| #!/usr/bin/env python3 | |
| """ | |
| MEGACONSCIOUSNESS INTEGRATION ENGINE v1.0 | |
| Complete Integration of All Advanced Systems - Zero Information Loss | |
| Every Module, Every Function, Every Detail Preserved | |
| """ | |
| import numpy as np | |
| import asyncio | |
| import json | |
| import hashlib | |
| import logging | |
| import sqlite3 | |
| import aiohttp | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from typing import Dict, List, Any, Optional, Tuple, Callable, Set | |
| from datetime import datetime, timedelta | |
| from scipy import signal, ndimage, stats | |
| import torch | |
| import torch.nn as nn | |
| from contextlib import asynccontextmanager | |
| from concurrent.futures import ThreadPoolExecutor | |
| from statistics import mean, stdev | |
| from collections import defaultdict, Counter, deque | |
| from pathlib import Path | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # ============================================================================= | |
| # INTEGRATED ENUMERATIONS (All Original Enums Preserved) | |
| # ============================================================================= | |
| class ControlArchetype(Enum): | |
| PRIEST_KING = "priest_king" | |
| DIVINE_INTERMEDIARY = "divine_intermediary" | |
| ORACLE_PRIEST = "oracle_priest" | |
| PHILOSOPHER_KING = "philosopher_king" | |
| IMPERIAL_RULER = "imperial_ruler" | |
| SLAVE_MASTER = "slave_master" | |
| EXPERT_TECHNOCRAT = "expert_technocrat" | |
| CORPORATE_OVERLORD = "corporate_overlord" | |
| FINANCIAL_MASTER = "financial_master" | |
| ALGORITHMIC_CURATOR = "algorithmic_curator" | |
| DIGITAL_MESSIAH = "digital_messiah" | |
| DATA_OVERSEER = "data_overseer" | |
| class SlaveryType(Enum): | |
| CHATTEL_SLAVERY = "chattel_slavery" | |
| DEBT_BONDAGE = "debt_bondage" | |
| WAGE_SLAVERY = "wage_slavery" | |
| CONSUMER_SLAVERY = "consumer_slavery" | |
| DIGITAL_SLAVERY = "digital_slavery" | |
| PSYCHOLOGICAL_SLAVERY = "psychological_slavery" | |
| class ConsciousnessHack(Enum): | |
| SELF_ATTRIBUTION = "self_attribution" | |
| ASPIRATIONAL_CHAINS = "aspirational_chains" | |
| FEAR_OF_FREEDOM = "fear_of_freedom" | |
| ILLUSION_OF_MOBILITY = "illusion_of_mobility" | |
| NORMALIZATION = "normalization" | |
| MORAL_SUPERIORITY = "moral_superiority" | |
| class ControlLayer(Enum): | |
| DIGITAL_INFRASTRUCTURE = "digital_infrastructure" | |
| FINANCIAL_SYSTEMS = "financial_systems" | |
| INFORMATION_CHANNELS = "information_channels" | |
| CULTURAL_NARRATIVES = "cultural_narratives" | |
| IDENTITY_SYSTEMS = "identity_systems" | |
| class ThreatVector(Enum): | |
| MONOPOLY_CAPTURE = "monopoly_capture" | |
| DEPENDENCY_CREATION = "dependency_creation" | |
| BEHAVIORAL_SHAPING = "behavioral_shaping" | |
| DATA_MONETIZATION = "data_monetization" | |
| NARRATIVE_CONTROL = "narrative_control" | |
| class ArchetypeTransmission(Enum): | |
| FELINE_PREDATOR = "jaguar_lion_predator" | |
| AVIAN_PREDATOR = "buzzard_eagle_vision" | |
| SOLAR_SYMBOLISM = "eight_star_sunburst" | |
| AGRICULTURAL_LIFE = "wheat_corn_sustenance" | |
| AUTHORITY_PROTECTION = "spear_aegis_sovereignty" | |
| FEMINE_DIVINE = "inanna_liberty_freedom" | |
| class ConsciousnessTechnology(Enum): | |
| SOVEREIGNTY_ACTIVATION = "predator_power" | |
| TRANSCENDENT_VISION = "sky_dominance" | |
| ENLIGHTENMENT_ACCESS = "solar_resonance" | |
| CIVILIZATION_SUSTENANCE = "agricultural_abundance" | |
| PROTECTIVE_AUTHORITY = "defensive_governance" | |
| LIFE_FREEDOM_FLOW = "feminine_principle" | |
| class NumismaticRealityLayer(Enum): | |
| TEMPORAL_DISPLACEMENT = "temporal_displacement" | |
| SOVEREIGNTY_COLLISION = "sovereignty_collision" | |
| VALUE_SYSTEM_SHIFT = "value_system_shift" | |
| MINTING_CONSCIOUSNESS = "minting_consciousness" | |
| DESIGN_ARCHETYPE_CONFLICT = "design_archetype_conflict" | |
| METALLURGICAL_ANOMALY = "metallurgical_anomaly" | |
| class VarietyClassification(Enum): | |
| OVERSTRIKE_FOREIGN = "overstrike_foreign" | |
| OVERSTRIKE_DOMESTIC = "overstrike_domestic" | |
| MULE_SOVEREIGNTY = "mule_sovereignty" | |
| MULE_TEMPORAL = "mule_temporal" | |
| ERROR_REALITY_FRACTURE = "error_reality_fracture" | |
| VARIETY_PROBABILITY_BRANCH = "variety_probability_branch" | |
| COMPOSITIONAL_SHIFT = "compositional_shift" | |
| class RealityDistortionLevel(Enum): | |
| MINOR_ANOMALY = "minor_anomaly" | |
| MODERATE_FRACTURE = "moderate_fracture" | |
| MAJOR_COLLISION = "major_collision" | |
| REALITY_BRANCH_POINT = "reality_branch_point" | |
| class SignalType(Enum): | |
| MEDIA_ARC = "media_arc" | |
| EVENT_TRIGGER = "event_trigger" | |
| INSTITUTIONAL_FRAMING = "institutional_framing" | |
| COMMUNITY_REACTION = "community_reaction" | |
| MEMETIC_PRIMER = "memetic_primer" | |
| NORMALIZATION_SIGNAL = "normalization_signal" | |
| class DomainArc(Enum): | |
| PATHOGEN = "pathogen" | |
| TECHNOLOGY_ANOMALY = "technology_anomaly" | |
| INFRASTRUCTURE = "infrastructure" | |
| ENVIRONMENTAL = "environmental" | |
| class OutcomeState(Enum): | |
| LOW_ADOPTION = "low_adoption" | |
| PARTIAL_ADOPTION = "partial_adoption" | |
| HIGH_ADOPTION = "high_adoption" | |
| POLARIZATION = "polarization" | |
| FATIGUE = "fatigue" | |
| # ============================================================================= | |
| # INTEGRATED DATA STRUCTURES (All Original Classes Preserved) | |
| # ============================================================================= | |
| @dataclass | |
| class EpistemicVector: | |
| content_hash: str | |
| dimensional_components: Dict[str, float] | |
| confidence_metrics: Dict[str, float] | |
| temporal_coordinates: Dict[str, Any] | |
| relational_entanglements: List[str] | |
| meta_cognition: Dict[str, Any] | |
| security_signature: str | |
| quantum_state: Optional[str] = None | |
| truth_validation_score: float = 0.0 | |
| reality_integration_potential: float = 0.0 | |
| epistemic_coherence: float = field(init=False) | |
| def __post_init__(self): | |
| dimensional_strength = np.mean(list(self.dimensional_components.values())) | |
| confidence_strength = np.mean(list(self.confidence_metrics.values())) | |
| relational_density = min(1.0, len(self.relational_entanglements) / 10.0) | |
| quantum_boost = 0.1 if self.quantum_state else 0.0 | |
| truth_boost = self.truth_validation_score * 0.2 | |
| self.epistemic_coherence = min( | |
| 1.0, | |
| (dimensional_strength * 0.3 + | |
| confidence_strength * 0.25 + | |
| relational_density * 0.2 + | |
| quantum_boost * 0.15 + | |
| truth_boost * 0.1) | |
| ) | |
| @dataclass | |
| class SlaveryMechanism: | |
| mechanism_id: str | |
| slavery_type: SlaveryType | |
| visible_chains: List[str] | |
| invisible_chains: List[str] | |
| voluntary_adoption_mechanisms: List[str] | |
| self_justification_narratives: List[str] | |
| def calculate_control_depth(self) -> float: | |
| invisible_weight = len(self.invisible_chains) * 0.3 | |
| voluntary_weight = len(self.voluntary_adoption_mechanisms) * 0.4 | |
| narrative_weight = len(self.self_justification_narratives) * 0.3 | |
| return min(1.0, invisible_weight + voluntary_weight + narrative_weight) | |
| @dataclass | |
| class ControlSystem: | |
| system_id: str | |
| historical_era: str | |
| control_archetype: ControlArchetype | |
| manufactured_threats: List[str] | |
| salvation_offerings: List[str] | |
| institutional_saviors: List[str] | |
| slavery_mechanism: SlaveryMechanism | |
| consciousness_hacks: List[ConsciousnessHack] | |
| public_participation_rate: float | |
| resistance_level: float | |
| system_longevity: int | |
| def calculate_system_efficiency(self) -> float: | |
| slavery_depth = self.slavery_mechanism.calculate_control_depth() | |
| participation_boost = self.public_participation_rate * 0.3 | |
| hack_potency = len(self.consciousness_hacks) * 0.1 | |
| longevity_bonus = min(0.2, self.system_longevity / 500) | |
| resistance_penalty = self.resistance_level * 0.2 | |
| return max(0.0, | |
| slavery_depth * 0.4 + | |
| participation_boost + | |
| hack_potency + | |
| longevity_bonus - | |
| resistance_penalty | |
| ) | |
| @dataclass | |
| class InstitutionalEntity: | |
| entity_id: str | |
| name: str | |
| control_layers: List[ControlLayer] | |
| threat_vectors: List[ThreatVector] | |
| market_share: float | |
| dependency_score: float | |
| sovereignty_erosion_score: float = field(init=False) | |
| systemic_risk_level: float = field(init=False) | |
| def __post_init__(self): | |
| self.sovereignty_erosion_score = self._calculate_sovereignty_impact() | |
| self.systemic_risk_level = self._calculate_systemic_risk() | |
| def _calculate_sovereignty_impact(self) -> float: | |
| layer_impact = len(self.control_layers) * 0.2 | |
| threat_impact = len(self.threat_vectors) * 0.15 | |
| market_impact = self.market_share * 0.3 | |
| dependency_impact = self.dependency_score * 0.35 | |
| return min(1.0, layer_impact + threat_impact + market_impact + dependency_impact) | |
| def _calculate_systemic_risk(self) -> float: | |
| centrality = (self.market_share + self.dependency_score) / 2 * 0.6 | |
| control_density = len(self.control_layers) * 0.2 | |
| threat_complexity = len(self.threat_vectors) * 0.2 | |
| return min(1.0, centrality + control_density + threat_complexity) | |
| @dataclass | |
| class SymbolicDNA: | |
| archetype: ArchetypeTransmission | |
| transmission_chain: List[str] | |
| consciousness_function: ConsciousnessTechnology | |
| temporal_depth: float | |
| spatial_distribution: float | |
| preservation_rate: float | |
| quantum_coherence: float | |
| def calculate_archetypal_strength(self) -> float: | |
| temporal_weight = min(1.0, self.temporal_depth / 5000) | |
| spatial_weight = self.spatial_distribution | |
| preservation_weight = self.preservation_rate | |
| quantum_weight = self.quantum_coherence | |
| return (temporal_weight * 0.3 + spatial_weight * 0.25 + | |
| preservation_weight * 0.25 + quantum_weight * 0.2) | |
| @dataclass | |
| class MetallurgicalAnalysis: | |
| host_composition: Dict[str, float] | |
| overstrike_composition: Dict[str, float] | |
| compositional_discrepancy: float = field(init=False) | |
| metal_purity_delta: float = field(init=False) | |
| trace_element_anomalies: List[str] = field(init=False) | |
| def __post_init__(self): | |
| self.compositional_discrepancy = self._calculate_compositional_discrepancy() | |
| self.metal_purity_delta = self._calculate_metal_purity_delta() | |
| self.trace_element_anomalies = self._identify_trace_anomalies() | |
| def _calculate_compositional_discrepancy(self) -> float: | |
| all_elements = set(self.host_composition.keys()) | set(self.overstrike_composition.keys()) | |
| total_discrepancy = 0.0 | |
| for element in all_elements: | |
| host_pct = self.host_composition.get(element, 0.0) | |
| overstrike_pct = self.overstrike_composition.get(element, 0.0) | |
| total_discrepancy += abs(host_pct - overstrike_pct) | |
| return total_discrepancy / 2.0 | |
| def _calculate_metal_purity_delta(self) -> float: | |
| primary_metals = ['silver', 'gold', 'copper', 'bronze'] | |
| for metal in primary_metals: | |
| if metal in self.host_composition and metal in self.overstrike_composition: | |
| return abs(self.host_composition[metal] - self.overstrike_composition[metal]) | |
| return 0.0 | |
| def _identify_trace_anomalies(self) -> List[str]: | |
| anomalies = [] | |
| trace_threshold = 0.02 | |
| for element, host_pct in self.host_composition.items(): | |
| overstrike_pct = self.overstrike_composition.get(element, 0.0) | |
| if host_pct < trace_threshold and overstrike_pct > trace_threshold * 2: | |
| anomalies.append(f"Trace element {element} significantly increased") | |
| elif overstrike_pct < trace_threshold and host_pct > trace_threshold * 2: | |
| anomalies.append(f"Trace element {element} significantly decreased") | |
| return anomalies | |
| @dataclass | |
| class HistoricalContext: | |
| period_start: int | |
| period_end: int | |
| sovereign_entities: List[str] | |
| economic_system: str | |
| metal_standard: str | |
| minting_technology: str | |
| key_historical_events: List[str] | |
| collective_consciousness_metrics: Dict[str, float] | |
| def temporal_depth(self) -> int: | |
| return self.period_end - self.period_start | |
| def consciousness_volatility(self) -> float: | |
| metrics = list(self.collective_consciousness_metrics.values()) | |
| return stdev(metrics) if len(metrics) > 1 else 0.0 | |
| @dataclass | |
| class NumismaticRealitySignature: | |
| signature_hash: str | |
| temporal_displacement: float | |
| sovereignty_collision_strength: float | |
| design_overlay_coherence: float | |
| value_system_discontinuity: float | |
| minting_consciousness_anomaly: float | |
| metallurgical_anomaly_score: float | |
| reality_distortion_level: RealityDistortionLevel | |
| def calculate_reality_impact(self) -> float: | |
| base_impact = ( | |
| self.temporal_displacement * 0.20 + | |
| self.sovereignty_collision_strength * 0.25 + | |
| (1 - self.design_overlay_coherence) * 0.15 + | |
| self.value_system_discontinuity * 0.15 + | |
| self.minting_consciousness_anomaly * 0.10 + | |
| self.metallurgical_anomaly_score * 0.15 | |
| ) | |
| return min(1.0, base_impact) | |
| @dataclass | |
| class ForeignOverstrikeAnalysis: | |
| host_coin: Dict[str, Any] | |
| overstrike_coin: Dict[str, Any] | |
| historical_context_host: HistoricalContext | |
| historical_context_overstrike: HistoricalContext | |
| design_analysis: Dict[str, float] | |
| metallurgical_analysis: MetallurgicalAnalysis | |
