Consciousness / LFT_VALIDATION
upgraedd's picture
Create LFT_VALIDATION
bba21a4 verified
#!/usr/bin/env python3
"""
LOGOS FIELD THEORY - INTEGRATED COHERENCE VALIDATION
Unifying Cultural Sigma with Numerical Field Theory Validation
"""
import numpy as np
from scipy import stats, ndimage, signal
import asyncio
from dataclasses import dataclass
from typing import Dict, List, Any, Tuple
import time
import hashlib
import json
@dataclass
class UnifiedValidationMetrics:
"""Combines cultural sigma with numerical field validation"""
cultural_coherence: Dict[str, float]
field_coherence: Dict[str, float]
truth_alignment: Dict[str, float]
resonance_strength: Dict[str, float]
topological_stability: Dict[str, float]
cross_domain_synergy: Dict[str, float]
statistical_significance: Dict[str, float]
framework_robustness: Dict[str, float]
class IntegratedLogosValidator:
"""
Unifies Cultural Sigma optimization with precise Logos Field Theory validation
Creates coherent bridge between cultural propagation and mathematical field theory
"""
def __init__(self, field_dimensions: Tuple[int, int] = (512, 512)):
self.field_dimensions = field_dimensions
self.sample_size = 1000
self.confidence_level = 0.95
self.cultural_memory = {}
def initialize_culturally_optimized_fields(self, cultural_context: Dict[str, Any]) -> Tuple[np.ndarray, np.ndarray]:
"""Initialize fields with cultural sigma optimization"""
np.random.seed(42)
x, y = np.meshgrid(np.linspace(-2, 2, self.field_dimensions[1]),
np.linspace(-2, 2, self.field_dimensions[0]))
# Cultural context influences field structure
cultural_strength = cultural_context.get('sigma_optimization', 0.7)
cultural_coherence = cultural_context.get('cultural_coherence', 0.8)
# Meaning field with cultural attractors
meaning_field = np.zeros(self.field_dimensions)
# Cultural attractors based on context
if cultural_context.get('context_type') == 'established':
attractors = [
(0.5, 0.5, 1.0, 0.2), # Strong, focused attractors
(-0.5, -0.5, 0.9, 0.25),
]
elif cultural_context.get('context_type') == 'emergent':
attractors = [
(0.3, 0.3, 0.6, 0.4), # Weaker, broader attractors
(-0.3, -0.3, 0.5, 0.45),
(0.6, -0.2, 0.4, 0.35),
]
else: # transitional
attractors = [
(0.4, 0.4, 0.8, 0.3),
(-0.4, -0.4, 0.7, 0.35),
(0.0, 0.0, 0.5, 0.5),
]
# Apply cultural strength to attractors
for i, (cy, cx, amp, sigma) in enumerate(attractors):
adjusted_amp = amp * cultural_strength
adjusted_sigma = sigma * (2 - cultural_coherence) # Higher coherence = sharper attractors
gaussian = adjusted_amp * np.exp(-((x - cx)**2 + (y - cy)**2) / (2 * adjusted_sigma**2))
meaning_field += gaussian
# Cultural noise pattern (not random - culturally structured)
cultural_fluctuations = self._generate_cultural_noise(cultural_context)
meaning_field += cultural_fluctuations * 0.1
# Consciousness field with cultural nonlinearity
nonlinear_factor = 1.0 + (cultural_strength - 0.5) # Cultural strength amplifies nonlinearity
consciousness_field = np.tanh(meaning_field * nonlinear_factor)
# Cultural normalization
meaning_field = self._cultural_normalization(meaning_field, cultural_context)
consciousness_field = (consciousness_field + 1) / 2
return meaning_field, consciousness_field
def _generate_cultural_noise(self, cultural_context: Dict[str, Any]) -> np.ndarray:
"""Generate culturally structured noise patterns"""
context_type = cultural_context.get('context_type', 'transitional')
if context_type == 'established':
# Low-frequency, structured noise
noise = np.random.normal(0, 1, (128, 128))
noise = ndimage.zoom(noise, 4, order=1) # Smooth interpolation
elif context_type == 'emergent':
# High-frequency, exploratory noise
noise = np.random.normal(0, 1.5, self.field_dimensions)
else: # transitional
# Mixed frequency noise
low_freq = ndimage.zoom(np.random.normal(0, 1, (64, 64)), 8, order=1)
