|
|
|
|
|
""" |
|
|
QUANTUM SOVEREIGNTY ENGINE v2.0 |
|
|
Mathematical Control System Analysis & Sovereignty Protocol Generation |
|
|
Pure Functional Implementation |
|
|
""" |
|
|
|
|
|
import asyncio |
|
|
import numpy as np |
|
|
from dataclasses import dataclass, field |
|
|
from enum import Enum |
|
|
from typing import Dict, List, Any, Optional, Tuple, Callable |
|
|
from datetime import datetime, timedelta |
|
|
import hashlib |
|
|
import logging |
|
|
import json |
|
|
import secrets |
|
|
from cryptography.hazmat.primitives import hashes, hmac |
|
|
from cryptography.hazmat.primitives.kdf.hkdf import HKDF |
|
|
from cryptography.hazmat.backends import default_backend |
|
|
import aiohttp |
|
|
import sqlite3 |
|
|
from contextlib import asynccontextmanager |
|
|
import statistics |
|
|
from scipy import stats |
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class SystemPattern(Enum): |
|
|
"""Mathematical control pattern classification""" |
|
|
DEPENDENCY_CREATION = "dependency_creation" |
|
|
INFORMATION_ASYMMETRY = "information_asymmetry" |
|
|
INCENTIVE_MISALIGNMENT = "incentive_misalignment" |
|
|
AGENCY_REDUCTION = "agency_reduction" |
|
|
OPTION_CONSTRAINT = "option_constraint" |
|
|
|
|
|
class SovereigntyMetric(Enum): |
|
|
"""Mathematical sovereignty measurements""" |
|
|
DECISION_INDEPENDENCE = "decision_independence" |
|
|
INFORMATION_ACCESS = "information_access" |
|
|
OPTION_DIVERSITY = "option_diversity" |
|
|
RESOURCE_CONTROL = "resource_control" |
|
|
EXIT_CAPACITY = "exit_capacity" |
|
|
|
|
|
@dataclass |
|
|
class ControlAnalysis: |
|
|
"""Pure mathematical control system analysis""" |
|
|
system_id: str |
|
|
pattern_vectors: List[SystemPattern] |
|
|
dependency_graph: Dict[str, float] |
|
|
information_flow: Dict[str, float] |
|
|
incentive_structure: Dict[str, float] |
|
|
|
|
|
|
|
|
agency_coefficient: float = field(init=False) |
|
|
control_density: float = field(init=False) |
|
|
symmetry_metrics: Dict[str, float] = field(init=False) |
|
|
|
|
|
def __post_init__(self): |
|
|
self.agency_coefficient = self._calculate_agency_coefficient() |
|
|
self.control_density = self._calculate_control_density() |
|
|
self.symmetry_metrics = self._calculate_symmetry_metrics() |
|
|
|
|
|
def _calculate_agency_coefficient(self) -> float: |
|
|
"""Calculate mathematical agency preservation""" |
|
|
dependency_penalty = np.mean(list(self.dependency_graph.values())) * 0.4 |
|
|
information_penalty = (1 - np.mean(list(self.information_flow.values()))) * 0.3 |
|
|
incentive_penalty = self._calculate_incentive_alignment() * 0.3 |
|
|
|
|
|
return max(0.0, 1.0 - (dependency_penalty + information_penalty + incentive_penalty)) |
|
|
|
|
|
def _calculate_incentive_alignment(self) -> float: |
|
|
"""Calculate incentive alignment coefficient""" |
|
|
if not self.incentive_structure: |
|
|
return 0.5 |
|
|
|
|
|
values = list(self.incentive_structure.values()) |
|
|
return abs(statistics.mean(values) - 0.5) * 2 |
|
|
|
|
|
def _calculate_control_density(self) -> float: |
|
|
"""Calculate control pattern density""" |
|
|
pattern_weights = { |
|
|
SystemPattern.DEPENDENCY_CREATION: 0.25, |
|
|
SystemPattern.INFORMATION_ASYMMETRY: 0.25, |
|
|
SystemPattern.INCENTIVE_MISALIGNMENT: 0.20, |
|
|
SystemPattern.AGENCY_REDUCTION: 0.20, |
|
|
SystemPattern.OPTION_CONSTRAINT: 0.10 |
|
|
} |
|
|
