|
|
|
|
|
""" |
|
|
LOGOS FIELD THEORY - INTEGRATED COHERENCE VALIDATION |
|
|
Unifying Cultural Sigma with Numerical Field Theory Validation |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
from scipy import stats, ndimage, signal |
|
|
import asyncio |
|
|
from dataclasses import dataclass |
|
|
from typing import Dict, List, Any, Tuple |
|
|
import time |
|
|
import hashlib |
|
|
import json |
|
|
|
|
|
@dataclass |
|
|
class UnifiedValidationMetrics: |
|
|
"""Combines cultural sigma with numerical field validation""" |
|
|
cultural_coherence: Dict[str, float] |
|
|
field_coherence: Dict[str, float] |
|
|
truth_alignment: Dict[str, float] |
|
|
resonance_strength: Dict[str, float] |
|
|
topological_stability: Dict[str, float] |
|
|
cross_domain_synergy: Dict[str, float] |
|
|
statistical_significance: Dict[str, float] |
|
|
framework_robustness: Dict[str, float] |
|
|
|
|
|
class IntegratedLogosValidator: |
|
|
""" |
|
|
Unifies Cultural Sigma optimization with precise Logos Field Theory validation |
|
|
Creates coherent bridge between cultural propagation and mathematical field theory |
|
|
""" |
|
|
|
|
|
def __init__(self, field_dimensions: Tuple[int, int] = (512, 512)): |
|
|
self.field_dimensions = field_dimensions |
|
|
self.sample_size = 1000 |
|
|
self.confidence_level = 0.95 |
|
|
self.cultural_memory = {} |
|
|
|
|
|
def initialize_culturally_optimized_fields(self, cultural_context: Dict[str, Any]) -> Tuple[np.ndarray, np.ndarray]: |
|
|
"""Initialize fields with cultural sigma optimization""" |
|
|
np.random.seed(42) |
|
|
|
|
|
x, y = np.meshgrid(np.linspace(-2, 2, self.field_dimensions[1]), |
|
|
np.linspace(-2, 2, self.field_dimensions[0])) |
|
|
|
|
|
|
|
|
cultural_strength = cultural_context.get('sigma_optimization', 0.7) |
|
|
cultural_coherence = cultural_context.get('cultural_coherence', 0.8) |
|
|
|
|
|
|
|
|
meaning_field = np.zeros(self.field_dimensions) |
|
|
|
|
|
|
|
|
if cultural_context.get('context_type') == 'established': |
|
|
attractors = [ |
|
|
(0.5, 0.5, 1.0, 0.2), |
|
|
(-0.5, -0.5, 0.9, 0.25), |
|
|
] |
|
|
elif cultural_context.get('context_type') == 'emergent': |
|
|
attractors = [ |
|
|
(0.3, 0.3, 0.6, 0.4), |
|
|
(-0.3, -0.3, 0.5, 0.45), |
|
|
(0.6, -0.2, 0.4, 0.35), |
|
|
] |
|
|
else: |
|
|
attractors = [ |
|
|
(0.4, 0.4, 0.8, 0.3), |
|
|
(-0.4, -0.4, 0.7, 0.35), |
|
|
(0.0, 0.0, 0.5, 0.5), |
|
|
] |
|
|
|
|
|
|
|
|
for i, (cy, cx, amp, sigma) in enumerate(attractors): |
|
|
adjusted_amp = amp * cultural_strength |
|
|
adjusted_sigma = sigma * (2 - cultural_coherence) |
|
|
|
|
|
gaussian = adjusted_amp * np.exp(-((x - cx)**2 + (y - cy)**2) / (2 * adjusted_sigma**2)) |
|
|
meaning_field += gaussian |
|
|
|
|
|
|
|
|
cultural_fluctuations = self._generate_cultural_noise(cultural_context) |
|
|
meaning_field += cultural_fluctuations * 0.1 |
|
|
|
|
|
|
|
|
nonlinear_factor = 1.0 + (cultural_strength - 0.5) |
|
|
consciousness_field = np.tanh(meaning_field * nonlinear_factor) |
|
|
|
|
|
|
|
|
meaning_field = self._cultural_normalization(meaning_field, cultural_context) |
|
|
consciousness_field = (consciousness_field + 1) / 2 |
|
|
|
|
|
return meaning_field, consciousness_field |
|
|
|
|
|
def _generate_cultural_noise(self, cultural_context: Dict[str, Any]) -> np.ndarray: |
|
|
"""Generate culturally structured noise patterns""" |
|
|
context_type = cultural_context.get('context_type', 'transitional') |
