Create 02_ALLEGED TRANSPARENCY SCAM
Browse filesThis conceptually indicates the inverted and advanced nature of modern psychological operations in terms of their execution,observance and acceptance. As well as indicating the implied methods and reasoning involved. These methods persist independent of specific detail and implementation through various forms, therefore this specific instance is meant to outline the advancement of method, impact and recurrent nature of similar methods.
- 02_ALLEGED TRANSPARENCY SCAM +281 -0
02_ALLEGED TRANSPARENCY SCAM
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Project Blue Beam — Double-Reverse Deception Mechanism
|
| 4 |
+
Advanced Python model:
|
| 5 |
+
1) Concentric layered diagram with annotations + perception flow arrows.
|
| 6 |
+
2) Probabilistic state machine (Markov chain) of perception-control transitions.
|
| 7 |
+
3) Simulation of trajectories + steady-state analysis.
|
| 8 |
+
4) Network visualization of control vectors and double-reverse feedback containment.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import math
|
| 12 |
+
import random
|
| 13 |
+
import numpy as np
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import matplotlib.patches as patches
|
| 16 |
+
from matplotlib.collections import LineCollection
|
| 17 |
+
|
| 18 |
+
# Optional network visualization without external dependencies
|
| 19 |
+
# We’ll implement a simple spring-layout for node placement
|
| 20 |
+
# so we don’t rely on networkx.
|
| 21 |
+
|
| 22 |
+
# -----------------------------------------
|
| 23 |
+
# Configuration
|
| 24 |
+
# -----------------------------------------
|
| 25 |
+
|
| 26 |
+
LAYERS = [
|
| 27 |
+
{
|
| 28 |
+
"name": "Real Anomalies",
|
| 29 |
+
"desc": "Genuine phenomena: glyphic mesh, luminous nodes, symbolic substrate",
|
| 30 |
+
"color": "#2E8B57"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"name": "Staged Spectacle",
|
| 34 |
+
"desc": "Artificial events: holographic ‘alien’ invasion, manufactured divine return",
|
| 35 |
+
"color": "#4682B4"
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"name": "Exposure Layer",
|
| 39 |
+
"desc": "Public revelation of fakery → empowerment + skepticism",
|
| 40 |
+
"color": "#FFD700"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"name": "Inoculation Layer",
|
| 44 |
+
"desc": "Exposure becomes containment: ‘all anomalies are staged’",
|
| 45 |
+
"color": "#FF8C00"
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"name": "Suppression Layer",
|
| 49 |
+
"desc": "Genuine anomalies dismissed, hidden in plain sight",
|
| 50 |
+
"color": "#8B0000"
