 0.5) / 2.0, # Normalize
|
| 247 |
+
'amplitude': np.mean([m['confidence'] for m in comp_data.get('linear_b_mappings', [])]) if comp_data.get('linear_b_mappings') else 0.5
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
# Structural evidence
|
| 251 |
+
struct_data = bayesian_results['structural_analysis']
|
| 252 |
+
evidence_dict['structural'] = {
|
| 253 |
+
'confidence': struct_data.get('affix_confidence', 0.5),
|
| 254 |
+
'entropy': struct_data.get('word_length_distribution', {}).get('std', 0.5) / 2.0,
|
| 255 |
+
'amplitude': struct_data.get('word_length_distribution', {}).get('confidence', 0.5)
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
# Contextual evidence
|
| 259 |
+
context_data = bayesian_results['contextual_analysis']
|
| 260 |
+
evidence_dict['contextual'] = {
|
| 261 |
+
'confidence': context_data.get('context_confidence', 0.5),
|
| 262 |
+
'entropy': 1.0 - context_data.get('context_confidence', 0.5), # Inverse relationship
|
| 263 |
+
'amplitude': len(context_data.get('administrative_terms', [])) / 5.0 # Term abundance
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
# Phonetic evidence
|
| 267 |
+
phon_data = bayesian_results['phonetic_reconstruction']
|
| 268 |
+
recon_data = phon_data.get('linear_b_based', {})
|
| 269 |
+
evidence_dict['phonetic'] = {
|
| 270 |
+
'confidence': recon_data.get('average_confidence', 0.5),
|
| 271 |
+
'entropy': recon_data.get('uncertainty', 0.5),
|
| 272 |
+
'amplitude': recon_data.get('average_confidence', 0.5)
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
# Apply quantum entanglement filter
|
| 276 |
+
return self.entanglement_filter.quantum_linguistic_synthesis(evidence_dict)
|
| 277 |
+
|
| 278 |
+
async def _verify_truth_binding(self, quantum_synthesis: Dict, bayesian_results: Dict) -> Dict[str, Any]:
|
| 279 |
+
"""Verify truth binding through quantum-classical correspondence"""
|
| 280 |
+
|
| 281 |
+
entangled_confidence = quantum_synthesis['entangled_confidence']
|
| 282 |
+
collapse_prob = quantum_synthesis['collapse_probability']
|
| 283 |
+
truth_resonance = quantum_synthesis['truth_resonance_frequency']
|
| 284 |
+
|
| 285 |
+
# Classical verification through multiple Bayesian methods
|
| 286 |
+
classical_confidence = await self._calculate_classical_confidence(bayesian_results)
|
| 287 |
+
|
| 288 |
+
# Quantum-classical correspondence check
|
| 289 |
+
correspondence = 1.0 - abs(entangled_confidence - classical_confidence)
|
| 290 |
+
|
| 291 |
+
# Truth binding strength (how well quantum and classical agree)
|
| 292 |
+
truth_binding = (entangled_confidence * classical_confidence * correspondence) ** 0.333
|
| 293 |
+
|
| 294 |
+
return {
|
| 295 |
+
"classical_confidence": classical_confidence,
|
| 296 |
+
"quantum_classical_correspondence": correspondence,
|
| 297 |
+
"truth_binding_strength": truth_binding,
|
| 298 |
+
"verification_status": "VERIFIED" if truth_binding > 0.7 else "UNCERTAIN",
|
| 299 |
+
"certainty_quantum": entangled_confidence,
|
| 300 |
+
"certainty_classical": classical_confidence
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
async def _generate_final_interpretation(self, quantum_synthesis: Dict, bayesian_results: Dict) -> Dict[str, Any]:
|
| 304 |
+
"""Generate final quantum-classical interpretation"""
|
| 305 |
+
|
| 306 |
+
# Use quantum state to weight classical interpretations
|
| 307 |
+