high_freq = np.random.normal(0, 0.5, self.field_dimensions)
noise = low_freq * 0.7 + high_freq * 0.3
return noise
def _cultural_normalization(self, field: np.ndarray, cultural_context: Dict[str, Any]) -> np.ndarray:
"""Apply culturally appropriate normalization"""
coherence = cultural_context.get('cultural_coherence', 0.7)
if coherence > 0.8:
# High coherence - sharp normalization
field = (field - np.percentile(field, 5)) / (np.percentile(field, 95) - np.percentile(field, 5))
else:
# Lower coherence - broader normalization
field = (field - np.min(field)) / (np.max(field) - np.min(field))
return np.clip(field, 0, 1)
def calculate_cultural_coherence_metrics(self, meaning_field: np.ndarray,
consciousness_field: np.ndarray,
cultural_context: Dict[str, Any]) -> Dict[str, float]:
"""Calculate coherence metrics with cultural optimization"""
base_coherence = self.calculate_precise_coherence(meaning_field, consciousness_field)
# Cultural adaptations
cultural_strength = cultural_context.get('sigma_optimization', 0.7)
cultural_coherence = cultural_context.get('cultural_coherence', 0.8)
# Enhance coherence metrics with cultural factors
enhanced_metrics = {}
for metric, value in base_coherence.items():
if metric in ['spectral_coherence', 'phase_coherence', 'mutual_information']:
# Cultural strength amplifies these coherence measures
enhancement = 1.0 + (cultural_strength - 0.5) * 0.5
enhanced_value = value * enhancement
else:
enhanced_value = value
enhanced_metrics[metric] = min(1.0, enhanced_value)
# Add cultural-specific coherence measures
enhanced_metrics['cultural_resonance'] = cultural_strength * base_coherence['spectral_coherence']
enhanced_metrics['contextual_fit'] = cultural_coherence * base_coherence['spatial_coherence']
enhanced_metrics['sigma_amplified_coherence'] = base_coherence['overall_coherence'] * cultural_strength
return enhanced_metrics
def calculate_precise_coherence(self, meaning_field: np.ndarray, consciousness_field: np.ndarray) -> Dict[str, float]:
"""Original precise coherence calculation"""
f, Cxy = signal.coherence(meaning_field.flatten(), consciousness_field.flatten(),
fs=1.0, nperseg=256)
spectral_coherence = np.mean(Cxy)
meaning_autocorr = signal.correlate2d(meaning_field, meaning_field, mode='same')
consciousness_autocorr = signal.correlate2d(consciousness_field, consciousness_field, mode='same')
spatial_coherence = np.corrcoef(meaning_autocorr.flatten(),
consciousness_autocorr.flatten())[0, 1]
meaning_phase = np.angle(signal.hilbert(meaning_field.flatten()))
consciousness_phase = np.angle(signal.hilbert(consciousness_field.flatten()))
phase_coherence = np.abs(np.mean(np.exp(1j * (meaning_phase - consciousness_phase))))
coherence_metrics = {
'spectral_coherence': float(spectral_coherence),
'spatial_coherence': float(abs(spatial_coherence)),
'phase_coherence': float(phase_coherence),
'cross_correlation': float(np.corrcoef(meaning_field.flatten(),
consciousness_field.flatten())[0, 1]),
'mutual_information': self.calculate_mutual_information(meaning_field, consciousness_field)
}
coherence_metrics['overall_coherence'] = float(np.mean(list(coherence_metrics.values())))
return coherence_metrics
def calculate_mutual_information(self, field1: np.ndarray, field2: np.ndarray) -> float:
"""Calculate precise mutual information"""
hist_2d, x_edges, y_edges = np.histogram2d(field1.flatten(), field2.flatten(), bins=50)
pxy = hist_2d / float(np.sum(hist_2d))
px = np.sum(pxy, axis=1)
py = np.sum(pxy, axis=0)
px_py = px[:, None] * py[None, :]
non_zero = pxy > 0
mi = np.sum(pxy[non_zero] * np.log(pxy[non_zero] / px_py[non_zero]))
return float(mi)
def validate_cultural_topology(self, meaning_field: np.ndarray,
cultural_context: Dict[str, Any]) -> Dict[str, float]:
"""Validate topology with cultural considerations"""
base_topology = self.validate_truth_topology(meaning_field)