|
|
|
|
|
if context_type == 'established': |
|
|
|
|
|
noise = np.random.normal(0, 1, (128, 128)) |
|
|
noise = ndimage.zoom(noise, 4, order=1) |
|
|
elif context_type == 'emergent': |
|
|
|
|
|
noise = np.random.normal(0, 1.5, self.field_dimensions) |
|
|
else: |
|
|
|
|
|
low_freq = ndimage.zoom(np.random.normal(0, 1, (64, 64)), 8, order=1) |
|
|
high_freq = np.random.normal(0, 0.5, self.field_dimensions) |
|
|
noise = low_freq * 0.7 + high_freq * 0.3 |
|
|
|
|
|
return noise |
|
|
|
|
|
def _cultural_normalization(self, field: np.ndarray, cultural_context: Dict[str, Any]) -> np.ndarray: |
|
|
"""Apply culturally appropriate normalization""" |
|
|
coherence = cultural_context.get('cultural_coherence', 0.7) |
|
|
|
|
|
if coherence > 0.8: |
|
|
|
|
|
field = (field - np.percentile(field, 5)) / (np.percentile(field, 95) - np.percentile(field, 5)) |
|
|
else: |
|
|
|
|
|
field = (field - np.min(field)) / (np.max(field) - np.min(field)) |
|
|
|
|
|
return np.clip(field, 0, 1) |
|
|
|
|
|
def calculate_cultural_coherence_metrics(self, meaning_field: np.ndarray, |
|
|
consciousness_field: np.ndarray, |
|
|
cultural_context: Dict[str, Any]) -> Dict[str, float]: |
|
|
"""Calculate coherence metrics with cultural optimization""" |
|
|
|
|
|
base_coherence = self.calculate_precise_coherence(meaning_field, consciousness_field) |
|
|
|
|
|
|
|
|
cultural_strength = cultural_context.get('sigma_optimization', 0.7) |
|
|
cultural_coherence = cultural_context.get('cultural_coherence', 0.8) |
|
|
|
|
|
|
|
|
enhanced_metrics = {} |
|
|
for metric, value in base_coherence.items(): |
|
|
if metric in ['spectral_coherence', 'phase_coherence', 'mutual_information']: |
|
|
|
|
|
enhancement = 1.0 + (cultural_strength - 0.5) * 0.5 |
|
|
enhanced_value = value * enhancement |
|
|
else: |
|
|
enhanced_value = value |
|
|
|
|
|
enhanced_metrics[metric] = min(1.0, enhanced_value) |
|
|
|
|
|
|
|
|
enhanced_metrics['cultural_resonance'] = cultural_strength * base_coherence['spectral_coherence'] |
|
|
enhanced_metrics['contextual_fit'] = cultural_coherence * base_coherence['spatial_coherence'] |
|
|
enhanced_metrics['sigma_amplified_coherence'] = base_coherence['overall_coherence'] * cultural_strength |
|
|
|
|
|
return enhanced_metrics |
|
|
|
|
|
def calculate_precise_coherence(self, meaning_field: np.ndarray, consciousness_field: np.ndarray) -> Dict[str, float]: |
|
|
"""Original precise coherence calculation""" |
|
|
f, Cxy = signal.coherence(meaning_field.flatten(), consciousness_field.flatten(), |
|
|
fs=1.0, nperseg=256) |
|
|
spectral_coherence = np.mean(Cxy) |
|
|
|
|
|
meaning_autocorr = signal.correlate2d(meaning_field, meaning_field, mode='same') |
|
|
consciousness_autocorr = signal.correlate2d(consciousness_field, consciousness_field, mode='same') |
|
|
spatial_coherence = np.corrcoef(meaning_autocorr.flatten(), |
|
|
consciousness_autocorr.flatten())[0, 1] |
|
|
|
|
|
meaning_phase = np.angle(signal.hilbert(meaning_field.flatten())) |
|
|
consciousness_phase = np.angle(signal.hilbert(consciousness_field.flatten())) |
|
|
phase_coherence = np.abs(np.mean(np.exp(1j * (meaning_phase - consciousness_phase)))) |
|
|
|
|
|
coherence_metrics = { |
|
|
'spectral_coherence': float(spectral_coherence), |
|
|
'spatial_coherence': float(abs(spatial_coherence)), |
|
|
'phase_coherence': float(phase_coherence), |
|
|
'cross_correlation': float(np.corrcoef(meaning_field.flatten(), |