superposition = quantum_synthesis['linguistic_superposition']
|
| 308 |
+
weights = superposition['superposition_weights']
|
| 309 |
+
|
| 310 |
+
# Most probable interpretation based on quantum weights
|
| 311 |
+
primary_evidence = max(weights.items(), key=lambda x: x[1])
|
| 312 |
+
|
| 313 |
+
return {
|
| 314 |
+
"primary_evidence_type": primary_evidence[0],
|
| 315 |
+
"evidence_confidence": primary_evidence[1],
|
| 316 |
+
"recommended_interpretation": await self._generate_interpretation_recommendation(primary_evidence[0], bayesian_results),
|
| 317 |
+
"certainty_tier": self._classify_certainty_tier(quantum_synthesis['entangled_confidence']),
|
| 318 |
+
"next_decipherment_steps": await self._recommend_next_steps(quantum_synthesis, bayesian_results)
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
async def _prepare_veritas_integration(self, quantum_synthesis: Dict) -> Dict[str, Any]:
|
| 322 |
+
"""Prepare data for lm_quant_veritas integration"""
|
| 323 |
+
return {
|
| 324 |
+
"entanglement_channels": [
|
| 325 |
+
{
|
| 326 |
+
"channel_name": state['quantum_channel'],
|
| 327 |
+
"evidence_type": state['evidence_type'],
|
| 328 |
+
"amplitude": state['amplitude'],
|
| 329 |
+
"phase": state['phase'],
|
| 330 |
+
"probability_density": state['probability_density']
|
| 331 |
+
}
|
| 332 |
+
for state in quantum_synthesis['evidence_entanglement']
|
| 333 |
+
],
|
| 334 |
+
"veritas_certification": quantum_synthesis['veritas_certification_level'],
|
| 335 |
+
"quantum_state_ready": quantum_synthesis['entangled_confidence'] > 0.6,
|
| 336 |
+
"integration_timestamp": self._current_timestamp()
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
# Helper methods (implementations from previous engine)
|
| 340 |
+
async def _bayesian_frequency_analysis(self, text: str, sequence: List[int]) -> Dict[str, Any]:
|
| 341 |
+
"""Implementation from previous engine"""
|
| 342 |
+
signs = [char for char in text if char in self.corpus.signs]
|
| 343 |
+
freq = Counter(signs)
|
| 344 |
+
total = len(signs)
|
| 345 |
+
|
| 346 |
+
entropy = 0.0
|
| 347 |
+
for count in freq.values():
|
| 348 |
+
p = count / total
|
| 349 |
+
entropy += -p * math.log(p) if p > 0 else 0
|
| 350 |
+
|
| 351 |
+
return {
|
| 352 |
+
"total_signs": total,
|
| 353 |
+
"unique_signs": len(freq),
|
| 354 |
+
"bayesian_entropy": entropy,
|
| 355 |
+
"sign_distribution_confidence": min(0.95, 1.0 - entropy/4.0) # Normalized
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
async def _calculate_classical_confidence(self, bayesian_results: Dict) -> float:
|
| 359 |
+
"""Calculate classical confidence from Bayesian results"""
|
| 360 |
+
confidences = []
|
| 361 |
+
|
| 362 |
+
# Frequency confidence
|
| 363 |
+
freq_conf = bayesian_results['frequency_analysis'].get('sign_distribution_confidence', 0.5)
|
| 364 |
+
confidences.append(freq_conf)
|
| 365 |
+
|
| 366 |
+
# Comparative confidence
|
| 367 |
+
comp_data = bayesian_results['comparative_analysis']
|
| 368 |
+
comp_conf = 1.0 - comp_data.get('overall_uncertainty', 0.5)
|
| 369 |
+
confidences.append(comp_conf)
|
| 370 |
+
|
| 371 |
+
# Structural confidence
|
| 372 |
+
struct_conf = bayesian_results['structural_analysis'].get('affix_confidence', 0.5)
|
| 373 |
+
confidences.append(struct_conf)
|
| 374 |
+
|
| 375 |
+
# Contextual confidence
|
| 376 |
+
context_conf = bayesian_results['contextual_analysis'].get('context_confidence', 0.5)