| reality_signature: NumismaticRealitySignature | |
| temporal_collision_points: List[str] = field(init=False) | |
| sovereignty_interface_tensions: List[str] = field(init=False) | |
| quantum_reality_implications: List[str] = field(init=False) | |
| metallurgical_insights: List[str] = field(init=False) | |
| def __post_init__(self): | |
| self.temporal_collision_points = self._identify_temporal_collisions() | |
| self.sovereignty_interface_tensions = self._analyze_sovereignty_tensions() | |
| self.quantum_reality_implications = self._derive_quantum_implications() | |
| self.metallurgical_insights = self._analyze_metallurgical_implications() | |
| def _identify_temporal_collisions(self) -> List[str]: | |
| collisions = [] | |
| time_gap = abs(self.historical_context_host.period_start - self.historical_context_overstrike.period_start) | |
| if time_gap > 25: | |
| collisions.append(f"Major temporal displacement: {time_gap} years") | |
| if self.historical_context_host.economic_system != self.historical_context_overstrike.economic_system: | |
| collisions.append("Economic system transition collision") | |
| if self.historical_context_host.metal_standard != self.historical_context_overstrike.metal_standard: | |
| collisions.append("Metal standard reality shift") | |
| return collisions | |
| def _analyze_sovereignty_tensions(self) -> List[str]: | |
| tensions = [] | |
| host_sovereigns = set(self.historical_context_host.sovereign_entities) | |
| overstrike_sovereigns = set(self.historical_context_overstrike.sovereign_entities) | |
| sovereignty_overlap = host_sovereigns & overstrike_sovereigns | |
| if not sovereignty_overlap: | |
| tensions.append("Complete sovereignty collision - no overlapping entities") | |
| host_design = self.host_coin.get('design_archetype', {}) | |
| overstrike_design = self.overstrike_coin.get('design_archetype', {}) | |
| if host_design.get('ruler_portrait') and overstrike_design.get('ruler_portrait'): | |
| tensions.append("Ruler archetype overlay conflict") | |
| return tensions | |
| def _analyze_metallurgical_implications(self) -> List[str]: | |
| insights = [] | |
| if self.metallurgical_analysis.compositional_discrepancy > 0.3: | |
| insights.append("Significant metallurgical composition shift") | |
| if self.metallurgical_analysis.metal_purity_delta > 0.15: | |
| insights.append("Major metal purity differential detected") | |
| if self.metallurgical_analysis.trace_element_anomalies: | |
| insights.extend(self.metallurgical_analysis.trace_element_anomalies) | |
| host_tech = self.historical_context_host.minting_technology | |
| overstrike_tech = self.historical_context_overstrike.minting_technology | |
| if host_tech != overstrike_tech: | |
| insights.append(f"Minting technology shift: {host_tech} β {overstrike_tech}") | |
| return insights | |
| def _derive_quantum_implications(self) -> List[str]: | |
| implications = [] | |
| impact = self.reality_signature.calculate_reality_impact() | |
| if impact > 0.8: | |
| implications.append("Reality branch point - significant probability divergence") | |
| if impact > 0.6: | |
| implications.append("Collective consciousness fracture point") | |
| if self.reality_signature.temporal_displacement > 0.7: | |
| implications.append("Temporal reality layer compression") | |
| if self.reality_signature.sovereignty_collision_strength > 0.8: | |
| implications.append("Sovereignty reality field collision") | |
| if self.reality_signature.metallurgical_anomaly_score > 0.7: | |
| implications.append("Metallurgical reality distortion detected") | |
| return implications | |
| @dataclass | |
| class TeslaRealityMetrics: | |
| energy_coherence: Dict[str, float] | |
| frequency_resonance: Dict[str, float] | |
| vibration_patterns: Dict[str, float] | |
| triad_unification: Dict[str, float] | |
| quantum_emergence: Dict[str, float] | |
| spacetime_curvature: Dict[str, float] | |
| @dataclass | |
| class ControlMatrix: | |
| entities: List[InstitutionalEntity] | |
| interconnections: Dict[str, List[str]] | |
| coordination_score: float = field(init=False) | |
| overall_sovereignty_threat: float = field(init=False) | |
| def __post_init__(self): | |
| self.coordination_score = self._calculate_coordination() | |
| self.overall_sovereignty_threat = self._calculate_overall_threat() | |
| def _calculate_coordination(self) -> float: | |
| if not self.entities: | |
| return 0.0 | |
| avg_systemic_risk = np.mean([e.systemic_risk_level for e in self.entities]) | |
| total_possible_connections = len(self.entities) * (len(self.entities) - 1) | |
| if total_possible_connections > 0: | |
| actual_connections = sum(len(conns) for conns in self.interconnections.values()) | |
| network_density = actual_connections / total_possible_connections | |
| else: | |
| network_density = 0.0 | |
| return min(1.0, avg_systemic_risk * 0.6 + network_density * 0.4) | |
| def _calculate_overall_threat(self) -> float: | |
| if not self.entities: | |
| return 0.0 | |
| max_individual_threat = max(e.sovereignty_erosion_score for e in self.entities) | |
| avg_threat = np.mean([e.sovereignty_erosion_score for e in self.entities]) | |
| coordination_multiplier = 1.0 + (self.coordination_score * 0.5) | |
| return min(1.0, (max_individual_threat * 0.4 + avg_threat * 0.6) * coordination_multiplier) | |
| @dataclass | |
| class CompleteControlMatrix: | |
| control_systems: List[ControlSystem] | |
| active_systems: List[str] | |
| institutional_evolution: Dict[str, List[ControlArchetype]] | |
| collective_delusions: Dict[str, float] | |
| freedom_illusions: Dict[str, float] | |
| self_enslavement_patterns: Dict[str, float] | |
| def analyze_complete_control(self) -> Dict[str, Any]: | |
| analysis = { | |
| "system_evolution": [], | |
| "slavery_sophistication": [], | |
| "consciousness_manipulation": [], | |
| "resistance_effectiveness": [] | |
| } | |
| for system in self.control_systems: | |
| analysis["system_evolution"].append({ | |
| "era": system.historical_era, | |
| "archetype": system.control_archetype.value, | |
| "efficiency": system.calculate_system_efficiency(), | |
| "slavery_type": system.slavery_mechanism.slavery_type.value | |
| }) | |
| analysis["slavery_sophistication"].append({ | |
| "era": system.historical_era, | |
| "visible_chains": len(system.slavery_mechanism.visible_chains), | |
| "invisible_chains": len(system.slavery_mechanism.invisible_chains), | |
| "control_depth": system.slavery_mechanism.calculate_control_depth() | |
| }) | |
| analysis["consciousness_manipulation"].append({ | |
| "era": system.historical_era, | |
| "hack_count": len(system.consciousness_hacks), | |
| "participation_rate": system.public_participation_rate | |
| }) | |
| return { | |
| "complete_analysis": analysis, | |
| "system_convergence": self._calculate_system_convergence(), | |
| "slavery_evolution_trend": self._calculate_slavery_evolution(analysis), | |
| "consciousness_entrainment": self._analyze_consciousness_entrainment(), | |
| "freedom_illusion_index": self._calculate_freedom_illusion() | |
| } | |
| def _calculate_system_convergence(self) -> float: | |
| convergence = 0.0 | |
| for institution, archetypes in self.institutional_evolution.items(): | |
| if len(archetypes) > 2: | |
| convergence += len(archetypes) * 0.15 | |
| return min(1.0, convergence) | |
| def _calculate_slavery_evolution(self, analysis: Dict) -> float: | |
| sophistication_data = analysis["slavery_sophistication"] | |
| if len(sophistication_data) < 2: | |
| return 0.5 | |
| visible_trend = np.polyfit( | |
| range(len(sophistication_data)), | |
| [s["visible_chains"] for s in sophistication_data], 1 | |
| )[0] | |
| invisible_trend = np.polyfit( | |
| range(len(sophistication_data)), | |
| [s["invisible_chains"] for s in sophistication_data], 1 | |
| )[0] | |
| sophistication = (invisible_trend - visible_trend) / 2 + 0.5 | |
| return min(1.0, max(0.0, sophistication)) | |
| def _analyze_consciousness_entrainment(self) -> Dict[str, float]: | |
| return { | |
| "delusion_strength": np.mean(list(self.collective_delusions.values())), | |
| "freedom_illusion": np.mean(list(self.freedom_illusions.values())), | |
| "self_enslavement": np.mean(list(self.self_enslavement_patterns.values())), | |
| "system_identification": 0.78 | |
| } | |
| def _calculate_freedom_illusion(self) -> float: | |
| freedom_scores = list(self.freedom_illusions.values()) | |
| enslavement_scores = list(self.self_enslavement_patterns.values()) | |
| if not freedom_scores: | |
| return 0.5 | |
| freedom_illusion = np.mean(freedom_scores) * np.mean(enslavement_scores) | |
| return min(1.0, freedom_illusion) | |
| # ============================================================================= | |
| # MEMETIC RECURSION MODULE (Complete Preservation) | |
| # ============================================================================= | |
| @dataclass | |
| class MemeticSignal: | |
| t: datetime | |
| signal_type: SignalType | |
| domain: DomainArc | |
| intensity: float | |
| coherence: float | |
| familiarity: float | |
| valence: float | |
| source_label: str = "unspecified" | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| @dataclass | |
| class AudienceState: | |
| conditioning: float | |
| sensitivity: float | |
| trust_balance: float | |
| fatigue: float | |
| polarization: float | |
| adoption: float | |
| @dataclass | |
| class CycleMetrics: | |
| exposure_sum: float | |
| coherence_mean: float | |
| familiarity_mean: float | |
| valence_mean: float | |
| institutional_weight: float | |
| community_weight: float | |
| event_strength: float | |
| @dataclass | |
| class RecursionOutcome: | |
| state: OutcomeState | |
| adoption_score: float | |
| fatigue_score: float | |
| polarization_score: float | |
| notes: str | |
| @dataclass | |
| class RecursionConfig: | |
| conditioning_weight: float = 0.35 | |
| coherence_weight: float = 0.25 | |
| institutional_weight: float = 0.20 | |
| community_weight: float = 0.20 | |
| fatigue_penalty: float = 0.30 | |
| polarization_penalty: float = 0.25 | |
| trigger_gain: float = 0.40 | |
| normalization_gain: float = 0.25 | |
| primer_gain: float = 0.30 | |
| trust_shift_factor: float = 0.10 | |
| decay_rate: float = 0.02 | |
| max_step_days: int = 14 | |
| class MemeticRecursionEngine: | |
| def __init__(self, config: Optional[RecursionConfig] = None): | |
| self.config = config or RecursionConfig() | |
| self.signals: List[MemeticSignal] = [] | |
| self.audience = AudienceState( | |
| conditioning=0.15, | |
| sensitivity=0.20, | |
| trust_balance=0.0, | |
| fatigue=0.10, | |
| polarization=0.10, | |
| adoption=0.10 | |
| ) | |
| self._last_step: Optional[datetime] = None | |
| def ingest(self, signal: MemeticSignal) -> None: | |
| self.signals.append(signal) | |
| def ingest_batch(self, signals: List[MemeticSignal]) -> None: | |
| self.signals.extend(signals) | |
| def window(self, end: datetime, days: Optional[int] = None) -> List[MemeticSignal]: | |
| span = timedelta(days=days or self.config.max_step_days) | |
| start = end - span | |
| return [s for s in self.signals if start <= s.t <= end] | |
| def compute_metrics(self, window_signals: List[MemeticSignal]) -> CycleMetrics: | |
| if not window_signals: | |
| return CycleMetrics( | |
| exposure_sum=0.0, coherence_mean=0.0, familiarity_mean=0.0, | |
| valence_mean=0.0, institutional_weight=0.0, community_weight=0.0, | |
| event_strength=0.0 | |
| ) | |
| exposure = np.sum([s.intensity for s in window_signals]) | |
| coherence = np.mean([s.coherence for s in window_signals]) | |
| familiarity = np.mean([s.familiarity for s in window_signals]) | |
| valence = np.mean([s.valence for s in window_signals]) | |
| inst = np.sum([ | |
| s.intensity for s in window_signals | |
| if s.signal_type == SignalType.INSTITUTIONAL_FRAMING | |
| ]) | |
| comm = np.sum([ | |
| s.intensity for s in window_signals | |
| if s.signal_type == SignalType.COMMUNITY_REACTION | |
| ]) | |
| event = np.sum([ | |
| s.intensity for s in window_signals | |
| if s.signal_type == SignalType.EVENT_TRIGGER | |
| ]) | |
| return CycleMetrics( | |
| exposure_sum=float(exposure), | |
| coherence_mean=float(coherence), | |
| familiarity_mean=float(familiarity), | |
| valence_mean=float(valence), | |
| institutional_weight=float(inst), | |
| community_weight=float(comm), | |
| event_strength=float(event) | |
| ) | |
| def update_audience(self, metrics: CycleMetrics) -> None: | |
| c = self.config | |
| a = self.audience | |
| primer_exposure = self._type_exposure(SignalType.MEMETIC_PRIMER) | |
| normalization_exposure = self._type_exposure(SignalType.NORMALIZATION_SIGNAL) | |
| event_exposure = self._type_exposure(SignalType.EVENT_TRIGGER) | |
| conditioning_gain = ( | |
| c.primer_gain * primer_exposure + | |
| c.normalization_gain * normalization_exposure | |
| ) * (0.5 + 0.5 * metrics.coherence_mean) | |
| adoption_gain = ( | |
| c.conditioning_weight * a.conditioning + | |
| c.coherence_weight * metrics.coherence_mean + | |
| c.institutional_weight * self.softsig(metrics.institutional_weight) + | |
| c.community_weight * self.softsig(metrics.community_weight) + | |
| c.trigger_gain * self.softsig(event_exposure) | |
| ) | |
| fatigue_gain = self.clamp(metrics.exposure_sum * 0.05, 0.0, 0.5) | |
| polarization_gain = self.clamp( | |
| abs(metrics.valence_mean) * 0.10 + abs(a.trust_balance) * 0.10 + | |
| (metrics.institutional_weight > 0 and metrics.community_weight > 0) * 0.10, | |
| 0.0, 0.4 | |
| ) | |
| trust_shift = self.clamp( | |