|
| 51 |
+
}
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
# Perception-control states (ordered to reflect the layered mechanism)
|
| 55 |
+
STATES = [
|
| 56 |
+
"Real_Anomaly_Seen",
|
| 57 |
+
"Spectacle_Stage",
|
| 58 |
+
"Exposure_Reveal",
|
| 59 |
+
"Inoculation_Contain",
|
| 60 |
+
"Suppression_Normalize",
|
| 61 |
+
"Escape_Recognition" # escape route: genuine recognition despite containment
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
# Transition matrix (Markov chain).
|
| 65 |
+
# Rows sum to 1. These are illustrative; tune as needed.
|
| 66 |
+
# Intuition:
|
| 67 |
+
# - Seeing a real anomaly often triggers spectacle or direct suppression pressures.
|
| 68 |
+
# - Spectacle tends to move into exposure (managed leaks) or back to suppression.
|
| 69 |
+
# - Exposure flows into inoculation most of the time (double-reverse containment).
|
| 70 |
+
# - Inoculation goes to suppression, with a small chance of escaping to genuine recognition.
|
| 71 |
+
# - Suppression can keep looping; small chance of returning to spectacle if needed.
|
| 72 |
+
# - Escape recognition can loop back to Real_Anomaly_Seen (re-activation).
|
| 73 |
+
TRANSITIONS = np.array([
|
| 74 |
+
# From Real_Anomaly_Seen
|
| 75 |
+
[0.05, 0.40, 0.10, 0.20, 0.20, 0.05],
|
| 76 |
+
# From Spectacle_Stage
|
| 77 |
+
[0.00, 0.10, 0.35, 0.25, 0.25, 0.05],
|
| 78 |
+
# From Exposure_Reveal
|
| 79 |
+
[0.00, 0.00, 0.10, 0.60, 0.25, 0.05],
|
| 80 |
+
# From Inoculation_Contain
|
| 81 |
+
[0.00, 0.00, 0.05, 0.55, 0.30, 0.10],
|
| 82 |
+
# From Suppression_Normalize
|
| 83 |
+
[0.00, 0.10, 0.05, 0.40, 0.40, 0.05],
|
| 84 |
+
# From Escape_Recognition
|
| 85 |
+
[0.30, 0.05, 0.10, 0.10, 0.25, 0.10],
|
| 86 |
+
], dtype=float)
|
| 87 |
+
|
| 88 |
+
assert np.allclose(TRANSITIONS.sum(axis=1), 1.0), "Each row must sum to 1.0"
|
| 89 |
+
|
| 90 |
+
# -----------------------------------------
|
| 91 |
+
# Layered diagram
|
| 92 |
+
# -----------------------------------------
|
| 93 |
+
|
| 94 |
+
def draw_layered_diagram(save_path=None):
|
| 95 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
| 96 |
+
ax.set_xlim(0, 10)
|
| 97 |
+
ax.set_ylim(0, 10)
|
| 98 |
+
ax.set_aspect('equal')
|
| 99 |
+
plt.style.use('seaborn-v0_8')
|
| 100 |
+
|
| 101 |
+
margin = 0.7
|
| 102 |
+
# Draw outer → inner (suppression outermost)
|
| 103 |
+
for i, layer in enumerate(reversed(LAYERS)):
|
| 104 |
+
size = 10 - i * margin * 2
|
| 105 |
+
rect = patches.Rectangle(
|
| 106 |
+
(i * margin, i * margin), size, size,
|
| 107 |
+
linewidth=2, edgecolor='black',
|
| 108 |
+
facecolor=layer["color"], alpha=0.78
|
| 109 |
+
)
|
| 110 |
+
ax.add_patch(rect)
|
| 111 |
+
# Title and description labels per layer, top-centered
|
| 112 |
+
ax.text(
|
| 113 |
+
5, 10 - i * margin - 0.35,
|
| 114 |
+
layer["name"],
|
| 115 |
+
fontsize=15, ha='center', va='top', weight='bold', color='white'
|
| 116 |
+
)
|
| 117 |
+
ax.text(
|
| 118 |
+
5, 10 - i * margin - 1.05,
|
| 119 |
+
layer["desc"],
|
| 120 |
+
fontsize=10.5, ha='center', va='top', color='white'
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Arrows of perception/control flow (outer suppression pulls downward)
|
| 124 |
+
arrow_props = dict(facecolor='black', arrowstyle='->', linewidth=1.6)
|
| 125 |
+
# Vertical flow indicator from outer layers to inner
|
| 126 |
+
for i in range(len(LAYERS) - 1):
|
| 127 |
+
ax.annotate(
|
| 128 |
+