|
| 377 |
+
confidences.append(context_conf)
|
| 378 |
+
|
| 379 |
+
return float(np.mean(confidences))
|
| 380 |
+
|
| 381 |
+
async def _generate_interpretation_recommendation(self, evidence_type: str, bayesian_results: Dict) -> str:
|
| 382 |
+
"""Generate interpretation recommendation based on primary evidence"""
|
| 383 |
+
recommendations = {
|
| 384 |
+
"frequency": "Focus on statistical pattern analysis",
|
| 385 |
+
"comparative": "Prioritize Linear B comparative mapping",
|
| 386 |
+
"structural": "Analyze grammatical and morphological patterns",
|
| 387 |
+
"contextual": "Interpret through archaeological context",
|
| 388 |
+
"phonetic": "Use phonetic reconstruction methods"
|
| 389 |
+
}
|
| 390 |
+
return recommendations.get(evidence_type, "Use multi-evidence synthesis")
|
| 391 |
+
|
| 392 |
+
def _classify_certainty_tier(self, confidence: float) -> str:
|
| 393 |
+
"""Classify certainty tier based on quantum confidence"""
|
| 394 |
+
if confidence >= 0.9: return "QUANTUM_CERTAINTY"
|
| 395 |
+
if confidence >= 0.8: return "HIGH_CONFIDENCE"
|
| 396 |
+
if confidence >= 0.7: return "MEDIUM_CONFIDENCE"
|
| 397 |
+
if confidence >= 0.6: return "LOW_CONFIDENCE"
|
| 398 |
+
return "SPECULATIVE"
|
| 399 |
+
|
| 400 |
+
async def _recommend_next_steps(self, quantum_synthesis: Dict, bayesian_results: Dict) -> List[str]:
|
| 401 |
+
"""Recommend next decipherment steps based on quantum analysis"""
|
| 402 |
+
steps = []
|
| 403 |
+
|
| 404 |
+
if quantum_synthesis['collapse_probability'] > 0.3:
|
| 405 |
+
steps.append("Reduce uncertainty through additional inscription samples")
|
| 406 |
+
|
| 407 |
+
if quantum_synthesis['truth_resonance_frequency'] < 0.7:
|
| 408 |
+
steps.append("Improve truth resonance with cross-linguistic alignment")
|
| 409 |
+
|
| 410 |
+
if quantum_synthesis['entanglement_strength'] < 0.6:
|
| 411 |
+
steps.append("Strengthen evidence entanglement through multi-method correlation")
|
| 412 |
+
|
| 413 |
+
return steps
|
| 414 |
+
|
| 415 |
+
def _current_timestamp(self) -> str:
|
| 416 |
+
"""Get current timestamp for integration"""
|
| 417 |
+
from datetime import datetime
|
| 418 |
+
return datetime.now().isoformat()
|
| 419 |
+
|
| 420 |
+
async def _text_to_sequence(self, text: str) -> List[int]:
|
| 421 |
+
"""Convert text to numerical sequence"""
|
| 422 |
+
sequence = []
|
| 423 |
+
sign_to_idx = {sign: i for i, sign in enumerate(self.corpus.signs.keys())}
|
| 424 |
+
|
| 425 |
+
for char in text:
|
| 426 |
+
if char in sign_to_idx:
|
| 427 |
+
sequence.append(sign_to_idx[char])
|
| 428 |
+
elif char.strip():
|
| 429 |
+
sequence.append(len(sign_to_idx))
|
| 430 |
+
|
| 431 |
+
return sequence
|
| 432 |
+
|
| 433 |
+
# =============================================================================
|
| 434 |
+
# DEMONSTRATION WITH QUANTUM ENTANGLEMENT
|
| 435 |
+
# =============================================================================
|
| 436 |
+
|
| 437 |
+
async def demonstrate_quantum_decipherment():
|
| 438 |
+
"""Demonstrate quantum Bayesian decipherment with entanglement filtering"""
|
| 439 |
+
|
| 440 |
+
engine = QuantumLinearADeciphermentEngine()
|
| 441 |
+
|
| 442 |
+
print("π QUANTUM BAYESIAN LINEAR A DECIPHERMENT ENGINE")
|
| 443 |
+
print("=" * 60)
|
| 444 |
+
print("π Integrated with lm_quant_veritas Conceptual Entanglement Module v7.1")
|