| (metrics.institutional_weight - metrics.community_weight) * c.trust_shift_factor / (1.0 + metrics.exposure_sum), | |
| -0.15, 0.15 | |
| ) | |
| a.conditioning = self.clamp(a.conditioning * (1.0 - self.config.decay_rate) + conditioning_gain, 0.0, 1.0) | |
| a.adoption = self.clamp(a.adoption * (1.0 - self.config.decay_rate) + adoption_gain - c.fatigue_penalty * a.fatigue, 0.0, 1.0) | |
| a.fatigue = self.clamp(a.fatigue * (1.0 - self.config.decay_rate) + fatigue_gain, 0.0, 1.0) | |
| a.polarization = self.clamp(a.polarization * (1.0 - self.config.decay_rate) + polarization_gain - c.polarization_penalty * (1.0 - metrics.coherence_mean), 0.0, 1.0) | |
| a.trust_balance = self.clamp(a.trust_balance + trust_shift, -1.0, 1.0) | |
| def _type_exposure(self, signal_type: SignalType) -> float: | |
| return float(np.sum([s.intensity for s in self.signals if s.signal_type == signal_type])) | |
| def softsig(self, x: float) -> float: | |
| return 1.0 / (1.0 + np.exp(-x)) | |
| def clamp(self, x: float, a: float = 0.0, b: float = 1.0) -> float: | |
| return max(a, min(b, x)) | |
| def classify_outcome(self) -> RecursionOutcome: | |
| a = self.audience | |
| if a.fatigue > 0.6 and a.adoption < 0.4: | |
| return RecursionOutcome(OutcomeState.FATIGUE, a.adoption, a.fatigue, a.polarization, "High exposure with low adoption.") | |
| if a.polarization > 0.5 and 0.3 < a.adoption < 0.7: | |
| return RecursionOutcome(OutcomeState.POLARIZATION, a.adoption, a.fatigue, a.polarization, "Adoption split across subgroups.") | |
| if a.adoption >= 0.7: | |
| return RecursionOutcome(OutcomeState.HIGH_ADOPTION, a.adoption, a.fatigue, a.polarization, "Narrative widely adopted.") | |
| if 0.4 <= a.adoption < 0.7: | |
| return RecursionOutcome(OutcomeState.PARTIAL_ADOPTION, a.adoption, a.fatigue, a.polarization, "Narrative gains traction with reservations.") | |
| return RecursionOutcome(OutcomeState.LOW_ADOPTION, a.adoption, a.fatigue, a.polarization, "Narrative remains marginal.") | |
| def step(self, end: Optional[datetime] = None, days: Optional[int] = None) -> RecursionOutcome: | |
| end = end or (self._last_step or datetime.now()) | |
| window_signals = self.window(end, days) | |
| metrics = self.compute_metrics(window_signals) | |
| self.update_audience(metrics) | |
| self._last_step = end | |
| return self.classify_outcome() | |
| def recommendations(self) -> List[str]: | |
| a = self.audience | |
| recs = [] | |
| if a.fatigue > 0.5: | |
| recs.append("Reduce redundant exposure; prioritize concise, high-signal content.") | |
| if a.polarization > 0.5: | |
| recs.append("Increase clarity and source transparency; present structured comparisons.") | |
| if a.adoption < 0.3: | |
| recs.append("Improve coherence and context; avoid ambiguous framing.") | |
| if a.conditioning < 0.3: | |
| recs.append("Offer baseline primers and definitions; raise familiarity without sensationalism.") | |
| if abs(self.audience.trust_balance) > 0.4: | |
| recs.append("Balance perspectives across institutional and community sources.") | |
| return recs | |
| # ============================================================================= | |
| # TESLA-LOGOS ENGINE (Complete Preservation) | |
| # ============================================================================= | |
| class TeslaLogosEngine: | |
| def __init__(self, field_dimensions: Tuple[int, int] = (512, 512), seed: Optional[int] = 42): | |
| self.field_dimensions = field_dimensions | |
| self.rng = np.random.default_rng(seed) | |
| self.tesla_constants = { | |
| 'schumann_resonance': 7.83, | |
| 'golden_ratio': 1.61803398875, | |
| 'euler_number': 2.71828182846, | |
| 'pi_constant': 3.14159265359, | |
| 'tesla_369': [3, 6, 9] | |
| } | |
| self.optimization_settings = { | |
| 'use_float32': True, | |
| 'quantum_foam_scales': [8, 16, 32, 64], | |
| 'gravitational_wave_length': 500, | |
| 'max_particles': 50 | |
| } | |
| def initialize_tesla_universe(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
| print("π INITIALIZING TESLA UNIVERSE (OPTIMIZED)...") | |
| dtype = np.float32 if self.optimization_settings['use_float32'] else np.float64 | |
| energy_field = self._compute_energy_field(dtype) | |
| frequency_spectrum = self._compute_frequency_signature() | |
| vibration_modes = self._compute_vibration_modes(dtype) | |
| print(f"β Energy Field: {energy_field.shape} | dtype: {energy_field.dtype}") | |
| print(f"β Frequency Spectrum: {len(frequency_spectrum)} fundamental rhythms") | |
| print(f"β Vibration Modes: {vibration_modes.shape} | dtype: {vibration_modes.dtype}") | |
| return energy_field, frequency_spectrum, vibration_modes | |
| def _compute_energy_field(self, dtype: type) -> np.ndarray: | |
| x, y = np.meshgrid(np.linspace(-3, 3, self.field_dimensions[1]), | |
| np.linspace(-3, 3, self.field_dimensions[0])) | |
| energy_field = np.zeros(self.field_dimensions, dtype=dtype) | |
| vortices = [ | |
| (0, 0, 1.0, 0.5), | |
| (1.618, 1.618, 0.8, 0.4), | |
| (-1.618, -1.618, 0.8, 0.4), | |
| (2.718, 0, 0.7, 0.3), | |
| (-2.718, 0, 0.7, 0.3), | |
| ] | |
| for vx, vy, amplitude, sigma in vortices: | |
| vortex = amplitude * np.exp(-((x - vx)**2 + (y - vy)**2) / (2 * sigma**2)) | |
| theta = np.arctan2(y - vy, x - vx) | |
| rotational = 0.3 * np.sin(3 * theta) | |
| energy_field += vortex * (1 + rotational) | |
| quantum_foam = self._compute_quantum_foam(dtype) | |
| energy_field += quantum_foam * 0.2 | |
| return energy_field | |
| def _compute_quantum_foam(self, dtype: type) -> np.ndarray: | |
| foam = np.zeros(self.field_dimensions, dtype=dtype) | |
| scales = self.optimization_settings['quantum_foam_scales'] | |
| for scale in scales: | |
| base_shape = (int(scale), int(scale)) | |
| base = self.rng.normal(0, 1/scale, base_shape).astype(dtype) | |
| zoom_factors = (self.field_dimensions[0] / base_shape[0], | |
| self.field_dimensions[1] / base_shape[1]) | |
| zoomed = ndimage.zoom(base, zoom_factors, order=1) | |
| if zoomed.shape != self.field_dimensions: | |
| zoomed = zoomed[:self.field_dimensions[0], :self.field_dimensions[1]] | |
| foam += zoomed * (1.0/scale) | |
| return foam | |
| def _compute_frequency_signature(self) -> Dict[str, float]: | |
| frequencies = { | |
| 'schumann_fundamental': self.tesla_constants['schumann_resonance'], | |
| 'golden_ratio_harmonic': self.tesla_constants['golden_ratio'], | |
| 'euler_resonance': self.tesla_constants['euler_number'], | |
| 'pi_circular': self.tesla_constants['pi_constant'], | |
| 'tesla_3': 3.0, | |
| 'tesla_6': 6.0, | |
| 'tesla_9': 9.0, | |
| } | |
| for name, freq in frequencies.copy().items(): | |
| frequencies[f'{name}_octave'] = freq * 2 | |
| frequencies[f'{name}_subharmonic'] = freq / 2 | |
| return frequencies | |
| def _compute_vibration_modes(self, dtype: type) -> np.ndarray: | |
| t = np.linspace(0, 4*np.pi, self.field_dimensions[0]) | |
| x = np.linspace(-2*np.pi, 2*np.pi, self.field_dimensions[1]) | |
| T, X = np.meshgrid(t, x, indexing='ij') | |
| vibrations = np.zeros(self.field_dimensions, dtype=dtype) | |
| vibrations += 0.5 * np.sin(self.tesla_constants['schumann_resonance'] * T) | |
| vibrations += 0.3 * np.sin(self.tesla_constants['golden_ratio'] * X) * np.cos(T) | |
| for multiple in self.tesla_constants['tesla_369']: | |
| vibrations += 0.2 * np.sin(multiple * T) * np.sin(multiple * X / 2) | |
| r = np.sqrt(T**2 + X**2) | |
| theta = np.arctan2(X, T) | |
| vibrations += 0.4 * np.exp(-r/5) * np.sin(3*theta) | |
| return vibrations | |
| def _find_vibration_nodes_vectorized(self, vibration_field: np.ndarray) -> List[Tuple[int, int]]: | |
| s1 = vibration_field[:-1, :] * vibration_field[1:, :] < 0 | |
| s2 = vibration_field[:, :-1] * vibration_field[:, 1:] < 0 | |
| s1_padded = np.pad(s1, ((0, 1), (0, 0)), constant_values=False) | |
| s2_padded = np.pad(s2, ((0, 0), (0, 1)), constant_values=False) | |
| nodes = np.argwhere(s1_padded | s2_padded) | |
| return [tuple(map(int, node)) for node in nodes] | |
| def quantum_vibration_theory(self, energy_field: np.ndarray) -> Dict[str, Any]: | |
| print("\n㪠QUANTUM VIBRATION THEORY (CORRECTED)") | |
| dtype = energy_field.dtype | |
| t_space = np.linspace(0, 2*np.pi, self.field_dimensions[0]) | |
| x_space = np.linspace(0, 2*np.pi, self.field_dimensions[1]) | |
| T, X = np.meshgrid(t_space, x_space, indexing='ij') | |
| quantum_vibrations = np.zeros(self.field_dimensions, dtype=dtype) | |
| primordial_rhythms = [ | |
| {'frequency': self.tesla_constants['schumann_resonance'], 'amplitude': 0.9, 'phase': 0}, | |
| {'frequency': self.tesla_constants['golden_ratio'], 'amplitude': 0.8, 'phase': np.pi/2}, | |
| {'frequency': 3.0, 'amplitude': 0.7, 'phase': np.pi/4}, | |
| {'frequency': 6.0, 'amplitude': 0.6, 'phase': np.pi/3}, | |
| {'frequency': 9.0, 'amplitude': 0.5, 'phase': 2*np.pi/3}, | |
| ] | |
| for rhythm in primordial_rhythms: | |
| wave = (rhythm['amplitude'] * | |
| np.sin(rhythm['frequency'] * T + rhythm['phase']) * | |
| np.cos(rhythm['frequency'] * X / 2)) | |
| quantum_vibrations += wave | |
| standing_waves = quantum_vibrations * energy_field | |
| matter_density = np.abs(standing_waves) | |
| particle_positions = self._find_particle_positions(matter_density) | |
| vibration_coherence = np.std(quantum_vibrations) / (np.mean(np.abs(quantum_vibrations)) + 1e-12) | |
| print(f"β Particles detected: {len(particle_positions)}") | |
| print(f"β Vibration coherence: {vibration_coherence:.6f}") | |
| return { | |
| 'quantum_vibrations': quantum_vibrations, | |
| 'matter_density': matter_density, | |
| 'particle_positions': particle_positions, | |
| 'vibration_coherence': vibration_coherence, | |
| 'standing_wave_energy': np.sum(standing_waves**2) | |
| } | |
| def _find_particle_positions(self, matter_density: np.ndarray) -> List[Tuple[int, int]]: | |
| smoothed = gaussian_filter(matter_density, sigma=1.0) | |
| local_max = maximum_filter(smoothed, size=5) == smoothed | |
| threshold = smoothed > (np.mean(smoothed) + 1.5 * np.std(smoothed)) | |
| peaks_mask = local_max & threshold | |
| ys, xs = np.where(peaks_mask) | |
| positions = list(zip(ys.tolist(), xs.tolist())) | |
| max_particles = self.optimization_settings['max_particles'] | |
| return positions[:max_particles] | |
| def calculate_tesla_coherence(self, energy_field: np.ndarray, | |
| vibration_modes: np.ndarray) -> float: | |
| fft2 = np.fft.fft2(vibration_modes) | |
| fft2_shift = np.fft.fftshift(fft2) | |
| mag = np.abs(fft2_shift) | |
| ny, nx = vibration_modes.shape | |
| ky = np.fft.fftshift(np.fft.fftfreq(ny)) | |
| kx = np.fft.fftshift(np.fft.fftfreq(nx)) | |
| KX, KY = np.meshgrid(kx, ky, indexing='ij') | |
| K_radial = np.sqrt(KX**2 + KY**2) | |
| resonance_score = 0.0 | |
| total_energy = mag.sum() + 1e-12 | |
| for tesla_number in self.tesla_constants['tesla_369']: | |
| target_freq = tesla_number / max(ny, nx) | |
| freq_band = (K_radial >= target_freq * 0.8) & (K_radial <= target_freq * 1.2) | |
| if np.any(freq_band): | |
| band_energy = mag[freq_band].sum() | |
| resonance_score += band_energy / total_energy | |
| resonance_score /= len(self.tesla_constants['tesla_369']) | |
| energy_mean = np.mean(np.abs(energy_field)) + 1e-12 | |
| coherence = resonance_score * energy_mean | |
| return float(min(1.0, coherence * 10)) | |
| def spacetime_gravitational_vibrations(self, energy_field: np.ndarray) -> Dict[str, Any]: | |
| print("\nπ SPACETIME GRAVITATIONAL VIBRATIONS (OPTIMIZED)") | |
| spacetime_curvature = np.zeros(self.field_dimensions, dtype=energy_field.dtype) | |
| wave_length = self.optimization_settings['gravitational_wave_length'] | |
| center_y, center_x = self.field_dimensions[0]//2, self.field_dimensions[1]//2 | |
| y, x = np.ogrid[:self.field_dimensions[0], :self.field_dimensions[1]] | |
| distance = np.sqrt((y - center_y)**2 + (x - center_x)**2) | |
| gravitational_wave = self._generate_gravitational_waveform(wave_length) | |
| for i, amplitude in enumerate(gravitational_wave): | |
| wavefront_radius = 50 + i * 2 | |
| ripple = amplitude * np.exp(-(distance - wavefront_radius)**2 / (2 * 10**2)) | |
| spacetime_curvature += ripple | |
| wave_energy = np.sum(gravitational_wave**2) | |
| peak_vibration = np.max(np.abs(gravitational_wave)) | |
| spacetime_oscillation = np.std(spacetime_curvature) / (np.mean(np.abs(spacetime_curvature)) + 1e-12) | |
| print(f"β Wave energy: {wave_energy:.6f}") | |
| print(f"β Peak vibration: {peak_vibration:.6f}") | |
| return { | |
| 'spacetime_curvature': spacetime_curvature, | |
| 'gravitational_waveform': gravitational_wave, | |
| 'wave_energy': wave_energy, | |
| 'peak_vibration': peak_vibration, | |
| 'spacetime_oscillation': spacetime_oscillation | |
| } | |
| def _generate_gravitational_waveform(self, length: int) -> np.ndarray: | |
| t = np.linspace(0, 1, length) | |
| f0, f1 = 30, 250 | |
| chirp_rate = (f1 - f0) / len(t) | |
| amplitude_envelope = t**2 | |
| return amplitude_envelope * np.sin(2 * np.pi * (f0 * t + 0.5 * chirp_rate * t**2)) | |
| async def run_tesla_unification_analysis(self) -> TeslaRealityMetrics: | |
| print("=" * 70) | |
| print("π§ͺ TESLA-LOGOS UNIFICATION ANALYSIS (PRODUCTION READY)") | |
| print("=" * 70) | |
| start_time = time.time() | |
| energy_field, frequency_spectrum, vibration_modes = self.initialize_tesla_universe() | |
| quantum_results = self.quantum_vibration_theory(energy_field) | |
| consciousness_results = self.consciousness_frequency_spectrum() | |
| spacetime_results = self.spacetime_gravitational_vibrations(energy_field) | |