|
|
|
density = sum(pattern_weights.get(pattern, 0.1) for pattern in self.pattern_vectors) |
|
|
return min(1.0, density) |
|
|
|
|
|
def _calculate_symmetry_metrics(self) -> Dict[str, float]: |
|
|
"""Calculate information and power symmetry""" |
|
|
return { |
|
|
"information_symmetry": 1.0 - statistics.stdev(list(self.information_flow.values())), |
|
|
"dependency_symmetry": 1.0 - statistics.stdev(list(self.dependency_graph.values())), |
|
|
"incentive_symmetry": 1.0 - statistics.stdev(list(self.incentive_structure.values())) |
|
|
} |
|
|
|
|
|
@dataclass |
|
|
class SovereigntyProtocol: |
|
|
"""Mathematical sovereignty enhancement protocol""" |
|
|
protocol_id: str |
|
|
target_metrics: List[SovereigntyMetric] |
|
|
enhancement_functions: List[Callable] |
|
|
verification_metrics: Dict[str, float] |
|
|
|
|
|
efficacy_score: float = field(init=False) |
|
|
implementation_cost: float = field(init=False) |
|
|
|
|
|
def __post_init__(self): |
|
|
self.efficacy_score = self._calculate_efficacy() |
|
|
self.implementation_cost = self._calculate_implementation_cost() |
|
|
|
|
|
def _calculate_efficacy(self) -> float: |
|
|
"""Calculate protocol efficacy mathematically""" |
|
|
metric_improvement = np.mean(list(self.verification_metrics.values())) |
|
|
function_complexity = len(self.enhancement_functions) * 0.1 |
|
|
return min(1.0, metric_improvement - function_complexity) |
|
|
|
|
|
def _calculate_implementation_cost(self) -> float: |
|
|
"""Calculate resource implementation cost""" |
|
|
base_cost = len(self.enhancement_functions) * 0.2 |
|
|
metric_cost = len(self.target_metrics) * 0.15 |
|
|
return min(1.0, base_cost + metric_cost) |
|
|
|
|
|
class QuantumSovereigntyEngine: |
|
|
""" |
|
|
Mathematical sovereignty analysis and protocol generation engine |
|
|
Pure functional implementation without narrative bias |
|
|
""" |
|
|
|
|
|
def __init__(self, db_path: str = "sovereignty_engine.db"): |
|
|
self.db_path = db_path |
|
|
self.analysis_cache: Dict[str, ControlAnalysis] = {} |
|
|
self.protocol_registry: Dict[str, SovereigntyProtocol] = {} |
|
|
self._initialize_database() |
|
|
|
|
|
def _initialize_database(self): |
|
|
"""Initialize mathematical analysis database""" |
|
|
try: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
conn.execute(""" |
|
|
CREATE TABLE IF NOT EXISTS control_analyses ( |
|
|
system_id TEXT PRIMARY KEY, |
|
|
pattern_vectors TEXT, |
|
|
dependency_graph TEXT, |
|
|
information_flow TEXT, |
|
|
agency_coefficient REAL, |
|
|
control_density REAL, |
|
|
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP |
|
|
) |
|
|
""") |
|
|
conn.execute(""" |
|
|
CREATE TABLE IF NOT EXISTS sovereignty_protocols ( |
|
|
protocol_id TEXT PRIMARY KEY, |
|
|
target_metrics TEXT, |
|
|
verification_metrics TEXT, |
|
|
efficacy_score REAL, |
|
|
implementation_cost REAL, |
|
|
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP |
|
|
) |
|
|
""") |
|
|
except Exception as e: |
|
|
logger.error(f"Database initialization error: {e}") |
|
|
|
|
|
async def analyze_control_system(self, system_data: Dict[str, Any]) -> ControlAnalysis: |
|
|
"""Mathematical analysis of control system patterns""" |
|
|
try: |
|
|
|
|
|
pattern_vectors = self._extract_pattern_vectors(system_data) |
|
|
dependency_graph = self._analyze_dependency_graph(system_data) |
|
|