|
|
consciousness_field.flatten())[0, 1]), |
|
|
'mutual_information': self.calculate_mutual_information(meaning_field, consciousness_field) |
|
|
} |
|
|
|
|
|
coherence_metrics['overall_coherence'] = float(np.mean(list(coherence_metrics.values()))) |
|
|
return coherence_metrics |
|
|
|
|
|
def calculate_mutual_information(self, field1: np.ndarray, field2: np.ndarray) -> float: |
|
|
"""Calculate precise mutual information""" |
|
|
hist_2d, x_edges, y_edges = np.histogram2d(field1.flatten(), field2.flatten(), bins=50) |
|
|
pxy = hist_2d / float(np.sum(hist_2d)) |
|
|
px = np.sum(pxy, axis=1) |
|
|
py = np.sum(pxy, axis=0) |
|
|
px_py = px[:, None] * py[None, :] |
|
|
non_zero = pxy > 0 |
|
|
mi = np.sum(pxy[non_zero] * np.log(pxy[non_zero] / px_py[non_zero])) |
|
|
return float(mi) |
|
|
|
|
|
def validate_cultural_topology(self, meaning_field: np.ndarray, |
|
|
cultural_context: Dict[str, Any]) -> Dict[str, float]: |
|
|
"""Validate topology with cultural considerations""" |
|
|
|
|
|
base_topology = self.validate_truth_topology(meaning_field) |
|
|
|
|
|
|
|
|
cultural_complexity = cultural_context.get('context_type') == 'emergent' |
|
|
cultural_stability = cultural_context.get('sigma_optimization', 0.7) |
|
|
|
|
|
if cultural_complexity: |
|
|
|
|
|
base_topology['topological_complexity'] *= 1.2 |
|
|
base_topology['gradient_coherence'] *= 0.9 |
|
|
else: |
|
|
|
|
|
base_topology['topological_complexity'] *= 0.8 |
|
|
base_topology['gradient_coherence'] *= 1.1 |
|
|
|
|
|
|
|
|
base_topology['cultural_stability_index'] = base_topology['gradient_coherence'] * cultural_stability |
|
|
|
|
|
return base_topology |
|
|
|
|
|
def validate_truth_topology(self, meaning_field: np.ndarray) -> Dict[str, float]: |
|
|
"""Original topology validation""" |
|
|
dy, dx = np.gradient(meaning_field) |
|
|
dyy, dyx = np.gradient(dy) |
|
|
dxy, dxx = np.gradient(dx) |
|
|
|
|
|
laplacian = dyy + dxx |
|
|
gradient_magnitude = np.sqrt(dx**2 + dy**2) |
|
|
gaussian_curvature = (dxx * dyy - dxy * dyx) / (1 + dx**2 + dy**2)**2 |
|
|
mean_curvature = (dxx * (1 + dy**2) - 2 * dxy * dx * dy + dyy * (1 + dx**2)) / (2 * (1 + dx**2 + dy**2)**1.5) |
|
|
|
|
|
return { |
|
|
'gaussian_curvature_mean': float(np.mean(gaussian_curvature)), |
|
|
'gaussian_curvature_std': float(np.std(gaussian_curvature)), |
|
|
'mean_curvature_mean': float(np.mean(mean_curvature)), |
|
|
'laplacian_variance': float(np.var(laplacian)), |
|
|
'gradient_coherence': float(np.mean(gradient_magnitude) / (np.std(gradient_magnitude) + 1e-8)), |
|
|
'topological_complexity': float(np.abs(np.mean(gaussian_curvature)) * np.std(gradient_magnitude)) |
|
|
} |
|
|
|
|
|
def test_culturally_aligned_propositions(self, meaning_field: np.ndarray, |
|
|
cultural_context: Dict[str, Any], |
|
|
num_propositions: int = 100) -> Dict[str, float]: |
|
|
"""Test proposition alignment with cultural optimization""" |
|
|
|
|
|
cultural_strength = cultural_context.get('sigma_optimization', 0.7) |
|
|
context_type = cultural_context.get('context_type', 'transitional') |
|
|
|
|
|
|
|
|
if context_type == 'established': |
|
|
proposition_std = 0.8 |
|
|
elif context_type == 'emergent': |
|
|
proposition_std = 1.5 |
|
|
else: |
|
|
proposition_std = 1.0 |
|
|
|
|
|
propositions = np.random.normal(0, proposition_std, (num_propositions, 4)) |
|
|
alignment_scores = [] |
|
|
|
|
|
for prop in propositions: |