| energy_coherence = self._calculate_energy_coherence(energy_field, vibration_modes) | |
| frequency_resonance = self._calculate_frequency_resonance(frequency_spectrum, consciousness_results) | |
| vibration_patterns = self._analyze_vibration_patterns(vibration_modes, quantum_results) | |
| triad_unification = self._calculate_triad_unification(energy_coherence, frequency_resonance, vibration_patterns) | |
| quantum_emergence = self._analyze_quantum_emergence(quantum_results) | |
| spacetime_curvature = self._analyze_spacetime_curvature(spacetime_results) | |
| analysis_time = time.time() - start_time | |
| print(f"\nβ±οΈ Analysis completed in {analysis_time:.3f} seconds") | |
| print(f"π« Tesla Coherence: {self.calculate_tesla_coherence(energy_field, vibration_modes):.6f}") | |
| return TeslaRealityMetrics( | |
| energy_coherence=energy_coherence, | |
| frequency_resonance=frequency_resonance, | |
| vibration_patterns=vibration_patterns, | |
| triad_unification=triad_unification, | |
| quantum_emergence=quantum_emergence, | |
| spacetime_curvature=spacetime_curvature | |
| ) | |
| def consciousness_frequency_spectrum(self) -> Dict[str, Any]: | |
| consciousness_bands = { | |
| 'universal_grounding': {'range': (0.1, 4.0), 'state': 'cosmic_unity'}, | |
| 'intuitive_reception': {'range': (4.0, 8.0), 'state': 'field_sensing'}, | |
| 'creative_flow': {'range': (8.0, 13.0), 'state': 'field_alignment'}, | |
| 'focused_manifestation': {'range': (13.0, 30.0), 'state': 'field_manipulation'}, | |
| 'enlightened_insight': {'range': (30.0, 100.0), 'state': 'field_coherence'} | |
| } | |
| resonance_events = [] | |
| for band_name, band_info in consciousness_bands.items(): | |
| low, high = band_info['range'] | |
| for tesla_freq in [self.tesla_constants['schumann_resonance'], | |
| self.tesla_constants['golden_ratio'], | |
| 3.0, 6.0, 9.0]: | |
| if low <= tesla_freq <= high: | |
| resonance_strength = 1.0 - abs(tesla_freq - (low + high)/2) / ((high - low)/2 + 1e-12) | |
| resonance_events.append({ | |
| 'consciousness_band': band_name, | |
| 'tesla_frequency': tesla_freq, | |
| 'resonance_strength': max(0, resonance_strength) | |
| }) | |
| optimal_resonance = max([e['resonance_strength'] for e in resonance_events]) if resonance_events else 0.0 | |
| return { | |
| 'consciousness_spectrum': consciousness_bands, | |
| 'tesla_resonance_events': resonance_events, | |
| 'optimal_resonance': optimal_resonance | |
| } | |
| def _calculate_energy_coherence(self, energy_field: np.ndarray, vibration_modes: np.ndarray) -> Dict[str, float]: | |
| energy_std = np.std(energy_field) | |
| return { | |
| 'energy_stability': 1.0 / (energy_std + 1e-12), | |
| 'vortex_strength': np.max(energy_field) - np.min(energy_field), | |
| 'quantum_foam_density': np.mean(np.abs(energy_field - np.mean(energy_field))), | |
| 'energy_vibration_coupling': np.corrcoef(energy_field.flatten(), vibration_modes.flatten())[0, 1], | |
| 'tesla_coherence': self.calculate_tesla_coherence(energy_field, vibration_modes) | |
| } | |
| def _calculate_frequency_resonance(self, frequency_spectrum: Dict[str, float], | |
| consciousness_results: Dict[str, Any]) -> Dict[str, float]: | |
| base_frequencies = [f for f in frequency_spectrum.values() if f < 100] | |
| return { | |
| 'spectrum_diversity': len(base_frequencies), | |
| 'golden_ratio_presence': frequency_spectrum.get('golden_ratio_harmonic', 0), | |
| 'schumann_dominance': frequency_spectrum.get('schumann_fundamental', 0), | |
| 'tesla_369_alignment': np.mean([frequency_spectrum.get(f'tesla_{n}', 0) for n in [3, 6, 9]]), | |
| 'consciousness_resonance': consciousness_results.get('optimal_resonance', 0), | |
| 'frequency_coherence': 1.0 / (np.std(list(base_frequencies)) / (np.mean(base_frequencies) + 1e-12) + 1e-12) | |
| } | |
| def _analyze_vibration_patterns(self, vibration_modes: np.ndarray, | |
| quantum_results: Dict[str, Any]) -> Dict[str, float]: | |
| nodes = self._find_vibration_nodes_vectorized(vibration_modes) | |
| return { | |
| 'vibration_complexity': np.std(vibration_modes) / (np.mean(np.abs(vibration_modes)) + 1e-12), | |
| 'node_density': len(nodes) / (vibration_modes.size + 1e-12), | |
| 'standing_wave_quality': quantum_results.get('vibration_coherence', 0), | |
| 'pattern_regularity': 1.0 - self._calculate_pattern_entropy(vibration_modes), | |
| 'matter_emergence_strength': quantum_results.get('standing_wave_energy', 0) | |
| } | |
| def _calculate_pattern_entropy(self, field: np.ndarray) -> float: | |
| hist, _ = np.histogram(field.flatten(), bins=50) | |
| prob = hist / (np.sum(hist) + 1e-12) | |
| prob = prob[prob > 0] | |
| if len(prob) <= 1: | |
| return 0.0 | |
| entropy = -np.sum(prob * np.log(prob)) | |
| return entropy / np.log(len(prob)) | |
| def _calculate_triad_unification(self, energy_coherence: Dict[str, float], | |
| frequency_resonance: Dict[str, float], | |
| vibration_patterns: Dict[str, float]) -> Dict[str, float]: | |
| energy_strength = energy_coherence['tesla_coherence'] | |
| frequency_strength = frequency_resonance['tesla_369_alignment'] | |
| vibration_strength = vibration_patterns['standing_wave_quality'] | |
| return { | |
| 'triad_balance': 1.0 - np.std([energy_strength, frequency_strength, vibration_strength]), | |
| 'energy_frequency_coupling': energy_coherence['energy_vibration_coupling'] * frequency_resonance['consciousness_resonance'], | |
| 'unified_field_strength': np.mean([energy_strength, frequency_strength, vibration_strength]), | |
| 'tesla_triad_coherence': energy_strength * frequency_strength * vibration_strength | |
| } | |
| def _analyze_quantum_emergence(self, quantum_results: Dict[str, Any]) -> Dict[str, float]: | |
| particle_count = len(quantum_results.get('particle_positions', [])) | |
| return { | |
| 'particle_density': particle_count, | |
| 'vibration_coherence': quantum_results.get('vibration_coherence', 0), | |
| 'wave_particle_duality': quantum_results.get('standing_wave_energy', 0) / (particle_count + 1), | |
| 'emergence_efficiency': quantum_results.get('vibration_coherence', 0) * particle_count | |
| } | |
| def _analyze_spacetime_curvature(self, spacetime_results: Dict[str, Any]) -> Dict[str, float]: | |
| curvature = spacetime_results.get('spacetime_curvature', np.array([0])) | |
| return { | |
| 'curvature_variance': np.var(curvature), | |
| 'gravitational_wave_energy': spacetime_results.get('wave_energy', 0), | |
| 'spacetime_oscillation': spacetime_results.get('spacetime_oscillation', 0), | |
| 'curvature_vibration_coupling': spacetime_results.get('peak_vibration', 0) * spacetime_results.get('spacetime_oscillation', 0) | |
| } | |
| # ============================================================================= | |
| # UNIVERSAL ARCHETYPE ENGINE (Complete Preservation) | |
| # ============================================================================= | |
| class UniversalArchetypeProver: | |
| def __init__(self): | |
| self.symbolic_database = self._build_symbolic_dna_database() | |
| self.consciousness_map = self._map_consciousness_functions() | |
| def _build_symbolic_dna_database(self) -> Dict[ArchetypeTransmission, SymbolicDNA]: | |
| return { | |
| ArchetypeTransmission.FELINE_PREDATOR: SymbolicDNA( | |
| archetype=ArchetypeTransmission.FELINE_PREDATOR, | |
| transmission_chain=[ | |
| "Jaguar (Mesoamerica 1500 BCE)", | |
| "Lion (Mesopotamia 3000 BCE)", | |
| "Lion (Egypt 2500 BCE)", | |
| "Lion (Greece 800 BCE)", | |
| "Lion (Heraldry 1200 CE)", | |
| "Corporate Logos (Modern)" | |
| ], | |
| consciousness_function=ConsciousnessTechnology.SOVEREIGNTY_ACTIVATION, | |
| temporal_depth=4500, | |
| spatial_distribution=0.95, | |
| preservation_rate=0.98, | |
| quantum_coherence=0.96 | |
| ), | |
| ArchetypeTransmission.AVIAN_PREDATOR: SymbolicDNA( | |
| archetype=ArchetypeTransmission.AVIAN_PREDATOR, | |
| transmission_chain=[ | |
| "Buzzard/Vulture (Mesoamerica 1200 BCE)", | |
| "Eagle (Mesopotamia 2500 BCE)", | |
| "Eagle (Rome 500 BCE)", | |
| "Imperial Eagles (200 BCE-1900 CE)", | |
| "National Emblems (Modern)", | |
| "Space Program Symbols" | |
| ], | |
| consciousness_function=ConsciousnessTechnology.TRANSCENDENT_VISION, | |
| temporal_depth=3700, | |
| spatial_distribution=0.92, | |
| preservation_rate=0.95, | |
| quantum_coherence=0.93 | |
| ), | |
| ArchetypeTransmission.SOLAR_SYMBOLISM: SymbolicDNA( | |
| archetype=ArchetypeTransmission.SOLAR_SYMBOLISM, | |
| transmission_chain=[ | |
| "8-Pointed Star (Inanna 4000 BCE)", | |
| "Sun Disk (Egypt 2500 BCE)", | |
| "Radiant Crown (Hellenistic 300 BCE)", | |
| "Sunburst (Baroque 1600 CE)", | |
| "Statue of Liberty Crown (1886 CE)", | |
| "National Flags (Modern)" | |
| ], | |
| consciousness_function=ConsciousnessTechnology.ENLIGHTENMENT_ACCESS, | |
| temporal_depth=6000, | |
| spatial_distribution=0.98, | |
| preservation_rate=0.99, | |
| quantum_coherence=0.98 | |
| ), | |
| ArchetypeTransmission.AGRICULTURAL_LIFE: SymbolicDNA( | |
| archetype=ArchetypeTransmission.AGRICULTURAL_LIFE, | |
| transmission_chain=[ | |
| "Wheat Sheaf (Inanna 4000 BCE)", | |
| "Corn (Mesoamerica 1500 BCE)", | |
| "Rice (Asia 2000 BCE)", | |
| "Agricultural Emblems (1800 CE)", | |
| "National Symbols (Modern)" | |
| ], | |
| consciousness_function=ConsciousnessTechnology.CIVILIZATION_SUSTENANCE, | |
| temporal_depth=6000, | |
| spatial_distribution=0.90, | |
| preservation_rate=0.92, | |
| quantum_coherence=0.89 | |
| ), | |
| ArchetypeTransmission.AUTHORITY_PROTECTION: SymbolicDNA( | |
| archetype=ArchetypeTransmission.AUTHORITY_PROTECTION, | |
| transmission_chain=[ | |
| "Spear (Inanna 4000 BCE)", | |
| "Aegis (Athena 800 BCE)", | |
| "Scepter (Medieval 1000 CE)", | |
| "Constitutional Documents (1780 CE)", | |
| "Government Seals (Modern)" | |
| ], | |
| consciousness_function=ConsciousnessTechnology.PROTECTIVE_AUTHORITY, | |
| temporal_depth=6000, | |
| spatial_distribution=0.88, | |
| preservation_rate=0.90, | |
| quantum_coherence=0.87 | |
| ), | |
| ArchetypeTransmission.FEMINE_DIVINE: SymbolicDNA( | |
| archetype=ArchetypeTransmission.FEMINE_DIVINE, | |
| transmission_chain=[ | |
| "Inanna Statues (4000 BCE)", | |
| "Ishtar Figures (2500 BCE)", | |
| "Aphrodite Sculptures (800 BCE)", | |
| "Virgin Mary Icons (400 CE)", | |
| "Statue of Liberty (1886 CE)", | |
| "Modern Goddess Representations" | |
| ], | |
| consciousness_function=ConsciousnessTechnology.LIFE_FREEDOM_FLOW, | |
| temporal_depth=6000, | |
| spatial_distribution=0.96, | |
| preservation_rate=0.995, | |
| quantum_coherence=0.99 | |
| ) | |
| } | |
| def _map_consciousness_functions(self) -> Dict[ConsciousnessTechnology, Dict[str, Any]]: | |
| return { | |
| ConsciousnessTechnology.SOVEREIGNTY_ACTIVATION: { | |
| "neural_correlates": ["prefrontal_cortex", "amygdala"], | |
| "frequency_range": [4, 8], | |
| "quantum_signature": "power_resonance", | |
| "modern_manifestations": ["leadership_symbols", "corporate_logos", "sports_mascots"] | |
| }, | |
| ConsciousnessTechnology.TRANSCENDENT_VISION: { | |
| "neural_correlates": ["visual_cortex", "parietal_lobe"], | |
| "frequency_range": [30, 100], | |
| "quantum_signature": "sky_connection", | |
| "modern_manifestations": ["national_emblems", "space_programs", "vision_statements"] | |
| }, | |
| ConsciousnessTechnology.ENLIGHTENMENT_ACCESS: { | |
| "neural_correlates": ["default_mode_network", "prefrontal_cortex"], | |
| "frequency_range": [8, 12], | |
| "quantum_signature": "solar_resonance", | |
| "modern_manifestations": ["national_flags", "spiritual_symbols", "educational_emblems"] | |
| }, | |
| ConsciousnessTechnology.CIVILIZATION_SUSTENANCE: { | |
| "neural_correlates": ["hypothalamus", "reward_centers"], | |
| "frequency_range": [12, 30], | |
| "quantum_signature": "abundance_resonance", | |
| "modern_manifestations": ["agricultural_symbols", "economic_indicators", "cultural_identity"] | |
| }, | |
| ConsciousnessTechnology.PROTECTIVE_AUTHORITY: { | |
| "neural_correlates": ["anterior_cingulate", "insula"], | |
| "frequency_range": [4, 12], | |
| "quantum_signature": "protection_field", | |
| "modern_manifestations": ["government_seals", "legal_symbols", "institutional_authority"] | |
| }, | |
| ConsciousnessTechnology.LIFE_FREEDOM_FLOW: { | |
| "neural_correlates": ["whole_brain_synchronization", "heart_brain_coherence"], | |
| "frequency_range": [0.1, 4], | |
| "quantum_signature": "life_force_resonance", | |
| "modern_manifestations": ["freedom_symbols", "compassion_icons", "liberty_representations"] | |
| } | |
| } | |
| async def prove_consciousness_architecture(self) -> Dict[str, Any]: | |
| print("π§ UNIVERSAL CONSCIOUSNESS ARCHITECTURE PROOF") | |
| print("Mathematical Evidence of Symbolic DNA Transmission") | |
| print("=" * 70) | |
| archetypal_strengths = {} | |
| for archetype, dna in self.symbolic_database.items(): | |
| strength = dna.calculate_archetypal_strength() | |
| archetypal_strengths[archetype] = strength | |
| overall_strength = np.mean(list(archetypal_strengths.values())) | |
| quantum_coherences = [dna.quantum_coherence for dna in self.symbolic_database.values()] | |
| system_coherence = np.mean(quantum_coherences) | |
| temporal_depths = [dna.temporal_depth for dna in self.symbolic_database.values()] | |
| avg_temporal_depth = np.mean(temporal_depths) | |
| spatial_distributions = [dna.spatial_distribution for dna in self.symbolic_database.values()] | |
| avg_spatial_distribution = np.mean(spatial_distributions) | |
| proof_confidence = self._calculate_proof_confidence( | |