information_flow = self._analyze_information_flow(system_data) |
|
|
incentive_structure = self._analyze_incentive_structure(system_data) |
|
|
|
|
|
|
|
|
system_id = self._generate_system_id(system_data) |
|
|
|
|
|
analysis = ControlAnalysis( |
|
|
system_id=system_id, |
|
|
pattern_vectors=pattern_vectors, |
|
|
dependency_graph=dependency_graph, |
|
|
information_flow=information_flow, |
|
|
incentive_structure=incentive_structure |
|
|
) |
|
|
|
|
|
|
|
|
self.analysis_cache[system_id] = analysis |
|
|
await self._store_analysis(analysis) |
|
|
|
|
|
logger.info(f"Control analysis completed: {system_id}, Agency: {analysis.agency_coefficient:.3f}") |
|
|
return analysis |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Control analysis error: {e}") |
|
|
raise |
|
|
|
|
|
def _extract_pattern_vectors(self, system_data: Dict) -> List[SystemPattern]: |
|
|
"""Extract mathematical control patterns""" |
|
|
patterns = [] |
|
|
|
|
|
|
|
|
if system_data.get('dependency_score', 0) > 0.6: |
|
|
patterns.append(SystemPattern.DEPENDENCY_CREATION) |
|
|
|
|
|
|
|
|
if system_data.get('information_symmetry', 1.0) < 0.7: |
|
|
patterns.append(SystemPattern.INFORMATION_ASYMMETRY) |
|
|
|
|
|
|
|
|
if system_data.get('agency_metrics', {}).get('reduction_score', 0) > 0.5: |
|
|
patterns.append(SystemPattern.AGENCY_REDUCTION) |
|
|
|
|
|
return patterns |
|
|
|
|
|
def _analyze_dependency_graph(self, system_data: Dict) -> Dict[str, float]: |
|
|
"""Analyze dependency relationships mathematically""" |
|
|
dependencies = system_data.get('dependencies', {}) |
|
|
return {k: float(v) for k, v in dependencies.items()} |
|
|
|
|
|
def _analyze_information_flow(self, system_data: Dict) -> Dict[str, float]: |
|
|
"""Analyze information flow patterns""" |
|
|
information = system_data.get('information_flow', {}) |
|
|
return {k: float(v) for k, v in information.items()} |
|
|
|
|
|
def _analyze_incentive_structure(self, system_data: Dict) -> Dict[str, float]: |
|
|
"""Analyze incentive alignment mathematically""" |
|
|
incentives = system_data.get('incentives', {}) |
|
|
return {k: float(v) for k, v in incentives.items()} |
|
|
|
|
|
def _generate_system_id(self, system_data: Dict) -> str: |
|
|
"""Generate unique system identifier""" |
|
|
data_string = json.dumps(system_data, sort_keys=True) |
|
|
return hashlib.sha3_256(data_string.encode()).hexdigest()[:16] |
|
|
|
|
|
async def _store_analysis(self, analysis: ControlAnalysis): |
|
|
"""Store analysis in database""" |
|
|
try: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
conn.execute(""" |
|
|
INSERT OR REPLACE INTO control_analyses |
|
|
(system_id, pattern_vectors, dependency_graph, information_flow, agency_coefficient, control_density) |
|
|
VALUES (?, ?, ?, ?, ?, ?) |
|
|
""", ( |
|
|
analysis.system_id, |
|
|
json.dumps([p.value for p in analysis.pattern_vectors]), |
|
|
json.dumps(analysis.dependency_graph), |
|
|
json.dumps(analysis.information_flow), |
|
|
analysis.agency_coefficient, |
|
|
analysis.control_density |
|
|
)) |
|
|
except Exception as e: |
|
|
logger.error(f"Analysis storage error: {e}") |
|
|
|
|
|
async def generate_sovereignty_protocol(self, analysis: ControlAnalysis) -> SovereigntyProtocol: |
|
|
"""Generate mathematical sovereignty enhancement protocols""" |
|
|
try: |
|
|
|
|
|
target_metrics = self._identify_target_metrics(analysis) |
|
|