"", xy=(5, i * margin + 1.15),
|
| 129 |
+
xytext=(5, (i + 1) * margin + 0.85),
|
| 130 |
+
arrowprops=arrow_props
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Meta annotations
|
| 134 |
+
ax.text(
|
| 135 |
+
5, 0.55,
|
| 136 |
+
"Double-Reverse Psyop: exposure-as-containment\nBelievers captured by spectacle; skeptics captured by debunking.\nResult: genuine anomalies suppressed ‘in plain sight’.",
|
| 137 |
+
ha='center', va='center', fontsize=11, color='white', weight='bold'
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
ax.set_title("Project Blue Beam — Double‑Reverse Deception Mechanism", fontsize=17, weight='bold')
|
| 141 |
+
ax.axis('off')
|
| 142 |
+
plt.tight_layout()
|
| 143 |
+
if save_path:
|
| 144 |
+
plt.savefig(save_path, dpi=300)
|
| 145 |
+
return fig, ax
|
| 146 |
+
|
| 147 |
+
# -----------------------------------------
|
| 148 |
+
# Markov chain simulation & analysis
|
| 149 |
+
# -----------------------------------------
|
| 150 |
+
|
| 151 |
+
def simulate_chain(n_steps=250, seed=None, start_state="Real_Anomaly_Seen"):
|
| 152 |
+
if seed is not None:
|
| 153 |
+
random.seed(seed)
|
| 154 |
+
np.random.seed(seed)
|
| 155 |
+
|
| 156 |
+
state_index = STATES.index(start_state)
|
| 157 |
+
trajectory = [state_index]
|
| 158 |
+
|
| 159 |
+
for _ in range(n_steps - 1):
|
| 160 |
+
probs = TRANSITIONS[state_index]
|
| 161 |
+
state_index = np.random.choice(range(len(STATES)), p=probs)
|
| 162 |
+
trajectory.append(state_index)
|
| 163 |
+
|
| 164 |
+
return trajectory
|
| 165 |
+
|
| 166 |
+
def compute_steady_state(P, tol=1e-10, max_iter=10000):
|
| 167 |
+
n = P.shape[0]
|
| 168 |
+
v = np.ones(n) / n
|
| 169 |
+
for _ in range(max_iter):
|
| 170 |
+
v_new = v @ P
|
| 171 |
+
if np.linalg.norm(v_new - v) < tol:
|
| 172 |
+
return v_new
|
| 173 |
+
v = v_new
|
| 174 |
+
return v # fallback
|
| 175 |
+
|
| 176 |
+
def summarize_trajectory(trajectory):
|
| 177 |
+
counts = np.bincount(trajectory, minlength=len(STATES))
|
| 178 |
+
freq = counts / len(trajectory)
|
| 179 |
+
return {STATES[i]: float(freq[i]) for i in range(len(STATES))}
|
| 180 |
+
|
| 181 |
+
# -----------------------------------------
|
| 182 |
+
# Network-style visualization of control flow
|
| 183 |
+
# -----------------------------------------
|
| 184 |
+
|
| 185 |
+
def spring_layout(n, iterations=200, k=0.6, seed=42):
|
| 186 |
+
rng = np.random.default_rng(seed)
|
| 187 |
+
pos = rng.uniform(0.2, 0.8, size=(n, 2))
|
| 188 |
+
for _ in range(iterations):
|
| 189 |
+
# Repulsion
|
| 190 |
+
for i in range(n):
|
| 191 |
+
for j in range(i + 1, n):
|
| 192 |
+
delta = pos[i] - pos[j]
|
| 193 |
+
dist = np.linalg.norm(delta) + 1e-9
|
| 194 |
+
force = (k**2 / dist) * (delta / dist)
|
| 195 |
+
pos[i] += force
|
| 196 |
+
pos[j] -= force
|
| 197 |
+
# Normalize to bounds
|
| 198 |
+
pos = (pos - pos.min(axis=0)) / (pos.max(axis=0) - pos.min(axis=0) + 1e-9)
|
| 199 |
+
return pos
|
| 200 |
+
|
| 201 |
+
def draw_flow_network(P, node_labels, save_path=None):
|
| 202 |
+
n = len(node_labels)
|
| 203 |
+
pos = spring_layout(n, iterations=150)
|
| 204 |
+
|
| 205 |
+
fig, ax = plt.subplots(figsize=(10.5, 7.5))
|
| 206 |
+
plt.style.use('seaborn-v0_8')
|
| 207 |
+
|
| 208 |
+
# Nodes
|
| 209 |
+
for i in range(n):
|
| 210 |
+
ax.scatter(pos[i, 0], pos[i, 1], s=800, c="#222222", alpha=0.75, edgecolors="white", linewidths=2)
|
| 211 |
+