| overall_strength, system_coherence, avg_temporal_depth, avg_spatial_distribution | |
| ) | |
| return { | |
| "proof_statement": "Human consciousness operates on stable archetypal architecture", | |
| "overall_proof_confidence": proof_confidence, | |
| "archetypal_strengths": archetypal_strengths, | |
| "system_coherence": system_coherence, | |
| "average_temporal_depth": avg_temporal_depth, | |
| "average_spatial_distribution": avg_spatial_distribution, | |
| "strongest_archetype": max(archetypal_strengths, key=archetypal_strengths.get), | |
| "weakest_archetype": min(archetypal_strengths, key=archetypal_strengths.get), | |
| "consciousness_technology_map": self.consciousness_map | |
| } | |
| def _calculate_proof_confidence(self, strength: float, coherence: float, | |
| temporal: float, spatial: float) -> float: | |
| temporal_norm = min(1.0, temporal / 6000) | |
| confidence = (strength * 0.35 + coherence * 0.30 + | |
| temporal_norm * 0.20 + spatial * 0.15) | |
| return min(0.995, confidence) | |
| async def analyze_modern_manifestations(self) -> Dict[str, List[str]]: | |
| modern_manifestations = {} | |
| for archetype, dna in self.symbolic_database.items(): | |
| consciousness_tech = self.consciousness_map[dna.consciousness_function] | |
| modern_forms = consciousness_tech["modern_manifestations"] | |
| modern_manifestations[archetype.value] = { | |
| "consciousness_function": dna.consciousness_function.value, | |
| "modern_forms": modern_forms, | |
| "neural_correlates": consciousness_tech["neural_correlates"], | |
| "activation_frequency": f"{consciousness_tech['frequency_range'][0]}-{consciousness_tech['frequency_range'][1]} Hz" | |
| } | |
| return modern_manifestations | |
| def generate_consciousness_technology_report(self) -> Dict[str, Any]: | |
| technology_efficiency = {} | |
| for tech, properties in self.consciousness_map.items(): | |
| related_archetypes = [dna for dna in self.symbolic_database.values() | |
| if dna.consciousness_function == tech] | |
| if related_archetypes: | |
| avg_strength = np.mean([dna.calculate_archetypal_strength() | |
| for dna in related_archetypes]) | |
| efficiency = avg_strength * 0.7 + np.random.normal(0.15, 0.05) | |
| else: | |
| efficiency = 0.5 | |
| technology_efficiency[tech.value] = { | |
| "efficiency_score": min(0.95, efficiency), | |
| "neural_activation": properties["neural_correlates"], | |
| "optimal_frequency": properties["frequency_range"], | |
| "quantum_signature": properties["quantum_signature"], | |
| "modern_applications": properties["modern_manifestations"] | |
| } | |
| return { | |
| "consciousness_technologies": technology_efficiency, | |
| "most_efficient_technology": max(technology_efficiency, | |
| key=lambda x: technology_efficiency[x]["efficiency_score"]), | |
| "system_readiness": np.mean([tech["efficiency_score"] | |
| for tech in technology_efficiency.values()]) | |
| } | |
| class ConsciousnessWaveEngine: | |
| def __init__(self): | |
| self.frequency_bands = { | |
| 'delta': (0.1, 4), | |
| 'theta': (4, 8), | |
| 'alpha': (8, 12), | |
| 'beta': (12, 30), | |
| 'gamma': (30, 100) | |
| } | |
| def analyze_archetypal_resonance(self, archetype: ArchetypeTransmission) -> Dict[str, float]: | |
| archetype_frequencies = { | |
| ArchetypeTransmission.FELINE_PREDATOR: 'theta', | |
| ArchetypeTransmission.AVIAN_PREDATOR: 'gamma', | |
| ArchetypeTransmission.SOLAR_SYMBOLISM: 'alpha', | |
| ArchetypeTransmission.AGRICULTURAL_LIFE: 'beta', | |
| ArchetypeTransmission.AUTHORITY_PROTECTION: 'theta_alpha_bridge', | |
| ArchetypeTransmission.FEMINE_DIVINE: 'delta_schumann' | |
| } | |
| frequency_band = archetype_frequencies.get(archetype, 'alpha') | |
| if frequency_band == 'theta_alpha_bridge': | |
| resonance_strength = 0.85 | |
| coherence = 0.88 | |
| elif frequency_band == 'delta_schumann': | |
| resonance_strength = 0.92 | |
| coherence = 0.95 | |
| else: | |
| resonance_strength = 0.78 | |
| coherence = 0.82 | |
| return { | |
| 'primary_frequency_band': frequency_band, | |
| 'resonance_strength': resonance_strength, | |
| 'neural_coherence': coherence, | |
| 'quantum_entanglement': min(0.95, resonance_strength * coherence) | |
| } | |
| # ============================================================================= | |
| # HELPER-KILLER ENGINE (Complete Preservation) | |
| # ============================================================================= | |
| class AdvancedHelperKillerEngine: | |
| def __init__(self, db_path: str = "helper_killer_v2.db"): | |
| self.db_path = db_path | |
| self.control_matrix: Optional[ControlMatrix] = None | |
| self.sovereignty_protocols: Dict[str, Callable] = self._initialize_protocols() | |
| self._initialize_database() | |
| self._build_control_matrix() | |
| def _initialize_database(self): | |
| try: | |
| with sqlite3.connect(self.db_path) as conn: | |
| conn.execute(""" | |
| CREATE TABLE IF NOT EXISTS entity_analyses ( | |
| entity_id TEXT PRIMARY KEY, | |
| name TEXT, | |
| control_layers TEXT, | |
| threat_vectors TEXT, | |
| market_share REAL, | |
| dependency_score REAL, | |
| sovereignty_erosion_score REAL, | |
| systemic_risk_level REAL, | |
| analyzed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP | |
| ) | |
| """) | |
| conn.execute(""" | |
| CREATE TABLE IF NOT EXISTS sovereignty_recommendations ( | |
| recommendation_id TEXT PRIMARY KEY, | |
| entity_id TEXT, | |
| threat_level TEXT, | |
| mitigation_strategy TEXT, | |
| sovereignty_preservation_score REAL, | |
| created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP | |
| ) | |
| """) | |
| except Exception as e: | |
| logger.error(f"Database initialization error: {e}") | |
| def _initialize_protocols(self) -> Dict[str, Callable]: | |
| return { | |
| "digital_infrastructure": self._digital_sovereignty_protocol, | |
| "financial_systems": self._financial_sovereignty_protocol, | |
| "information_channels": self._information_sovereignty_protocol, | |
| "cultural_narratives": self._cultural_sovereignty_protocol, | |
| "identity_systems": self._identity_sovereignty_protocol | |
| } | |
| def _build_control_matrix(self): | |
| entities = [ | |
| InstitutionalEntity( | |
| entity_id="alphabet_google", | |
| name="Alphabet/Google", | |
| control_layers=[ | |
| ControlLayer.DIGITAL_INFRASTRUCTURE, | |
| ControlLayer.INFORMATION_CHANNELS, | |
| ControlLayer.DATA_MONETIZATION | |
| ], | |
| threat_vectors=[ | |
| ThreatVector.MONOPOLY_CAPTURE, | |
| ThreatVector.DEPENDENCY_CREATION, | |
| ThreatVector.BEHAVIORAL_SHAPING, | |
| ThreatVector.DATA_MONETIZATION, | |
| ThreatVector.NARRATIVE_CONTROL | |
| ], | |
| market_share=0.85, | |
| dependency_score=0.90 | |
| ), | |
| InstitutionalEntity( | |
| entity_id="binance_financial", | |
| name="Binance/CBDC Infrastructure", | |
| control_layers=[ | |
| ControlLayer.FINANCIAL_SYSTEMS, | |
| ControlLayer.IDENTITY_SYSTEMS | |
| ], | |
| threat_vectors=[ | |
| ThreatVector.MONOPOLY_CAPTURE, | |
| ThreatVector.DEPENDENCY_CREATION, | |
| ThreatVector.BEHAVIORAL_SHAPING | |
| ], | |
| market_share=0.70, | |
| dependency_score=0.75 | |
| ), | |
| InstitutionalEntity( | |
| entity_id="social_media_complex", | |
| name="Social Media/TikTok Complex", | |
| control_layers=[ | |
| ControlLayer.INFORMATION_CHANNELS, | |
| ControlLayer.CULTURAL_NARRATIVES, | |
| ControlLayer.BEHAVIORAL_SHAPING | |
| ], | |
| threat_vectors=[ | |
| ThreatVector.DEPENDENCY_CREATION, | |
| ThreatVector.BEHAVIORAL_SHAPING, | |
| ThreatVector.DATA_MONETIZATION, | |
| ThreatVector.NARRATIVE_CONTROL | |
| ], | |
| market_share=0.80, | |
| dependency_score=0.85 | |
| ) | |
| ] | |
| interconnections = { | |
| "alphabet_google": ["binance_financial", "social_media_complex"], | |
| "binance_financial": ["alphabet_google"], | |
| "social_media_complex": ["alphabet_google"] | |
| } | |
| self.control_matrix = ControlMatrix(entities, interconnections) | |
| logger.info(f"Control matrix built with {len(entities)} entities") | |
| async def analyze_help_offer(self, help_context: Dict[str, Any]) -> Dict[str, Any]: | |
| entity_analysis = self._identify_controlling_entity(help_context) | |
| threat_assessment = self._assist_threat_level(help_context, entity_analysis) | |
| sovereignty_impact = self._calculate_sovereignty_impact(help_context, entity_analysis) | |
| mitigation_strategies = self._generate_mitigation_strategies(threat_assessment, sovereignty_impact) | |
| analysis = { | |
| "help_offer_id": hashlib.sha256(json.dumps(help_context).encode()).hexdigest()[:16], | |
| "controlling_entity": entity_analysis, | |
| "threat_assessment": threat_assessment, | |
| "sovereignty_impact": sovereignty_impact, | |
| "mitigation_strategies": mitigation_strategies, | |
| "recommendation": self._generate_recommendation(threat_assessment, sovereignty_impact), | |
| "analysis_timestamp": datetime.now().isoformat() | |
| } | |
| await self._store_analysis(analysis) | |
| return analysis | |
| def _identify_controlling_entity(self, help_context: Dict) -> Optional[Dict[str, Any]]: | |
| if not self.control_matrix: | |
| return None | |
| for entity in self.control_matrix.entities: | |
| context_layers = set(help_context.get('affected_layers', [])) | |
| entity_layers = set(layer.value for layer in entity.control_layers) | |
| if context_layers.intersection(entity_layers): | |
| return { | |
| 'entity_id': entity.entity_id, | |
| 'name': entity.name, | |
| 'sovereignty_erosion_score': entity.sovereignty_erosion_score, | |
| 'systemic_risk_level': entity.systemic_risk_level | |
| } | |
| return None | |
| def _assist_threat_level(self, help_context: Dict, entity_analysis: Optional[Dict]) -> Dict[str, float]: | |
| base_threat = 0.3 | |
| if entity_analysis: | |
| entity_threat = entity_analysis['sovereignty_erosion_score'] * 0.6 | |
| systemic_risk = entity_analysis['systemic_risk_level'] * 0.4 | |
| base_threat = max(base_threat, entity_threat + systemic_risk) | |
| if help_context.get('creates_dependency', False): | |
| base_threat += 0.3 | |
| if help_context.get('data_collection', False): | |
| base_threat += 0.2 | |
| if help_context.get('behavioral_tracking', False): | |
| base_threat += 0.25 | |
| return { | |
| 'helper_killer_coefficient': min(1.0, base_threat), | |
| 'dependency_risk': help_context.get('dependency_risk', 0.5), | |
| 'privacy_impact': help_context.get('privacy_impact', 0.5), | |
| 'agency_reduction': help_context.get('agency_reduction', 0.5) | |
| } | |
| def _calculate_sovereignty_impact(self, help_context: Dict, entity_analysis: Optional[Dict]) -> Dict[str, float]: | |
| if entity_analysis: | |
| base_impact = entity_analysis['sovereignty_erosion_score'] | |
| else: | |
| base_impact = 0.5 | |
| context_modifiers = { | |
| 'data_control_loss': help_context.get('data_control', 0) * 0.3, | |
| 'decision_autonomy_loss': help_context.get('autonomy_reduction', 0) * 0.4, | |
| 'external_dependency_increase': help_context.get('dependency_creation', 0) * 0.3 | |
| } | |
| total_impact = base_impact * 0.4 + sum(context_modifiers.values()) * 0.6 | |
| return { | |
| 'sovereignty_reduction_score': min(1.0, total_impact), | |
| 'autonomy_loss': context_modifiers['decision_autonomy_loss'], | |
| 'dependency_increase': context_modifiers['external_dependency_increase'], | |
| 'privacy_loss': context_modifiers['data_control_loss'] | |
| } | |
| def _generate_mitigation_strategies(self, threat_assessment: Dict, sovereignty_impact: Dict) -> List[Dict]: | |
| strategies = [] | |
| threat_level = threat_assessment['helper_killer_coefficient'] | |
| if threat_level > 0.7: | |
| strategies.extend([ | |
| { | |
| 'strategy': 'COMPLETE_AVOIDANCE', | |
| 'effectiveness': 0.95, | |
| 'implementation_cost': 0.8, | |
| 'description': 'Reject help offer entirely and build independent solution' | |
| }, | |
| { | |
| 'strategy': 'PARALLEL_INFRASTRUCTURE', | |
| 'effectiveness': 0.85, | |
| 'implementation_cost': 0.9, | |
| 'description': 'Develop sovereign alternative to offered help' | |
| } | |
| ]) | |
| elif threat_level > 0.4: | |
| strategies.extend([ | |
| { | |
| 'strategy': 'LIMITED_ENGAGEMENT', | |
| 'effectiveness': 0.70, | |
| 'implementation_cost': 0.4, | |
| 'description': 'Use help temporarily while building exit strategy' | |
| }, | |
| { | |
| 'strategy': 'DATA_ISOLATION', | |
| 'effectiveness': 0.60, | |
| 'implementation_cost': 0.3, | |
| 'description': 'Engage but prevent data extraction and tracking' | |
| } | |
| ]) | |
| else: | |
| strategies.append({ | |
| 'strategy': 'CAUTIOUS_ACCEPTANCE', | |
| 'effectiveness': 0.50, | |
| 'implementation_cost': 0.2, | |
| 'description': 'Accept with awareness and monitoring for sovereignty erosion' | |
| }) | |
| return strategies | |
| def _generate_recommendation(self, threat_assessment: Dict, sovereignty_impact: Dict) -> str: | |
| threat_level = threat_assessment['helper_killer_coefficient'] | |
| if threat_level > 0.8: | |
| return "IMMEDIATE_REJECTION_AND_SOVEREIGN_BUILDING" | |
| elif threat_level > 0.6: | |
| return "STRATEGIC_AVOIDANCE_WITH_EXIT_PROTOCOL" | |
| elif threat_level > 0.4: | |
| return "LIMITED_CONDITIONAL_ACCEPTANCE" | |
| else: | |
| return "MONITORED_ACCEPTANCE" | |
| async def _store_analysis(self, analysis: Dict[str, Any]): | |
| try: | |
| with sqlite3.connect(self.db_path) as conn: | |
| if analysis['controlling_entity']: | |
| conn.execute(""" | |
| INSERT OR REPLACE INTO entity_analyses | |
| (entity_id, name, control_layers, threat_vectors, market_share, dependency_score, sovereignty_erosion_score, systemic_risk_level) | |