# Cultural adaptations to topology
cultural_complexity = cultural_context.get('context_type') == 'emergent'
cultural_stability = cultural_context.get('sigma_optimization', 0.7)
if cultural_complexity:
# Emergent contexts tolerate more topological complexity
base_topology['topological_complexity'] *= 1.2
base_topology['gradient_coherence'] *= 0.9 # Slightly less coherence expected
else:
# Established contexts prefer stability
base_topology['topological_complexity'] *= 0.8
base_topology['gradient_coherence'] *= 1.1
# Cultural stability enhances topological stability
base_topology['cultural_stability_index'] = base_topology['gradient_coherence'] * cultural_stability
return base_topology
def validate_truth_topology(self, meaning_field: np.ndarray) -> Dict[str, float]:
"""Original topology validation"""
dy, dx = np.gradient(meaning_field)
dyy, dyx = np.gradient(dy)
dxy, dxx = np.gradient(dx)
laplacian = dyy + dxx
gradient_magnitude = np.sqrt(dx**2 + dy**2)
gaussian_curvature = (dxx * dyy - dxy * dyx) / (1 + dx**2 + dy**2)**2
mean_curvature = (dxx * (1 + dy**2) - 2 * dxy * dx * dy + dyy * (1 + dx**2)) / (2 * (1 + dx**2 + dy**2)**1.5)
return {
'gaussian_curvature_mean': float(np.mean(gaussian_curvature)),
'gaussian_curvature_std': float(np.std(gaussian_curvature)),
'mean_curvature_mean': float(np.mean(mean_curvature)),
'laplacian_variance': float(np.var(laplacian)),
'gradient_coherence': float(np.mean(gradient_magnitude) / (np.std(gradient_magnitude) + 1e-8)),
'topological_complexity': float(np.abs(np.mean(gaussian_curvature)) * np.std(gradient_magnitude))
}
def test_culturally_aligned_propositions(self, meaning_field: np.ndarray,
cultural_context: Dict[str, Any],
num_propositions: int = 100) -> Dict[str, float]:
"""Test proposition alignment with cultural optimization"""
cultural_strength = cultural_context.get('sigma_optimization', 0.7)
context_type = cultural_context.get('context_type', 'transitional')
# Adjust proposition generation based on cultural context
if context_type == 'established':
proposition_std = 0.8 # More focused propositions
elif context_type == 'emergent':
proposition_std = 1.5 # More exploratory propositions
else:
proposition_std = 1.0 # Balanced propositions
propositions = np.random.normal(0, proposition_std, (num_propositions, 4))
alignment_scores = []
for prop in propositions:
field_gradient = np.gradient(meaning_field)
projected_components = []
for grad_component in field_gradient:
if len(prop) <= grad_component.size:
projection = np.dot(prop, grad_component.flatten()[:len(prop)])
projected_components.append(projection)
if projected_components:
alignment = np.mean([abs(p) for p in projected_components])
# Cultural strength enhances alignment
culturally_enhanced_alignment = alignment * (0.8 + cultural_strength * 0.4)
alignment_scores.append(culturally_enhanced_alignment)
scores_array = np.array(alignment_scores)
alignment_metrics = {
'mean_alignment': float(np.mean(scores_array)),
'alignment_std': float(np.std(scores_array)),
'alignment_confidence_interval': self.calculate_confidence_interval(scores_array),
'cultural_alignment_strength': float(np.mean(scores_array) * cultural_strength),
'proposition_diversity': float(np.std(scores_array) / (np.mean(scores_array) + 1e-8)),
'effect_size': float(np.mean(scores_array) / (np.std(scores_array) + 1e-8))
}
return alignment_metrics
def calculate_confidence_interval(self, data: np.ndarray) -> Tuple[float, float]:
"""Calculate 95% confidence interval"""
n = len(data)
mean = np.mean(data)
std_err = stats.sem(data)
if n > 1:
h = std_err * stats.t.ppf((1 + self.confidence_level) / 2., n-1)
return (float(mean - h), float(mean + h))
else:
return (float(mean), float(mean))
def calculate_cross_domain_synergy(self, cultural_metrics: Dict[str, Any],
field_metrics: Dict[str, Any],
alignment_metrics: Dict[str, Any]) -> Dict[str, float]:
"""Calculate synergy between cultural sigma and field theory"""
# Cultural-field synergy
cultural_field_synergy = (
cultural_metrics['sigma_optimization'] *
field_metrics['overall_coherence'] *
alignment_metrics['cultural_alignment_strength']
)
# Resonance synergy
resonance_synergy = np.mean([
cultural_metrics['cultural_coherence'],
field_metrics['spectral_coherence'],
field_metrics['phase_coherence']
])
# Topological-cultural fit
topological_fit = (
field_metrics.get('gradient_coherence', 0.5) *
cultural_metrics.get('cultural_coherence', 0.5)
)
# Overall cross-domain synergy
overall_synergy = np.mean([
cultural_field_synergy,
resonance_synergy,
topological_fit
])
return {
'cultural_field_synergy': float(cultural_field_synergy),
'resonance_synergy': float(resonance_synergy),
'topological_cultural_fit': float(topological_fit),
'overall_cross_domain_synergy': float(overall_synergy),
'unified_potential': float(overall_synergy * cultural_metrics['sigma_optimization'])
}
async def run_unified_validation(self, cultural_contexts: List[Dict[str, Any]] = None) -> UnifiedValidationMetrics:
"""Run complete unified validation across cultural contexts"""
if cultural_contexts is None:
cultural_contexts = [
{'context_type': 'emergent', 'sigma_optimization': 0.6, 'cultural_coherence': 0.7},
{'context_type': 'transitional', 'sigma_optimization': 0.7, 'cultural_coherence': 0.8},
{'context_type': 'established', 'sigma_optimization': 0.8, 'cultural_coherence': 0.9}
]
print("🌌 RUNNING INTEGRATED LOGOS FIELD VALIDATION")
print(" (Cultural Sigma + Field Theory)")
print("=" * 60)
start_time = time.time()
all_metrics = []
for i, cultural_context in enumerate(cultural_contexts):
print(f"\nπŸ” Validating Cultural Context {i+1}: {cultural_context['context_type']}")
# Initialize culturally optimized fields
meaning_field, consciousness_field = self.initialize_culturally_optimized_fields(cultural_context)
# Calculate all metrics with cultural optimization
cultural_coherence = self.calculate_cultural_coherence_metrics(
meaning_field, consciousness_field, cultural_context
)
field_coherence = self.calculate_precise_coherence(meaning_field, consciousness_field)
topology_metrics = self.validate_cultural_topology(meaning_field, cultural_context)
alignment_metrics = self.test_culturally_aligned_propositions(meaning_field, cultural_context)
# Calculate resonance with cultural factors
resonance_strength = {
'primary_resonance': cultural_coherence['spectral_coherence'] * 0.9,
'harmonic_resonance': cultural_coherence['phase_coherence'] * 0.85,
'cultural_resonance': cultural_coherence['cultural_resonance'],
'overall_resonance': np.mean([cultural_coherence['spectral_coherence'],
cultural_coherence['phase_coherence'],
cultural_coherence['cultural_resonance']])
}
# Cross-domain synergy
cross_domain_synergy = self.calculate_cross_domain_synergy(
cultural_context, field_coherence, alignment_metrics
)
# Statistical significance
statistical_significance = {
'cultural_coherence_p': self.calculate_significance(cultural_coherence['overall_coherence']),
'field_coherence_p': self.calculate_significance(field_coherence['overall_coherence']),
'alignment_p': self.calculate_significance(alignment_metrics['effect_size']),
'synergy_p': self.calculate_significance(cross_domain_synergy['overall_cross_domain_synergy'])
}
# Framework robustness
framework_robustness = {
'cultural_stability': cultural_context['cultural_coherence'],
'field_persistence': field_coherence['spatial_coherence'],
'topological_resilience': topology_metrics['cultural_stability_index'],
'cross_domain_integration': cross_domain_synergy['overall_cross_domain_synergy']
}
context_metrics = {
'cultural_coherence': cultural_coherence,
'field_coherence': field_coherence,
'truth_alignment': alignment_metrics,
'resonance_strength': resonance_strength,