ax.text(pos[i, 0], pos[i, 1], node_labels[i].replace("_", "\n"),
|
| 212 |
+
ha='center', va='center', fontsize=9.5, color='white', weight='bold')
|
| 213 |
+
|
| 214 |
+
# Edges with thickness proportional to transition probability
|
| 215 |
+
segments = []
|
| 216 |
+
widths = []
|
| 217 |
+
colors = []
|
| 218 |
+
for i in range(n):
|
| 219 |
+
for j in range(n):
|
| 220 |
+
w = P[i, j]
|
| 221 |
+
if w > 0.04: # draw only meaningful transitions
|
| 222 |
+
segments.append([pos[i], pos[j]])
|
| 223 |
+
widths.append(2.5 + 10.0 * w)
|
| 224 |
+
# Color gradient based on probability (green→red)
|
| 225 |
+
colors.append((1.0 - w, w * 0.5, 0.0, 0.75))
|
| 226 |
+
|
| 227 |
+
lc = LineCollection(segments, linewidths=widths, colors=colors, alpha=0.85)
|
| 228 |
+
ax.add_collection(lc)
|
| 229 |
+
|
| 230 |
+
# Title + legend hint
|
| 231 |
+
ax.set_title("Perception-Control Flow (Double‑Reverse Containment)", fontsize=16, weight='bold')
|
| 232 |
+
ax.text(0.5, -0.08, "Edge thickness ∝ transition probability • Colors shift green→red with stronger control",
|
| 233 |
+
transform=ax.transAxes, ha='center', va='center', fontsize=10)
|
| 234 |
+
ax.set_xlim(-0.05, 1.05)
|
| 235 |
+
ax.set_ylim(-0.1, 1.1)
|
| 236 |
+
ax.axis('off')
|
| 237 |
+
plt.tight_layout()
|
| 238 |
+
if save_path:
|
| 239 |
+
plt.savefig(save_path, dpi=300)
|
| 240 |
+
return fig, ax
|
| 241 |
+
|
| 242 |
+
# -----------------------------------------
|
| 243 |
+
# Run demos
|
| 244 |
+
# -----------------------------------------
|
| 245 |
+
|
| 246 |
+
if __name__ == "__main__":
|
| 247 |
+
# 1) Concentric layered diagram
|
| 248 |
+
draw_layered_diagram(save_path="blue_beam_layers.png")
|
| 249 |
+
|
| 250 |
+
# 2) Simulate trajectories
|
| 251 |
+
traj = simulate_chain(n_steps=500, seed=123, start_state="Real_Anomaly_Seen")
|
| 252 |
+
summary = summarize_trajectory(traj)
|
| 253 |
+
steady = compute_steady_state(TRANSITIONS)
|
| 254 |
+
|
| 255 |
+
# Print summaries (optional)
|
| 256 |
+
print("\nTrajectory occupancy (fraction of time in each state):")
|
| 257 |
+
for k, v in summary.items():
|
| 258 |
+
print(f" {k:>22s}: {v:.3f}")
|
| 259 |
+
|
| 260 |
+
print("\nSteady-state distribution (long-run):")
|
| 261 |
+
for i, s in enumerate(STATES):
|
| 262 |
+
print(f" {s:>22s}: {steady[i]:.3f}")
|
| 263 |
+
|
| 264 |
+
# 3) Flow network visualization
|
| 265 |
+
draw_flow_network(TRANSITIONS, STATES, save_path="blue_beam_flow.png")
|
| 266 |
+
|
| 267 |
+
# 4) Optional: Sensitivity — increase inoculation strength
|
| 268 |
+
P_mod = TRANSITIONS.copy()
|
| 269 |
+
# Boost inoculation containment flow (Exposure→Inoculation, Inoculation→Suppression)
|
| 270 |
+
P_mod[STATES.index("Exposure_Reveal"), STATES.index("Inoculation_Contain")] = 0.72
|
| 271 |
+
P_mod[STATES.index("Exposure_Reveal")] /= P_mod[STATES.index("Exposure_Reveal")].sum()
|
| 272 |
+
|
| 273 |
+
P_mod[STATES.index("Inoculation_Contain"), STATES.index("Suppression_Normalize")] = 0.38
|
| 274 |
+
P_mod[STATES.index("Inoculation_Contain")] /= P_mod[STATES.index("Inoculation_Contain")].sum()
|
| 275 |
+
|
| 276 |
+
steady_mod = compute_steady_state(P_mod)
|
| 277 |
+
print("\nSteady-state distribution with stronger inoculation containment:")
|
| 278 |
+
for i, s in enumerate(STATES):
|
| 279 |
+
print(f" {s:>22s}: {steady_mod[i]:.3f}")
|
| 280 |
+
|
| 281 |
+
draw_flow_network(P_mod, STATES, save_path="blue_beam_flow_inoculation_boost.png")
|