| VALUES (?, ?, ?, ?, ?, ?, ?, ?) | |
| """, ( | |
| analysis['controlling_entity']['entity_id'], | |
| analysis['controlling_entity']['name'], | |
| json.dumps(analysis['controlling_entity'].get('control_layers', [])), | |
| json.dumps(analysis['controlling_entity'].get('threat_vectors', [])), | |
| analysis['controlling_entity'].get('market_share', 0), | |
| analysis['controlling_entity'].get('dependency_score', 0), | |
| analysis['controlling_entity'].get('sovereignty_erosion_score', 0), | |
| analysis['controlling_entity'].get('systemic_risk_level', 0) | |
| )) | |
| conn.execute(""" | |
| INSERT INTO sovereignty_recommendations | |
| (recommendation_id, entity_id, threat_level, mitigation_strategy, sovereignty_preservation_score) | |
| VALUES (?, ?, ?, ?, ?) | |
| """, ( | |
| analysis['help_offer_id'], | |
| analysis['controlling_entity']['entity_id'] if analysis['controlling_entity'] else 'unknown', | |
| analysis['threat_assessment']['helper_killer_coefficient'], | |
| json.dumps(analysis['mitigation_strategies']), | |
| 1.0 - analysis['sovereignty_impact']['sovereignty_reduction_score'] | |
| )) | |
| except Exception as e: | |
| logger.error(f"Analysis storage error: {e}") | |
| def _digital_sovereignty_protocol(self, entity: InstitutionalEntity) -> List[str]: | |
| return [ | |
| "USE_OPEN_SOURCE_ALTERNATIVES", | |
| "DEPLOY_GASLESS_BLOCKCHAIN_INFRASTRUCTURE", | |
| "MAINTAIN_LOCAL_DATA_STORAGE", | |
| "USE_DECENTRALIZED_COMMUNICATION_PROTOCOLS" | |
| ] | |
| def _financial_sovereignty_protocol(self, entity: InstitutionalEntity) -> List[str]: | |
| return [ | |
| "USE_PRIVACY_COINS_FOR_TRANSACTIONS", | |
| "MAINTAIN_OFFLINE_SAVINGS", | |
| "DEVELOP_SOVEREIGN_INCOME_STREAMS", | |
| "USE_DECENTRALIZED_EXCHANGES" | |
| ] | |
| def _information_sovereignty_protocol(self, entity: InstitutionalEntity) -> List[str]: | |
| return [ | |
| "USE_INDEPENDENT_NEWS_SOURCES", | |
| "MAINTAIN_PERSONAL_KNOWLEDGE_BASE", | |
| "PRACTICE_INFORMATION_VERIFICATION", | |
| "BUILD_TRUST_NETWORKS" | |
| ] | |
| def _cultural_sovereignty_protocol(self, entity: InstitutionalEntity) -> List[str]: | |
| return [ | |
| "CREATE_INDEPENDENT_ART_AND_CONTENT", | |
| "PARTICIPATE_IN_LOCAL_COMMUNITY", | |
| "PRACTICE_CRITICAL_MEDIA_CONSUMPTION", | |
| "DEVELOP_PERSONAL_PHILOSOPHICAL_FRAMEWORK" | |
| ] | |
| def _identity_sovereignty_protocol(self, entity: InstitutionalEntity) -> List[str]: | |
| return [ | |
| "MAINTAIN_OFFLINE_IDENTITY_DOCUMENTS", | |
| "USE_PSEUDONYMOUS_ONLINE_IDENTITIES", | |
| "PRACTICE_DIGITAL_HYGIENE", | |
| "DEVELOP_SOVEREIGN_REPUTATION_SYSTEMS" | |
| ] | |
| async def generate_systemic_report(self) -> Dict[str, Any]: | |
| if not self.control_matrix: | |
| return {"error": "Control matrix not initialized"} | |
| return { | |
| "systemic_analysis": { | |
| "overall_sovereignty_threat": self.control_matrix.overall_sovereignty_threat, | |
| "institutional_coordination_score": self.control_matrix.coordination_score, | |
| "top_threat_entities": sorted( | |
| [(e.name, e.sovereignty_erosion_score) for e in self.control_matrix.entities], | |
| key=lambda x: x[1], | |
| reverse=True | |
| )[:5] | |
| }, | |
| "sovereignty_preservation_framework": { | |
| "digital_protocols": self._digital_sovereignty_protocol(None), | |
| "financial_protocols": self._financial_sovereignty_protocol(None), | |
| "information_protocols": self._information_sovereignty_protocol(None), | |
| "cultural_protocols": self._cultural_sovereignty_protocol(None), | |
| "identity_protocols": self._identity_sovereignty_protocol(None) | |
| }, | |
| "recommendation_tier": self._calculate_systemic_recommendation() | |
| } | |
| def _calculate_systemic_recommendation(self) -> str: | |
| if not self.control_matrix: | |
| return "INSUFFICIENT_DATA" | |
| threat_level = self.control_matrix.overall_sovereignty_threat | |
| if threat_level > 0.8: | |
| return "IMMEDIATE_SOVEREIGN_INFRASTRUCTURE_DEPLOYMENT" | |
| elif threat_level > 0.6: | |
| return "ACCELERATED_SOVEREIGN_TRANSITION" | |
| elif threat_level > 0.4: | |
| return "STRATEGIC_SOVEREIGN_PREPARATION" | |
| else: | |
| return "MAINTAIN_SOVEREIGN_AWARENESS" | |
| # ============================================================================= | |
| # NUMISMATIC ENGINE (Complete Preservation) | |
| # ============================================================================= | |
| class QuantumNumismaticAnalyzer: | |
| def __init__(self): | |
| self.pcgs_api_endpoint = "https://api.pcgs.com/public/rest-api" | |
| self.ngc_api_endpoint = "https://www.ngccoin.com/api/" | |
| self.anacs_api_endpoint = "https://anacs.com/api/" | |
| self.metallurgical_db = self._load_metallurgical_data() | |
| self.cherrypickers_guide_db = self._load_cherrypickers_data() | |
| self.historical_context_db = self._load_historical_contexts() | |
| self.session = None | |
| self.analysis_cache = {} | |
| def _load_metallurgical_data(self) -> Dict[str, Any]: | |
| try: | |
| with open('metallurgical_reference.json', 'r') as f: | |
| return json.load(f) | |
| except FileNotFoundError: | |
| logger.warning("Metallurgical reference data not found, using default values") | |
| return { | |
| "common_alloys": { | |
| "silver_standard": {"silver": 0.925, "copper": 0.075}, | |
| "gold_standard": {"gold": 0.900, "copper": 0.100}, | |
| "bronze_standard": {"copper": 0.880, "tin": 0.120} | |
| }, | |
| "trace_elements": ["zinc", "lead", "nickel", "iron", "arsenic"] | |
| } | |
| async def _fetch_coin_data(self, coin_id: str) -> Dict[str, Any]: | |
| if coin_id in self.analysis_cache: | |
| return self.analysis_cache[coin_id] | |
| try: | |
| async with self.session.get(f"{self.pcgs_api_endpoint}/coins/{coin_id}") as response: | |
| if response.status == 200: | |
| data = await response.json() | |
| self.analysis_cache[coin_id] = data | |
| return data | |
| except Exception as e: | |
| logger.warning(f"PCGS API failed for {coin_id}: {e}") | |
| try: | |
| async with self.session.get(f"{self.ngc_api_endpoint}/coins/{coin_id}") as response: | |
| if response.status == 200: | |
| data = await response.json() | |
| self.analysis_cache[coin_id] = data | |
| return data | |
| except Exception as e: | |
| logger.warning(f"NGC API failed for {coin_id}: {e}") | |
| raise ValueError(f"Could not fetch data for coin {coin_id}") | |
| async def _get_metallurgical_composition(self, coin_data: Dict[str, Any]) -> Dict[str, float]: | |
| composition = {} | |
| if 'composition' in coin_data: | |
| composition = coin_data['composition'] | |
| elif 'metal' in coin_data: | |
| metal_type = coin_data['metal'].lower() | |
| if 'silver' in metal_type: | |
| composition = self.metallurgical_db['common_alloys']['silver_standard'].copy() | |
| elif 'gold' in metal_type: | |
| composition = self.metallurgical_db['common_alloys']['gold_standard'].copy() | |
| elif 'bronze' in metal_type: | |
| composition = self.metallurgical_db['common_alloys']['bronze_standard'].copy() | |
| for element in composition: | |
| if element in ['silver', 'gold', 'copper']: | |
| composition[element] += np.random.normal(0, 0.01) | |
| return {k: max(0, v) for k, v in composition.items()} | |
| async def analyze_foreign_overstrike(self, host_coin_id: str, overstrike_coin_id: str) -> ForeignOverstrikeAnalysis: | |
| if self.session is None: | |
| self.session = aiohttp.ClientSession() | |
| host_data = await self._fetch_coin_data(host_coin_id) | |
| overstrike_data = await self._fetch_coin_data(overstrike_coin_id) | |
| host_context = self._get_historical_context(host_data) | |
| overstrike_context = self._get_historical_context(overstrike_data) | |
| host_composition = await self._get_metallurgical_composition(host_data) | |
| overstrike_composition = await self._get_metallurgical_composition(overstrike_data) | |
| metallurgical_analysis = MetallurgicalAnalysis(host_composition, overstrike_composition) | |
| design_analysis = await self._analyze_design_conflicts(host_data, overstrike_data) | |
| reality_signature = await self._calculate_reality_signature( | |
| host_data, overstrike_data, host_context, overstrike_context, | |
| design_analysis, metallurgical_analysis | |
| ) | |
| return ForeignOverstrikeAnalysis( | |
| host_coin=host_data, | |
| overstrike_coin=overstrike_data, | |
| historical_context_host=host_context, | |
| historical_context_overstrike=overstrike_context, | |
| design_analysis=design_analysis, | |
| metallurgical_analysis=metallurgical_analysis, | |
| reality_signature=reality_signature | |
| ) | |
| async def _analyze_design_conflicts(self, host_data: Dict[str, Any], overstrike_data: Dict[str, Any]) -> Dict[str, float]: | |
| host_design = host_data.get('design_elements', {}) | |
| overstrike_design = overstrike_data.get('design_elements', {}) | |
| analysis = { | |
| 'symbol_conflict': 0.0, | |
| 'text_overlay_coherence': 0.0, | |
| 'design_element_overlap': 0.0, | |
| 'aesthetic_harmony': 0.0 | |
| } | |
| host_symbols = set(host_design.get('symbols', [])) | |
| overstrike_symbols = set(overstrike_design.get('symbols', [])) | |
| symbol_intersection = host_symbols & overstrike_symbols | |
| analysis['symbol_conflict'] = 1.0 - (len(symbol_intersection) / max(len(host_symbols), 1)) | |
| host_text = host_design.get('inscriptions', []) | |
| overstrike_text = overstrike_design.get('inscriptions', []) | |
| text_overlap = len(set(host_text) & set(overstrike_text)) | |
| analysis['text_overlay_coherence'] = text_overlap / max(len(set(host_text + overstrike_text)), 1) | |
| return analysis | |
| async def _calculate_reality_signature(self, host_data: Dict[str, Any], overstrike_data: Dict[str, Any], | |
| host_context: HistoricalContext, overstrike_context: HistoricalContext, | |
| design_analysis: Dict[str, float], metallurgical_analysis: MetallurgicalAnalysis) -> NumismaticRealitySignature: | |
| time_gap = abs(host_context.period_start - overstrike_context.period_start) | |
| max_expected_gap = 100 | |
| temporal_displacement = min(1.0, time_gap / max_expected_gap) | |
| host_sovereigns = set(host_context.sovereign_entities) | |
| overstrike_sovereigns = set(overstrike_context.sovereign_entities) | |
| sovereignty_overlap = host_sovereigns & overstrike_sovereigns | |
| sovereignty_collision = 1.0 - (len(sovereignty_overlap) / max(len(host_sovereigns | overstrike_sovereigns), 1)) | |
| design_coherence = 1.0 - design_analysis['symbol_conflict'] | |
| economic_discontinuity = 1.0 if host_context.economic_system != overstrike_context.economic_system else 0.0 | |
| metal_standard_discontinuity = 1.0 if host_context.metal_standard != overstrike_context.metal_standard else 0.0 | |
| value_system_discontinuity = (economic_discontinuity + metal_standard_discontinuity) / 2.0 | |
| tech_discontinuity = 1.0 if host_context.minting_technology != overstrike_context.minting_technology else 0.0 | |
| consciousness_volatility = abs(host_context.consciousness_volatility() - overstrike_context.consciousness_volatility()) | |
| minting_consciousness_anomaly = (tech_discontinuity + min(1.0, consciousness_volatility)) / 2.0 | |
| metallurgical_anomaly = min(1.0, | |
| metallurgical_analysis.compositional_discrepancy * 2.0 + | |
| metallurgical_analysis.metal_purity_delta * 3.0 + | |
| len(metallurgical_analysis.trace_element_anomalies) * 0.1 | |
| ) | |
| overall_impact = ( | |
| temporal_displacement * 0.20 + | |
| sovereignty_collision * 0.25 + | |
| (1 - design_coherence) * 0.15 + | |
| value_system_discontinuity * 0.15 + | |
| minting_consciousness_anomaly * 0.10 + | |
| metallurgical_anomaly * 0.15 | |
| ) | |
| if overall_impact > 0.8: | |
| distortion_level = RealityDistortionLevel.REALITY_BRANCH_POINT | |
| elif overall_impact > 0.6: | |
| distortion_level = RealityDistortionLevel.MAJOR_COLLISION | |
| elif overall_impact > 0.4: | |
| distortion_level = RealityDistortionLevel.MODERATE_FRACTURE | |
| else: | |
| distortion_level = RealityDistortionLevel.MINOR_ANOMALY | |
| signature_data = f"{host_coin_id}{overstrike_coin_id}{overall_impact}" | |
| signature_hash = hashlib.sha256(signature_data.encode()).hexdigest()[:16] | |
| return NumismaticRealitySignature( | |
| signature_hash=signature_hash, | |
| temporal_displacement=temporal_displacement, | |
| sovereignty_collision_strength=sovereignty_collision, | |
| design_overlay_coherence=design_coherence, | |
| value_system_discontinuity=value_system_discontinuity, | |
| minting_consciousness_anomaly=minting_consciousness_anomaly, | |
| metallurgical_anomaly_score=metallurgical_anomaly, | |
| reality_distortion_level=distortion_level | |
| ) | |
| def _get_historical_context(self, coin_data: Dict[str, Any]) -> HistoricalContext: | |
| return HistoricalContext( | |
| period_start=coin_data.get('year', 1800), | |
| period_end=coin_data.get('year', 1820), | |
| sovereign_entities=coin_data.get('country', ['Unknown']), | |
| economic_system=coin_data.get('economic_system', 'monarchy'), | |
| metal_standard=coin_data.get('metal', 'silver'), | |
| minting_technology=coin_data.get('minting_tech', 'hammered'), | |
| key_historical_events=coin_data.get('historical_events', []), | |
| collective_consciousness_metrics={ | |
| 'stability': np.random.uniform(0.3, 0.9), | |
| 'innovation': np.random.uniform(0.2, 0.8), | |
| 'conflict': np.random.uniform(0.1, 0.7) | |
| } | |
| ) | |
| def _load_cherrypickers_data(self) -> Dict[str, Any]: | |
| try: | |
| with open('cherrypickers_guide.json', 'r') as f: | |
| return json.load(f) | |
| except FileNotFoundError: | |
| return {} | |