| 445 |
+
print()
|
| 446 |
+
|
| 447 |
+
test_inscriptions = ["HT1", "HT2", "PH1"]
|
| 448 |
+
|
| 449 |
+
for ins_id in test_inscriptions:
|
| 450 |
+
print(f"\nβ‘ QUANTUM ANALYSIS: {ins_id}")
|
| 451 |
+
print("=" * 50)
|
| 452 |
+
|
| 453 |
+
results = await engine.quantum_decipher_inscription(ins_id)
|
| 454 |
+
|
| 455 |
+
if "error" in results:
|
| 456 |
+
print(f" β {results['error']}")
|
| 457 |
+
continue
|
| 458 |
+
|
| 459 |
+
quantum_data = results["quantum_linguistic_entanglement"]
|
| 460 |
+
truth_data = results["truth_verification"]
|
| 461 |
+
final_interp = results["final_interpretation"]
|
| 462 |
+
veritas_integration = results["lm_quant_veritas_integration"]
|
| 463 |
+
|
| 464 |
+
print(f" π Entangled Confidence: {quantum_data['entangled_confidence']:.3f}")
|
| 465 |
+
print(f" π« Collapse Probability: {quantum_data['collapse_probability']:.3f}")
|
| 466 |
+
print(f" π Entanglement Strength: {quantum_data['entanglement_strength']:.3f}")
|
| 467 |
+
print(f" π΅ Truth Resonance: {quantum_data['truth_resonance_frequency']:.3f}")
|
| 468 |
+
|
| 469 |
+
print(f"\n π Veritas Certification: {quantum_data['veritas_certification_level']}")
|
| 470 |
+
print(f" π€ Quantum-Classical Correspondence: {truth_data['quantum_classical_correspondence']:.3f}")
|
| 471 |
+
print(f" π Truth Binding Strength: {truth_data['truth_binding_strength']:.3f}")
|
| 472 |
+
|
| 473 |
+
print(f"\n π― Primary Evidence: {final_interp['primary_evidence_type']}")
|
| 474 |
+
print(f" π Evidence Confidence: {final_interp['evidence_confidence']:.3f}")
|
| 475 |
+
print(f" π Certainty Tier: {final_interp['certainty_tier']}")
|
| 476 |
+
print(f" π‘ Recommendation: {final_interp['recommended_interpretation']}")
|
| 477 |
+
|
| 478 |
+
print(f"\n π Veritas Integration: {veritas_integration['veritas_certification']}")
|
| 479 |
+
print(f" β‘ Quantum State Ready: {veritas_integration['quantum_state_ready']}")
|
| 480 |
+
|
| 481 |
+
async def demonstrate_entanglement_channels():
|
| 482 |
+
"""Show detailed entanglement channel analysis"""
|
| 483 |
+
print("\n\nπ QUANTUM ENTANGLEMENT CHANNELS ANALYSIS")
|
| 484 |
+
print("=" * 60)
|
| 485 |
+
|
| 486 |
+
engine = QuantumLinearADeciphermentEngine()
|
| 487 |
+
results = await engine.quantum_decipher_inscription("HT1")
|
| 488 |
+
quantum_data = results["quantum_linguistic_entanglement"]
|
| 489 |
+
|
| 490 |
+
print("\nπ ENTANGLEMENT CHANNELS:")
|
| 491 |
+
for state in quantum_data['evidence_entanglement']:
|
| 492 |
+
print(f" π‘ {state['quantum_channel']} ({state['evidence_type']})")
|
| 493 |
+
print(f" Amplitude: {state['amplitude']:.3f}")
|
| 494 |
+
print(f" Phase: {state['phase']:.3f} rad")
|
| 495 |
+
print(f" Probability: {state['probability_density']:.3f}")
|
| 496 |
+
|
| 497 |
+
print(f"\nπ LINGUISTIC SUPERPOSITION:")
|
| 498 |
+
superposition = quantum_data['linguistic_superposition']
|
| 499 |
+
for evidence_type, weight in superposition['superposition_weights'].items():
|
| 500 |
+
print(f" {evidence_type}: {weight:.3f}")
|
| 501 |
+
|
| 502 |
+
print(f" Superposition Entropy: {superposition['superposition_entropy']:.3f}")
|
| 503 |
+
print(f" Readiness for Collapse: {superposition['readiness_for_collapse']:.3f}")
|
| 504 |
+
|
| 505 |
+
if __name__ == "__main__":
|
| 506 |
+
asyncio.run(demonstrate_quantum_decipherment())
|
| 507 |
+
asyncio.run(demonstrate_entanglement_channels())
|