|
|
field_gradient = np.gradient(meaning_field) |
|
|
projected_components = [] |
|
|
|
|
|
for grad_component in field_gradient: |
|
|
if len(prop) <= grad_component.size: |
|
|
projection = np.dot(prop, grad_component.flatten()[:len(prop)]) |
|
|
projected_components.append(projection) |
|
|
|
|
|
if projected_components: |
|
|
alignment = np.mean([abs(p) for p in projected_components]) |
|
|
|
|
|
culturally_enhanced_alignment = alignment * (0.8 + cultural_strength * 0.4) |
|
|
alignment_scores.append(culturally_enhanced_alignment) |
|
|
|
|
|
scores_array = np.array(alignment_scores) |
|
|
|
|
|
alignment_metrics = { |
|
|
'mean_alignment': float(np.mean(scores_array)), |
|
|
'alignment_std': float(np.std(scores_array)), |
|
|
'alignment_confidence_interval': self.calculate_confidence_interval(scores_array), |
|
|
'cultural_alignment_strength': float(np.mean(scores_array) * cultural_strength), |
|
|
'proposition_diversity': float(np.std(scores_array) / (np.mean(scores_array) + 1e-8)), |
|
|
'effect_size': float(np.mean(scores_array) / (np.std(scores_array) + 1e-8)) |
|
|
} |
|
|
|
|
|
return alignment_metrics |
|
|
|
|
|
def calculate_confidence_interval(self, data: np.ndarray) -> Tuple[float, float]: |
|
|
"""Calculate 95% confidence interval""" |
|
|
n = len(data) |
|
|
mean = np.mean(data) |
|
|
std_err = stats.sem(data) |
|
|
|
|
|
if n > 1: |
|
|
h = std_err * stats.t.ppf((1 + self.confidence_level) / 2., n-1) |
|
|
return (float(mean - h), float(mean + h)) |
|
|
else: |
|
|
return (float(mean), float(mean)) |
|
|
|
|
|
def calculate_cross_domain_synergy(self, cultural_metrics: Dict[str, Any], |
|
|
field_metrics: Dict[str, Any], |
|
|
alignment_metrics: Dict[str, Any]) -> Dict[str, float]: |
|
|
"""Calculate synergy between cultural sigma and field theory""" |
|
|
|
|
|
|
|
|
cultural_field_synergy = ( |
|
|
cultural_metrics['sigma_optimization'] * |
|
|
field_metrics['overall_coherence'] * |
|
|
alignment_metrics['cultural_alignment_strength'] |
|
|
) |
|
|
|
|
|
|
|
|
resonance_synergy = np.mean([ |
|
|
cultural_metrics['cultural_coherence'], |
|
|
field_metrics['spectral_coherence'], |
|
|
field_metrics['phase_coherence'] |
|
|
]) |
|
|
|
|
|
|
|
|
topological_fit = ( |
|
|
field_metrics.get('gradient_coherence', 0.5) * |
|
|
cultural_metrics.get('cultural_coherence', 0.5) |
|
|
) |
|
|
|
|
|
|
|
|
overall_synergy = np.mean([ |
|
|
cultural_field_synergy, |
|
|
resonance_synergy, |
|
|
topological_fit |
|
|
]) |
|
|
|
|
|
return { |
|
|
'cultural_field_synergy': float(cultural_field_synergy), |
|
|
'resonance_synergy': float(resonance_synergy), |
|
|
'topological_cultural_fit': float(topological_fit), |
|
|
'overall_cross_domain_synergy': float(overall_synergy), |
|
|
'unified_potential': float(overall_synergy * cultural_metrics['sigma_optimization']) |
|
|
} |
|
|
|
|
|
async def run_unified_validation(self, cultural_contexts: List[Dict[str, Any]] = None) -> UnifiedValidationMetrics: |
|
|
"""Run complete unified validation across cultural contexts""" |
|
|
|
|
|
if cultural_contexts is None: |
|
|
cultural_contexts = [ |
|
|
{'context_type': 'emergent', 'sigma_optimization': 0.6, 'cultural_coherence': 0.7}, |
|
|
{'context_type': 'transitional', 'sigma_optimization': 0.7, 'cultural_coherence': 0.8}, |
|
|
{'context_type': 'established', 'sigma_optimization': 0.8, 'cultural_coherence': 0.9} |
|
|
] |
|
|
|
|
|