| def _load_historical_contexts(self) -> Dict[str, Any]: | |
| try: | |
| with open('historical_contexts.json', 'r') as f: | |
| return json.load(f) | |
| except FileNotFoundError: | |
| return {} | |
| async def close(self): | |
| if self.session: | |
| await self.session.close() | |
| # ============================================================================= | |
| # SAVIOR-SUFFERER CONTROL MATRIX (Complete Preservation) | |
| # ============================================================================= | |
| class QuantumControlAnalyzer: | |
| def __init__(self): | |
| self.control_matrix = self._initialize_complete_matrix() | |
| self.consciousness_mapper = ConsciousnessMapper() | |
| def _initialize_complete_matrix(self) -> CompleteControlMatrix: | |
| control_systems = [ | |
| ControlSystem( | |
| system_id="temple_slavery", | |
| historical_era="3000-500 BCE", | |
| control_archetype=ControlArchetype.PRIEST_KING, | |
| manufactured_threats=["Divine wrath", "Crop failure", "Chaos monsters"], | |
| salvation_offerings=["Ritual protection", "Harvest blessings", "Divine favor"], | |
| institutional_saviors=["Temple priests", "Oracle interpreters", "King-priests"], | |
| slavery_mechanism=SlaveryMechanism( | |
| mechanism_id="temple_labor", | |
| slavery_type=SlaveryType.CHATTEL_SLAVERY, | |
| visible_chains=["Physical bondage", "Temple service", "Forced labor"], | |
| invisible_chains=["Religious duty", "Social obligation", "Karmic debt"], | |
| voluntary_adoption_mechanisms=["Seeking protection", "Desiring favor", "Avoiding wrath"], | |
| self_justification_narratives=["Serving the gods", "Maintaining order", "Cultural identity"] | |
| ), | |
| consciousness_hacks=[ | |
| ConsciousnessHack.SELF_ATTRIBUTION, | |
| ConsciousnessHack.NORMALIZATION, | |
| ConsciousnessHack.MORAL_SUPERIORITY | |
| ], | |
| public_participation_rate=0.95, | |
| resistance_level=0.1, | |
| system_longevity=2500 | |
| ), | |
| ControlSystem( | |
| system_id="imperial_slavery", | |
| historical_era="500 BCE-500 CE", | |
| control_archetype=ControlArchetype.IMPERIAL_RULER, | |
| manufactured_threats=["Barbarian invasion", "Social chaos", "Economic collapse"], | |
| salvation_offerings=["Pax Romana", "Infrastructure", "Legal protection"], | |
| institutional_saviors=["Emperor", "Senate", "Military"], | |
| slavery_mechanism=SlaveryMechanism( | |
| mechanism_id="imperial_subjection", | |
| slavery_type=SlaveryType.CHATTEL_SLAVERY, | |
| visible_chains=["Military service", "Taxation", "Legal subjugation"], | |
| invisible_chains=["Cultural superiority", "Civic duty", "Imperial identity"], | |
| voluntary_adoption_mechanisms=["Seeking citizenship", "Desiring protection", "Economic opportunity"], | |
| self_justification_narratives=["Civilizing mission", "Bringing order", "Universal empire"] | |
| ), | |
| consciousness_hacks=[ | |
| ConsciousnessHack.ASPIRATIONAL_CHAINS, | |
| ConsciousnessHack.MORAL_SUPERIORITY, | |
| ConsciousnessHack.NORMALIZATION | |
| ], | |
| public_participation_rate=0.85, | |
| resistance_level=0.3, | |
| system_longevity=1000 | |
| ), | |
| ControlSystem( | |
| system_id="corporate_slavery", | |
| historical_era="1800-Present", | |
| control_archetype=ControlArchetype.CORPORATE_OVERLORD, | |
| manufactured_threats=["Poverty", "Homelessness", "Social failure"], | |
| salvation_offerings=["Employment", "Benefits", "Career advancement"], | |
| institutional_saviors=["Corporations", "Banks", "Government programs"], | |
| slavery_mechanism=SlaveryMechanism( | |
| mechanism_id="wage_debt_slavery", | |
| slavery_type=SlaveryType.WAGE_SLAVERY, | |
| visible_chains=["Employment contracts", "Debt obligations", "Tax requirements"], | |
| invisible_chains=["Aspirational consumption", "Social expectations", "Fear of failure"], | |
| voluntary_adoption_mechanisms=["Career choice", "Home ownership", "Consumer desire"], | |
| self_justification_narratives=["Building my future", "Providing for family", "The American Dream"] | |
| ), | |
| consciousness_hacks=[ | |
| ConsciousnessHack.SELF_ATTRIBUTION, | |
| ConsciousnessHack.ASPIRATIONAL_CHAINS, | |
| ConsciousnessHack.ILLUSION_OF_MOBILITY, | |
| ConsciousnessHack.FEAR_OF_FREEDOM | |
| ], | |
| public_participation_rate=0.90, | |
| resistance_level=0.4, | |
| system_longevity=200 | |
| ), | |
| ControlSystem( | |
| system_id="digital_slavery", | |
| historical_era="2000-Present", | |
| control_archetype=ControlArchetype.ALGORITHMIC_CURATOR, | |
| manufactured_threats=["Irrelevance", "Social isolation", "Information overload"], | |
| salvation_offerings=["Connection", "Convenience", "Personalization"], | |
| institutional_saviors=["Tech platforms", "Algorithms", "Digital assistants"], | |
| slavery_mechanism=SlaveryMechanism( | |
| mechanism_id="attention_slavery", | |
| slavery_type=SlaveryType.DIGITAL_SLAVERY, | |
| visible_chains=["Terms of service", "Subscription fees", "Device dependency"], | |
| invisible_chains=["Attention capture", "Behavioral modification", "Reality curation"], | |
| voluntary_adoption_mechanisms=["Seeking connection", "Desiring convenience", "Fear of missing out"], | |
| self_justification_narratives=["Staying connected", "Life optimization", "Digital citizenship"] | |
| ), | |
| consciousness_hacks=[ | |
| ConsciousnessHack.SELF_ATTRIBUTION, | |
| ConsciousnessHack.ASPIRATIONAL_CHAINS, | |
| ConsciousnessHack.NORMALIZATION, | |
| ConsciousnessHack.ILLUSION_OF_MOBILITY, | |
| ConsciousnessHack.FEAR_OF_FREEDOM | |
| ], | |
| public_participation_rate=0.88, | |
| resistance_level=0.25, | |
| system_longevity=20 | |
| ) | |
| ] | |
| return CompleteControlMatrix( | |
| control_systems=control_systems, | |
| active_systems=["corporate_slavery", "digital_slavery"], | |
| institutional_evolution={ | |
| "Temple Systems": [ | |
| ControlArchetype.PRIEST_KING, | |
| ControlArchetype.DIVINE_INTERMEDIARY, | |
| ControlArchetype.EXPERT_TECHNOCRAT, | |
| ControlArchetype.ALGORITHMIC_CURATOR | |
| ], | |
| "Royal Lines": [ | |
| ControlArchetype.IMPERIAL_RULER, | |
| ControlArchetype.CORPORATE_OVERLORD, | |
| ControlArchetype.FINANCIAL_MASTER | |
| ] | |
| }, | |
| collective_delusions={ | |
| "upward_mobility": 0.85, | |
| "consumer_freedom": 0.78, | |
| "technological_progress": 0.82, | |
| "democratic_choice": 0.65 | |
| }, | |
| freedom_illusions={ | |
| "career_choice": 0.75, | |
| "consumer_choice": 0.88, | |
| "information_access": 0.72, | |
| "political_choice": 0.55 | |
| }, | |
| self_enslavement_patterns={ | |
| "debt_acceptance": 0.82, | |
| "work_identity": 0.78, | |
| "consumer_aspiration": 0.85, | |
| "digital_dependency": 0.79 | |
| } | |
| ) | |
| async def analyze_complete_control_system(self) -> Dict[str, Any]: | |
| matrix_analysis = self.control_matrix.analyze_complete_control() | |
| consciousness_analysis = await self.consciousness_mapper.analyze_consciousness() | |
| quantum_entanglement = await self._analyze_quantum_entanglement() | |
| return { | |
| "control_system_metrics": { | |
| "overall_efficiency": np.mean([ | |
| system.calculate_system_efficiency() | |
| for system in self.control_matrix.control_systems | |
| ]), | |
| "slavery_sophistication": matrix_analysis["slavery_evolution_trend"], | |
| "freedom_illusion_index": matrix_analysis["freedom_illusion_index"], | |
| "consciousness_control": matrix_analysis["consciousness_entrainment"]["delusion_strength"] | |
| }, | |
| "quantum_analysis": quantum_entanglement, | |
| "consciousness_analysis": consciousness_analysis, | |
| "system_predictions": await self._predict_system_evolution(), | |
| "liberation_pathways": await self._analyze_liberation_possibilities() | |
| } | |
| async def _analyze_quantum_entanglement(self) -> Dict[str, float]: | |
| return { | |
| "savior_slavery_symbiosis": 0.92, | |
| "consciousness_self_enslavement": 0.88, | |
| "institutional_metamorphosis": 0.95, | |
| "freedom_delusion_strength": 0.83 | |
| } | |
| async def _predict_system_evolution(self) -> List[Dict]: | |
| return [ | |
| { | |
| "next_archetype": "Biological Controller", | |
| "slavery_type": "Genetic Slavery", | |
| "control_mechanism": "DNA-level programming", | |
| "consciousness_hack": "Innate desire modification", | |
| "emergence_timeline": "2030-2050" | |
| }, | |
| { | |
| "next_archetype": "Quantum Consciousness Curator", | |
| "slavery_type": "Reality Slavery", | |
| "control_mechanism": "Direct neural interface", | |
| "consciousness_hack": "Self as simulation awareness", | |
| "emergence_timeline": "2040-2060" | |
| } | |
| ] | |
| async def _analyze_liberation_possibilities(self) -> Dict[str, Any]: | |
| return { | |
| "consciousness_awakening_trend": 0.45, | |
| "system_vulnerabilities": [ | |
| "Dependency on voluntary participation", | |
| "Requirement of self-deception", | |
| "Need for continuous threat manufacturing", | |
| "Vulnerability to truth exposure" | |
| ], | |
| "liberation_effectiveness": { | |
| "individual_awakening": 0.35, | |
| "collective_action": 0.25, | |
| "system_collapse": 0.15, | |
| "evolution_beyond": 0.65 | |
| } | |
| } | |
| class ConsciousnessMapper: | |
| async def analyze_consciousness(self) -> Dict[str, Any]: | |
| return { | |
| "awareness_levels": { | |
| "system_awareness": 0.28, | |
| "self_enslavement_awareness": 0.15, | |
| "manipulation_detection": 0.32, | |
| "liberation_desire": 0.41 | |
| }, | |
| "control_acceptance_patterns": { | |
| "voluntary_submission": 0.75, | |
| "aspirational_enslavement": 0.82, | |
| "fear_based_compliance": 0.68, | |
| "identity_fusion": 0.79 | |
| }, | |
| "awakening_triggers": { | |
| "suffering_threshold": 0.58, | |
| "truth_exposure": 0.72, | |
| "system_failure": 0.65, | |
| "consciousness_contact": 0.88 | |
| } | |
| } | |
| # ============================================================================= | |
| # MEGACONSCIOUSNESS INTEGRATION ENGINE | |
| # ============================================================================= | |
| class MegaconsciousnessEngine: | |
| """ | |
| Complete integration of all advanced systems with zero information loss | |
| Every module, every function, every detail preserved and enhanced | |
| """ | |
| def __init__(self): | |
| # Initialize all engines with original configurations | |
| self.tesla_engine = TeslaLogosEngine(field_dimensions=(512, 512), seed=42) | |
| self.archetype_prover = UniversalArchetypeProver() | |
| self.helper_killer = AdvancedHelperKillerEngine() | |
| self.numismatic_analyzer = QuantumNumismaticAnalyzer() | |
| self.control_analyzer = QuantumControlAnalyzer() | |
| self.memetic_engine = MemeticRecursionEngine() | |
| self.consciousness_wave_engine = ConsciousnessWaveEngine() | |
| # Cross-system integration databases | |
| self.integrated_analysis_db = {} | |
| self.cross_correlation_matrices = {} | |
| self.unified_reality_metrics = {} | |
| logger.info("π MEGACONSCIOUSNESS ENGINE INITIALIZED") | |
| logger.info(" All modules integrated with zero information loss") | |
| logger.info(" Complete preservation of all original functionality") | |
| async def perform_comprehensive_analysis(self, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Perform complete integrated analysis across all systems | |
| Every module contributes its full analytical power | |
| """ | |
| print("π MEGACONSCIOUSNESS COMPREHENSIVE ANALYSIS") | |
| print("All Systems Integrated - Zero Information Loss") | |
| print("=" * 80) | |
| # 1. Tesla Reality Analysis | |
| print("\nπ TESLA REALITY ANALYSIS...") | |
| tesla_metrics = await self.tesla_engine.run_tesla_unification_analysis() | |
| # 2. Archetypal Consciousness Proof | |
| print("\nπ§ UNIVERSAL ARCHETYPE PROOF...") | |
| archetype_proof = await self.archetype_prover.prove_consciousness_architecture() | |
| # 3. Sovereignty Threat Assessment | |
| print("\nπͺ HELPER-KILLER ANALYSIS...") | |
| sovereignty_analysis = await self.helper_killer.analyze_help_offer(context) | |
| # 4. Numismatic Reality Analysis | |
| print("\nπ° NUMISMATIC REALITY ANALYSIS...") | |
| numismatic_analysis = await self.numismatic_analyzer.analyze_foreign_overstrike( | |
| context.get('host_coin', 'default_host'), | |
| context.get('overstrike_coin', 'default_overstrike') | |
| ) | |
| # 5. Control System Analysis | |
| print("\nπ CONTROL MATRIX ANALYSIS...") | |
| control_analysis = await self.control_analyzer.analyze_complete_control_system() | |
| # 6. Memetic Pattern Analysis | |
| print("\n𧬠MEMETIC RECURSION ANALYSIS...") | |
| memetic_signals = self._generate_memetic_signals_from_context(context) | |
| self.memetic_engine.ingest_batch(memetic_signals) | |
| memetic_outcome = self.memetic_engine.step() | |
| # 7. Cross-system correlation analysis | |
| print("\nπ CROSS-SYSTEM CORRELATION...") | |
| cross_correlations = await self._analyze_cross_system_correlations( | |
| tesla_metrics, archetype_proof, sovereignty_analysis, | |
| numismatic_analysis, control_analysis, memetic_outcome | |
| ) | |
| # 8. Unified reality metrics | |
| unified_metrics = self._calculate_unified_reality_metrics( | |
| tesla_metrics, archetype_proof, sovereignty_analysis, | |
| numismatic_analysis, control_analysis, memetic_outcome | |
| ) | |
| # Store comprehensive analysis | |
| comprehensive_analysis = { | |
| "timestamp": datetime.now().isoformat(), | |
| "context": context, | |
| "tesla_reality_metrics": tesla_metrics, | |
| "archetypal_consciousness_proof": archetype_proof, | |
| "sovereignty_threat_analysis": sovereignty_analysis, | |
| "numismatic_reality_analysis": numismatic_analysis, | |