enhancement_functions = self._generate_enhancement_functions(analysis) |
|
|
verification_metrics = self._calculate_verification_metrics(analysis, enhancement_functions) |
|
|
|
|
|
protocol = SovereigntyProtocol( |
|
|
protocol_id=f"protocol_{analysis.system_id}", |
|
|
target_metrics=target_metrics, |
|
|
enhancement_functions=enhancement_functions, |
|
|
verification_metrics=verification_metrics |
|
|
) |
|
|
|
|
|
self.protocol_registry[protocol.protocol_id] = protocol |
|
|
await self._store_protocol(protocol) |
|
|
|
|
|
logger.info(f"Sovereignty protocol generated: {protocol.protocol_id}, Efficacy: {protocol.efficacy_score:.3f}") |
|
|
return protocol |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Protocol generation error: {e}") |
|
|
raise |
|
|
|
|
|
def _identify_target_metrics(self, analysis: ControlAnalysis) -> List[SovereigntyMetric]: |
|
|
"""Identify target sovereignty metrics mathematically""" |
|
|
targets = [] |
|
|
|
|
|
if analysis.agency_coefficient < 0.7: |
|
|
targets.append(SovereigntyMetric.DECISION_INDEPENDENCE) |
|
|
|
|
|
if analysis.symmetry_metrics["information_symmetry"] < 0.6: |
|
|
targets.append(SovereigntyMetric.INFORMATION_ACCESS) |
|
|
|
|
|
if SystemPattern.OPTION_CONSTRAINT in analysis.pattern_vectors: |
|
|
targets.append(SovereigntyMetric.OPTION_DIVERSITY) |
|
|
|
|
|
return targets |
|
|
|
|
|
def _generate_enhancement_functions(self, analysis: ControlAnalysis) -> List[Callable]: |
|
|
"""Generate mathematical enhancement functions""" |
|
|
functions = [] |
|
|
|
|
|
|
|
|
if SystemPattern.DEPENDENCY_CREATION in analysis.pattern_vectors: |
|
|
functions.append(self._reduce_dependency_density) |
|
|
|
|
|
|
|
|
if SystemPattern.INFORMATION_ASYMMETRY in analysis.pattern_vectors: |
|
|
functions.append(self._enhance_information_symmetry) |
|
|
|
|
|
|
|
|
if analysis.agency_coefficient < 0.8: |
|
|
functions.append(self._preserve_agency_capacity) |
|
|
|
|
|
return functions |
|
|
|
|
|
def _reduce_dependency_density(self, system_state: Dict) -> Dict: |
|
|
"""Mathematical dependency reduction""" |
|
|
return {**system_state, 'dependency_density': system_state.get('dependency_density', 1.0) * 0.7} |
|
|
|
|
|
def _enhance_information_symmetry(self, system_state: Dict) -> Dict: |
|
|
"""Mathematical information symmetry enhancement""" |
|
|
return {**system_state, 'information_symmetry': min(1.0, system_state.get('information_symmetry', 0.5) * 1.3)} |
|
|
|
|
|
def _preserve_agency_capacity(self, system_state: Dict) -> Dict: |
|
|
"""Mathematical agency preservation""" |
|
|
return {**system_state, 'agency_coefficient': min(1.0, system_state.get('agency_coefficient', 0.6) * 1.2)} |
|
|
|
|
|
def _calculate_verification_metrics(self, analysis: ControlAnalysis, functions: List[Callable]) -> Dict[str, float]: |
|
|
"""Calculate mathematical verification metrics""" |
|
|
base_state = { |
|
|
'dependency_density': analysis.control_density, |
|
|
'information_symmetry': analysis.symmetry_metrics['information_symmetry'], |
|
|
'agency_coefficient': analysis.agency_coefficient |
|
|
} |
|
|
|
|
|
|
|
|
enhanced_state = base_state |
|
|
for func in functions: |
|
|
enhanced_state = func(enhanced_state) |
|
|
|
|
|
|
|
|
improvements = {} |
|
|
for metric in ['dependency_density', 'information_symmetry', 'agency_coefficient']: |
|
|
improvement = enhanced_state[metric] - base_state[metric] |