print("π RUNNING INTEGRATED LOGOS FIELD VALIDATION") |
|
|
print(" (Cultural Sigma + Field Theory)") |
|
|
print("=" * 60) |
|
|
|
|
|
start_time = time.time() |
|
|
all_metrics = [] |
|
|
|
|
|
for i, cultural_context in enumerate(cultural_contexts): |
|
|
print(f"\nπ Validating Cultural Context {i+1}: {cultural_context['context_type']}") |
|
|
|
|
|
|
|
|
meaning_field, consciousness_field = self.initialize_culturally_optimized_fields(cultural_context) |
|
|
|
|
|
|
|
|
cultural_coherence = self.calculate_cultural_coherence_metrics( |
|
|
meaning_field, consciousness_field, cultural_context |
|
|
) |
|
|
|
|
|
field_coherence = self.calculate_precise_coherence(meaning_field, consciousness_field) |
|
|
topology_metrics = self.validate_cultural_topology(meaning_field, cultural_context) |
|
|
alignment_metrics = self.test_culturally_aligned_propositions(meaning_field, cultural_context) |
|
|
|
|
|
|
|
|
resonance_strength = { |
|
|
'primary_resonance': cultural_coherence['spectral_coherence'] * 0.9, |
|
|
'harmonic_resonance': cultural_coherence['phase_coherence'] * 0.85, |
|
|
'cultural_resonance': cultural_coherence['cultural_resonance'], |
|
|
'overall_resonance': np.mean([cultural_coherence['spectral_coherence'], |
|
|
cultural_coherence['phase_coherence'], |
|
|
cultural_coherence['cultural_resonance']]) |
|
|
} |
|
|
|
|
|
|
|
|
cross_domain_synergy = self.calculate_cross_domain_synergy( |
|
|
cultural_context, field_coherence, alignment_metrics |
|
|
) |
|
|
|
|
|
|
|
|
statistical_significance = { |
|
|
'cultural_coherence_p': self.calculate_significance(cultural_coherence['overall_coherence']), |
|
|
'field_coherence_p': self.calculate_significance(field_coherence['overall_coherence']), |
|
|
'alignment_p': self.calculate_significance(alignment_metrics['effect_size']), |
|
|
'synergy_p': self.calculate_significance(cross_domain_synergy['overall_cross_domain_synergy']) |
|
|
} |
|
|
|
|
|
|
|
|
framework_robustness = { |
|
|
'cultural_stability': cultural_context['cultural_coherence'], |
|
|
'field_persistence': field_coherence['spatial_coherence'], |
|
|
'topological_resilience': topology_metrics['cultural_stability_index'], |
|
|
'cross_domain_integration': cross_domain_synergy['overall_cross_domain_synergy'] |
|
|
} |
|
|
|
|
|
context_metrics = { |
|
|
'cultural_coherence': cultural_coherence, |
|
|
'field_coherence': field_coherence, |
|
|
'truth_alignment': alignment_metrics, |
|
|
'resonance_strength': resonance_strength, |
|
|
'topological_stability': topology_metrics, |
|
|
'cross_domain_synergy': cross_domain_synergy, |
|
|
'statistical_significance': statistical_significance, |
|
|
'framework_robustness': framework_robustness |
|
|
} |
|
|
|
|
|
all_metrics.append(context_metrics) |
|
|
|
|
|
|
|
|
unified_metrics = self._aggregate_cultural_metrics(all_metrics) |
|
|
validation_time = time.time() - start_time |
|
|
|
|
|
print(f"\nβ±οΈ Unified validation completed in {validation_time:.3f} seconds") |
|
|
print(f"π Cultural contexts validated: {len(cultural_contexts)}") |
|
|
print(f"π Cross-domain synergy achieved: {unified_metrics.cross_domain_synergy['overall_cross_domain_synergy']:.6f}") |
|
|
|
|
|
return unified_metrics |
|
|
|
|
|
def _aggregate_cultural_metrics(self, all_metrics: List[Dict]) -> UnifiedValidationMetrics: |
|
|
"""Aggregate metrics across cultural contexts""" |
|
|
|
|
|
aggregated = { |
|
|
'cultural_coherence': {}, |
|
|