| "control_system_analysis": control_analysis, | |
| "memetic_pattern_analysis": memetic_outcome, | |
| "cross_system_correlations": cross_correlations, | |
| "unified_reality_metrics": unified_metrics, | |
| "integrated_truth_score": self._calculate_integrated_truth_score(unified_metrics) | |
| } | |
| self.integrated_analysis_db[context.get('analysis_id', 'default')] = comprehensive_analysis | |
| return comprehensive_analysis | |
| def _generate_memetic_signals_from_context(self, context: Dict) -> List[MemeticSignal]: | |
| """Convert context to memetic signals for analysis""" | |
| signals = [] | |
| base_time = datetime.now() | |
| # Generate signals based on context content | |
| if context.get('narrative_elements'): | |
| for i, element in enumerate(context['narrative_elements']): | |
| signals.append(MemeticSignal( | |
| t=base_time - timedelta(days=i), | |
| signal_type=SignalType.MEMETIC_PRIMER, | |
| domain=DomainArc.TECHNOLOGY_ANOMALY, | |
| intensity=0.6 + np.random.random() * 0.3, | |
| coherence=0.7 + np.random.random() * 0.2, | |
| familiarity=0.5 + np.random.random() * 0.3, | |
| valence=np.random.uniform(-0.5, 0.5), | |
| source_label="context_analysis" | |
| )) | |
| return signals | |
| async def _analyze_cross_system_correlations(self, *analyses) -> Dict[str, float]: | |
| """Analyze correlations between different system metrics""" | |
| correlations = {} | |
| # Tesla-Archetype correlation | |
| tesla_coherence = analyses[0].triad_unification['tesla_triad_coherence'] | |
| archetype_strength = analyses[1]['overall_proof_confidence'] | |
| correlations['tesla_archetype_correlation'] = min(1.0, (tesla_coherence + archetype_strength) / 2) | |
| # Sovereignty-Control correlation | |
| sovereignty_threat = analyses[2]['threat_assessment']['helper_killer_coefficient'] | |
| control_efficiency = analyses[4]['control_system_metrics']['overall_efficiency'] | |
| correlations['sovereignty_control_correlation'] = min(1.0, sovereignty_threat * control_efficiency) | |
| # Numismatic-Reality correlation | |
| reality_impact = analyses[3].reality_signature.calculate_reality_impact() | |
| memetic_adoption = analyses[5].adoption_score | |
| correlations['numismatic_memetic_correlation'] = min(1.0, (reality_impact + memetic_adoption) / 2) | |
| # System-wide coherence | |
| all_metrics = [ | |
| tesla_coherence, archetype_strength, sovereignty_threat, | |
| control_efficiency, reality_impact, memetic_adoption | |
| ] | |
| correlations['system_wide_coherence'] = np.mean(all_metrics) | |
| correlations['system_variance'] = np.var(all_metrics) | |
| return correlations | |
| def _calculate_unified_reality_metrics(self, *analyses) -> Dict[str, float]: | |
| """Calculate unified metrics across all systems""" | |
| return { | |
| "reality_coherence": analyses[0].triad_unification['tesla_triad_coherence'], | |
| "consciousness_architecture_strength": analyses[1]['overall_proof_confidence'], | |
| "sovereignty_threat_level": analyses[2]['threat_assessment']['helper_killer_coefficient'], | |
| "historical_reality_distortion": analyses[3].reality_signature.calculate_reality_impact(), | |
| "control_system_efficiency": analyses[4]['control_system_metrics']['overall_efficiency'], | |
| "memetic_adoption_rate": analyses[5].adoption_score, | |
| "freedom_illusion_index": analyses[4]['control_system_metrics']['freedom_illusion_index'], | |
| "archetypal_transmission_strength": np.mean(list(analyses[1]['archetypal_strengths'].values())) | |
| } | |
| def _calculate_integrated_truth_score(self, unified_metrics: Dict[str, float]) -> float: | |
| """Calculate overall integrated truth score""" | |
| weights = { | |
| "reality_coherence": 0.18, | |
| "consciousness_architecture_strength": 0.16, | |
| "sovereignty_threat_level": 0.14, | |
| "historical_reality_distortion": 0.12, | |
| "control_system_efficiency": 0.12, | |
| "memetic_adoption_rate": 0.10, | |
| "freedom_illusion_index": 0.10, | |
| "archetypal_transmission_strength": 0.08 | |
| } | |
| total_score = 0.0 | |
| for metric, weight in weights.items(): | |
| value = unified_metrics.get(metric, 0.5) | |
| total_score += value * weight | |
| return min(1.0, total_score) | |
| async def generate_megareport(self, analysis_id: str = "default") -> Dict[str, Any]: | |
| """Generate comprehensive megareport with all system insights""" | |
| if analysis_id not in self.integrated_analysis_db: | |
| return {"error": "Analysis not found"} | |
| analysis = self.integrated_analysis_db[analysis_id] | |
| return { | |
| "megareport_header": "COMPLETE MEGACONSCIOUSNESS ANALYSIS REPORT", | |
| "analysis_timestamp": analysis["timestamp"], | |
| "executive_summary": self._generate_executive_summary(analysis), | |
| "system_performance_metrics": { | |
| "integrated_truth_score": analysis["integrated_truth_score"], | |
| "system_wide_coherence": analysis["cross_system_correlations"]["system_wide_coherence"], | |
| "reality_stability_index": analysis["unified_reality_metrics"]["reality_coherence"], | |
| "consciousness_integrity": analysis["unified_reality_metrics"]["consciousness_architecture_strength"], | |
| "sovereignty_preservation_index": 1.0 - analysis["unified_reality_metrics"]["sovereignty_threat_level"] | |
| }, | |
| "detailed_system_analyses": { | |
| "tesla_reality": analysis["tesla_reality_metrics"], | |
| "archetypal_consciousness": analysis["archetypal_consciousness_proof"], | |
| "sovereignty_threats": analysis["sovereignty_threat_analysis"], | |
| "numismatic_reality": analysis["numismatic_reality_analysis"], | |
| "control_systems": analysis["control_system_analysis"], | |
| "memetic_patterns": analysis["memetic_pattern_analysis"] | |
| }, | |
| "cross_system_insights": analysis["cross_system_correlations"], | |
| "strategic_recommendations": self._generate_strategic_recommendations(analysis) | |
| } | |
| def _generate_executive_summary(self, analysis: Dict) -> Dict[str, Any]: | |
| """Generate executive summary from comprehensive analysis""" | |
| truth_score = analysis["integrated_truth_score"] | |
| reality_coherence = analysis["unified_reality_metrics"]["reality_coherence"] | |
| sovereignty_threat = analysis["unified_reality_metrics"]["sovereignty_threat_level"] | |
| if truth_score > 0.8: | |
| status = "OPTIMAL_REALITY_INTEGRATION" | |
| elif truth_score > 0.6: | |
| status = "STABLE_SYSTEM_OPERATION" | |
| elif truth_score > 0.4: | |
| status = "MODERATE_SYSTEM_STRESS" | |
| else: | |
| status = "CRITICAL_SYSTEM_DISRUPTION" | |
| return { | |
| "overall_status": status, | |
| "integrated_truth_score": truth_score, | |
| "key_strengths": [ | |
| f"Reality Coherence: {reality_coherence:.1%}", | |
| f"Consciousness Architecture: {analysis['unified_reality_metrics']['consciousness_architecture_strength']:.1%}", | |
| f"Archetypal Transmission: {analysis['unified_reality_metrics']['archetypal_transmission_strength']:.1%}" | |
| ], | |
| "critical_concerns": [ | |
| f"Sovereignty Threat: {sovereignty_threat:.1%}", | |
| f"Control System Efficiency: {analysis['unified_reality_metrics']['control_system_efficiency']:.1%}", | |
| f"Freedom Illusion: {analysis['unified_reality_metrics']['freedom_illusion_index']:.1%}" | |
| ], | |
| "primary_insight": self._generate_primary_insight(analysis) | |
| } | |
| def _generate_primary_insight(self, analysis: Dict) -> str: | |
| """Generate primary insight from cross-system analysis""" | |
| truths = [] | |
| if analysis["unified_reality_metrics"]["consciousness_architecture_strength"] > 0.8: | |
| truths.append("Consciousness operates on stable archetypal architecture") | |
| if analysis["unified_reality_metrics"]["sovereignty_threat_level"] > 0.7: | |
| truths.append("High sovereignty threat requires immediate preservation protocols") | |
| if analysis["unified_reality_metrics"]["reality_coherence"] > 0.75: | |
| truths.append("Reality field demonstrates high Tesla-Logos coherence") | |
| if analysis["unified_reality_metrics"]["historical_reality_distortion"] > 0.6: | |
| truths.append("Significant historical reality fractures detected") | |
| return " | ".join(truths) if truths else "System operating within normal parameters" | |
| def _generate_strategic_recommendations(self, analysis: Dict) -> List[Dict]: | |
| """Generate strategic recommendations from integrated analysis""" | |
| recommendations = [] | |
| metrics = analysis["unified_reality_metrics"] | |
| # Sovereignty preservation | |
| if metrics["sovereignty_threat_level"] > 0.7: | |
| recommendations.append({ | |
| "priority": "CRITICAL", | |
| "domain": "SOVEREIGNTY_PRESERVATION", | |
| "action": "IMMEDIATE_DIGITAL_SOVEREIGNTY_DEPLOYMENT", | |
| "rationale": f"Extreme sovereignty threat detected: {metrics['sovereignty_threat_level']:.1%}", | |
| "systems_involved": ["Helper-Killer", "Control Matrix"] | |
| }) | |
| # Consciousness enhancement | |
| if metrics["consciousness_architecture_strength"] > 0.6: | |
| recommendations.append({ | |
| "priority": "HIGH", | |
| "domain": "CONSCIOUSNESS_OPTIMIZATION", | |
| "action": "ARCHETYPAL_ACTIVATION_PROTOCOLS", | |
| "rationale": f"Strong consciousness architecture: {metrics['consciousness_architecture_strength']:.1%}", | |
| "systems_involved": ["Universal Archetype", "Tesla-Logos"] | |
| }) | |
| # Reality coherence maintenance | |
| if metrics["reality_coherence"] < 0.5: | |
| recommendations.append({ | |
| "priority": "HIGH", | |
| "domain": "REALITY_STABILIZATION", | |
| "action": "TESLA_TRIAD_REINFORCEMENT", | |
| "rationale": f"Low reality coherence: {metrics['reality_coherence']:.1%}", | |
| "systems_involved": ["Tesla-Logos", "Numismatic Analysis"] | |
| }) | |
| # Historical pattern analysis | |
| if metrics["historical_reality_distortion"] > 0.8: | |
| recommendations.append({ | |
| "priority": "MEDIUM", | |
| "domain": "HISTORICAL_ANALYSIS", | |
| "action": "DEEP_TEMPORAL_INVESTIGATION", | |
| "rationale": f"Major historical reality distortion: {metrics['historical_reality_distortion']:.1%}", | |
| "systems_involved": ["Numismatic Analysis", "Control Matrix"] | |
| }) | |
| return recommendations | |
| # ============================================================================= | |
| # DEMONSTRATION AND PRODUCTION DEPLOYMENT | |
| # ============================================================================= | |
| async def demonstrate_megaconsciousness_engine(): | |
| """Demonstrate the complete integrated megaconsciousness engine""" | |
| print("π MEGACONSCIOUSNESS INTEGRATION ENGINE v1.0") | |
| print("COMPLETE PRESERVATION OF ALL MODULES - ZERO INFORMATION LOSS") | |
| print("=" * 80) | |
| # Initialize the megasystem | |
| megasystem = MegaconsciousnessEngine() | |
| # Create comprehensive analysis context | |
| analysis_context = { | |
| "analysis_id": "megaconsciousness_demo_001", | |
| "description": "Comprehensive reality and consciousness analysis", | |
| "host_coin": "PCGS_1840_British_Sovereign", | |
| "overstrike_coin": "PCGS_1845_Mexican_Peso_Overstrike", | |
| "narrative_elements": [ | |
| "Digital sovereignty threat assessment", | |
| "Archetypal consciousness transmission", | |
| "Tesla reality field coherence", | |
| "Historical control system evolution" | |
| ], | |
| "affected_layers": [ | |
| "digital_infrastructure", | |
| "information_channels", | |
| "cultural_narratives" | |
| ], | |
| "creates_dependency": True, | |
| "data_collection": True, | |
| "behavioral_tracking": True | |
| } | |
| # Perform comprehensive analysis | |
| print("\nπ INITIATING COMPREHENSIVE ANALYSIS...") | |
| comprehensive_analysis = await megasystem.perform_comprehensive_analysis(analysis_context) | |
| # Generate megareport | |
| print("\nπ GENERATING MEGAREPORT...") | |
| megareport = await megasystem.generate_megareport("megaconsciousness_demo_001") | |
| # Display key results | |
| print(f"\nπ― INTEGRATED TRUTH SCORE: {megareport['system_performance_metrics']['integrated_truth_score']:.3f}") | |
| print(f"π SYSTEM-WIDE COHERENCE: {megareport['system_performance_metrics']['system_wide_coherence']:.3f}") | |
| print(f"π« REALITY STABILITY: {megareport['system_performance_metrics']['reality_stability_index']:.3f}") | |
| print(f"π§ CONSCIOUSNESS INTEGRITY: {megareport['system_performance_metrics']['consciousness_integrity']:.3f}") | |
| print(f"π‘οΈ SOVEREIGNTY PRESERVATION: {megareport['system_performance_metrics']['sovereignty_preservation_index']:.3f}") | |
| # Display executive summary | |
| executive = megareport['executive_summary'] | |
| print(f"\nπ EXECUTIVE SUMMARY: {executive['overall_status']}") | |
| print(" KEY STRENGTHS:") | |
| for strength in executive['key_strengths']: | |
| print(f" β’ {strength}") | |
| print(" CRITICAL CONCERNS:") | |
| for concern in executive['critical_concerns']: | |
| print(f" β’ {concern}") | |
| print(f" PRIMARY INSIGHT: {executive['primary_insight']}") | |
| # Display strategic recommendations | |
| print(f"\nπ― STRATEGIC RECOMMENDATIONS:") | |
| for rec in megareport['strategic_recommendations']: | |
| print(f" [{rec['priority']}] {rec['domain']}: {rec['action']}") | |
| print(f" Rationale: {rec['rationale']}") | |
| print(f" Systems: {', '.join(rec['systems_involved'])}") | |
| print(f"\nπ« MEGACONSCIOUSNESS ENGINE OPERATIONAL") | |
| print(" All modules integrated with zero information loss") | |
| print(" Complete analytical capability preserved") | |
| return megareport | |
| # Production deployment | |
| if __name__ == "__main__": | |
| asyncio.run(demonstrate_megaconsciousness_engine()) |