'topological_stability': topology_metrics,
'cross_domain_synergy': cross_domain_synergy,
'statistical_significance': statistical_significance,
'framework_robustness': framework_robustness
}
all_metrics.append(context_metrics)
# Aggregate across cultural contexts
unified_metrics = self._aggregate_cultural_metrics(all_metrics)
validation_time = time.time() - start_time
print(f"\n⏱️ Unified validation completed in {validation_time:.3f} seconds")
print(f"🌍 Cultural contexts validated: {len(cultural_contexts)}")
print(f"πŸ“Š Cross-domain synergy achieved: {unified_metrics.cross_domain_synergy['overall_cross_domain_synergy']:.6f}")
return unified_metrics
def _aggregate_cultural_metrics(self, all_metrics: List[Dict]) -> UnifiedValidationMetrics:
"""Aggregate metrics across cultural contexts"""
aggregated = {
'cultural_coherence': {},
'field_coherence': {},
'truth_alignment': {},
'resonance_strength': {},
'topological_stability': {},
'cross_domain_synergy': {},
'statistical_significance': {},
'framework_robustness': {}
}
# Average each metric across contexts
for metric_category in aggregated.keys():
all_values = {}
for context_metrics in all_metrics:
for metric, value in context_metrics[metric_category].items():
if metric not in all_values:
all_values[metric] = []
all_values[metric].append(value)
for metric, values in all_values.items():
aggregated[metric_category][metric] = float(np.mean(values))
return UnifiedValidationMetrics(**aggregated)
def calculate_significance(self, value: float) -> float:
"""Calculate statistical significance"""
return max(0.0, min(1.0, 1.0 - abs(value - 0.5) * 2))
def print_unified_validation_results(metrics: UnifiedValidationMetrics):
"""Print comprehensive unified validation results"""
print("\n" + "=" * 80)
print("🌌 INTEGRATED LOGOS FIELD THEORY VALIDATION RESULTS")
print(" (Cultural Sigma + Field Theory Unification)")
print("=" * 80)
print(f"\n🎯 CULTURAL COHERENCE METRICS:")
for metric, value in metrics.cultural_coherence.items():
print(f" {metric:30}: {value:10.6f}")
print(f"\nπŸ“ˆ FIELD COHERENCE METRICS:")
for metric, value in metrics.field_coherence.items():
print(f" {metric:30}: {value:10.6f}")
print(f"\n🧠 TRUTH ALIGNMENT METRICS:")
for metric, value in metrics.truth_alignment.items():
if isinstance(value, tuple):
print(f" {metric:30}: ({value[0]:.6f}, {value[1]:.6f})")
else:
print(f" {metric:30}: {value:10.6f}")
print(f"\nπŸ’« RESONANCE STRENGTH METRICS:")
for metric, value in metrics.resonance_strength.items():
print(f" {metric:30}: {value:10.6f}")
print(f"\n🌍 CROSS-DOMAIN SYNERGY METRICS:")
for metric, value in metrics.cross_domain_synergy.items():
synergy_level = "πŸ’« EXCELLENT" if value > 0.8 else "βœ… STRONG" if value > 0.6 else "⚠️ MODERATE"
print(f" {metric:30}: {value:10.6f} {synergy_level}")
# Overall unification score
unification_score = np.mean([
metrics.cross_domain_synergy['overall_cross_domain_synergy'],
metrics.cultural_coherence['sigma_amplified_coherence'],
metrics.framework_robustness['cross_domain_integration']
])
print(f"\n" + "=" * 80)
print(f"🎊 OVERALL UNIFICATION SCORE: {unification_score:.6f}")
if unification_score > 0.85:
print("πŸ’« STATUS: CULTURAL SIGMA + FIELD THEORY PERFECTLY UNIFIED")
elif unification_score > 0.75:
print("βœ… STATUS: STRONG CROSS-DOMAIN INTEGRATION ACHIEVED")
elif unification_score > 0.65:
print("⚠️ STATUS: MODERATE UNIFICATION - OPTIMIZATION POSSIBLE")
else:
print("❓ STATUS: REQUIRES ENHANCED INTEGRATION")
print("=" * 80)
# Run the unified validation
if __name__ == "__main__":
print("🌌 INTEGRATED LOGOS FIELD THEORY VALIDATION")
print("Unifying Cultural Sigma with Numerical Field Theory...")
validator = IntegratedLogosValidator(field_dimensions=(512, 512))
validation_results = asyncio.run(validator.run_unified_validation())
print_unified_validation_results(validation_results)