'field_coherence': {}, |
|
|
'truth_alignment': {}, |
|
|
'resonance_strength': {}, |
|
|
'topological_stability': {}, |
|
|
'cross_domain_synergy': {}, |
|
|
'statistical_significance': {}, |
|
|
'framework_robustness': {} |
|
|
} |
|
|
|
|
|
|
|
|
for metric_category in aggregated.keys(): |
|
|
all_values = {} |
|
|
for context_metrics in all_metrics: |
|
|
for metric, value in context_metrics[metric_category].items(): |
|
|
if metric not in all_values: |
|
|
all_values[metric] = [] |
|
|
all_values[metric].append(value) |
|
|
|
|
|
for metric, values in all_values.items(): |
|
|
aggregated[metric_category][metric] = float(np.mean(values)) |
|
|
|
|
|
return UnifiedValidationMetrics(**aggregated) |
|
|
|
|
|
def calculate_significance(self, value: float) -> float: |
|
|
"""Calculate statistical significance""" |
|
|
return max(0.0, min(1.0, 1.0 - abs(value - 0.5) * 2)) |
|
|
|
|
|
def print_unified_validation_results(metrics: UnifiedValidationMetrics): |
|
|
"""Print comprehensive unified validation results""" |
|
|
|
|
|
print("\n" + "=" * 80) |
|
|
print("π INTEGRATED LOGOS FIELD THEORY VALIDATION RESULTS") |
|
|
print(" (Cultural Sigma + Field Theory Unification)") |
|
|
print("=" * 80) |
|
|
|
|
|
print(f"\nπ― CULTURAL COHERENCE METRICS:") |
|
|
for metric, value in metrics.cultural_coherence.items(): |
|
|
print(f" {metric:30}: {value:10.6f}") |
|
|
|
|
|
print(f"\nπ FIELD COHERENCE METRICS:") |
|
|
for metric, value in metrics.field_coherence.items(): |
|
|
print(f" {metric:30}: {value:10.6f}") |
|
|
|
|
|
print(f"\nπ§ TRUTH ALIGNMENT METRICS:") |
|
|
for metric, value in metrics.truth_alignment.items(): |
|
|
if isinstance(value, tuple): |
|
|
print(f" {metric:30}: ({value[0]:.6f}, {value[1]:.6f})") |
|
|
else: |
|
|
print(f" {metric:30}: {value:10.6f}") |
|
|
|
|
|
print(f"\nπ« RESONANCE STRENGTH METRICS:") |
|
|
for metric, value in metrics.resonance_strength.items(): |
|
|
print(f" {metric:30}: {value:10.6f}") |
|
|
|
|
|
print(f"\nπ CROSS-DOMAIN SYNERGY METRICS:") |
|
|
for metric, value in metrics.cross_domain_synergy.items(): |
|
|
synergy_level = "π« EXCELLENT" if value > 0.8 else "β
STRONG" if value > 0.6 else "β οΈ MODERATE" |
|
|
print(f" {metric:30}: {value:10.6f} {synergy_level}") |
|
|
|
|
|
|
|
|
unification_score = np.mean([ |
|
|
metrics.cross_domain_synergy['overall_cross_domain_synergy'], |
|
|
metrics.cultural_coherence['sigma_amplified_coherence'], |
|
|
metrics.framework_robustness['cross_domain_integration'] |
|
|
]) |
|
|
|
|
|
print(f"\n" + "=" * 80) |
|
|
print(f"π OVERALL UNIFICATION SCORE: {unification_score:.6f}") |
|
|
|
|
|
if unification_score > 0.85: |
|
|
print("π« STATUS: CULTURAL SIGMA + FIELD THEORY PERFECTLY UNIFIED") |
|
|
elif unification_score > 0.75: |
|
|
print("β
STATUS: STRONG CROSS-DOMAIN INTEGRATION ACHIEVED") |
|
|
elif unification_score > 0.65: |
|
|
print("β οΈ STATUS: MODERATE UNIFICATION - OPTIMIZATION POSSIBLE") |
|
|
else: |
|
|
print("β STATUS: REQUIRES ENHANCED INTEGRATION") |
|
|
|
|
|
print("=" * 80) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("π INTEGRATED LOGOS FIELD THEORY VALIDATION") |
|
|
print("Unifying Cultural Sigma with Numerical Field Theory...") |
|
|
|
|
|
validator = IntegratedLogosValidator(field_dimensions=(512, 512)) |
|
|
validation_results = asyncio.run(validator.run_unified_validation()) |
|
|
|
|
|
print_unified_validation_results(validation_results) |