|
|
improvements[metric] = max(0.0, improvement) |
|
|
|
|
|
return improvements |
|
|
|
|
|
async def _store_protocol(self, protocol: SovereigntyProtocol): |
|
|
"""Store protocol in database""" |
|
|
try: |
|
|
with sqlite3.connect(self.db_path) as conn: |
|
|
conn.execute(""" |
|
|
INSERT OR REPLACE INTO sovereignty_protocols |
|
|
(protocol_id, target_metrics, verification_metrics, efficacy_score, implementation_cost) |
|
|
VALUES (?, ?, ?, ?, ?) |
|
|
""", ( |
|
|
protocol.protocol_id, |
|
|
json.dumps([m.value for m in protocol.target_metrics]), |
|
|
json.dumps(protocol.verification_metrics), |
|
|
protocol.efficacy_score, |
|
|
protocol.implementation_cost |
|
|
)) |
|
|
except Exception as e: |
|
|
logger.error(f"Protocol storage error: {e}") |
|
|
|
|
|
async def get_system_health_report(self, system_id: str) -> Dict[str, Any]: |
|
|
"""Generate comprehensive system health report""" |
|
|
try: |
|
|
if system_id not in self.analysis_cache: |
|
|
raise ValueError(f"System {system_id} not found in cache") |
|
|
|
|
|
analysis = self.analysis_cache[system_id] |
|
|
protocol = await self.generate_sovereignty_protocol(analysis) |
|
|
|
|
|
return { |
|
|
"system_id": system_id, |
|
|
"agency_coefficient": analysis.agency_coefficient, |
|
|
"control_density": analysis.control_density, |
|
|
"pattern_vectors": [p.value for p in analysis.pattern_vectors], |
|
|
"sovereignty_protocol": { |
|
|
"efficacy": protocol.efficacy_score, |
|
|
"implementation_cost": protocol.implementation_cost, |
|
|
"target_metrics": [m.value for m in protocol.target_metrics] |
|
|
}, |
|
|
"recommendation_level": self._calculate_recommendation_level(analysis, protocol) |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Health report error: {e}") |
|
|
raise |
|
|
|
|
|
def _calculate_recommendation_level(self, analysis: ControlAnalysis, protocol: SovereigntyProtocol) -> str: |
|
|
"""Calculate implementation recommendation level""" |
|
|
net_benefit = protocol.efficacy_score - protocol.implementation_cost |
|
|
|
|
|
if net_benefit > 0.3: |
|
|
return "HIGH_PRIORITY" |
|
|
elif net_benefit > 0.1: |
|
|
return "MEDIUM_PRIORITY" |
|
|
else: |
|
|
return "EVALUATE_ALTERNATIVES" |
|
|
|
|
|
|
|
|
async def demonstrate_production_engine(): |
|
|
"""Demonstrate production-ready sovereignty engine""" |
|
|
|
|
|
engine = QuantumSovereigntyEngine() |
|
|
|
|
|
|
|
|
sample_system = { |
|
|
"dependency_score": 0.8, |
|
|
"information_symmetry": 0.4, |
|
|
"agency_metrics": {"reduction_score": 0.7}, |
|
|
"dependencies": {"external_service": 0.9, "proprietary_format": 0.8}, |
|
|
"information_flow": {"user_data": 0.2, "system_operations": 0.9}, |
|
|
"incentives": {"vendor_lockin": 0.8, "data_monetization": 0.7} |
|
|
} |
|
|
|
|
|
print("🧮 QUANTUM SOVEREIGNTY ENGINE v2.0") |
|
|
print("Mathematical Control Analysis & Protocol Generation") |
|
|
print("=" * 60) |
|
|
|
|
|
try: |
|
|
|
|
|
analysis = await engine.analyze_control_system(sample_system) |
|
|
|
|
|
print(f"📊 SYSTEM ANALYSIS:") |
|
|
print(f" Agency Coefficient: {analysis.agency_coefficient:.3f}") |
|
|
print(f" Control Density: {analysis.control_density:.3f}") |
|
|
print(f" Patterns: {[p.value for p in analysis.pattern_vectors]}") |
|
|
|
|
|
|
|
|
protocol = await engine.generate_sovereignty_protocol(analysis) |
|
|
|
|
|
print(f"🛡️ SOVEREIGNTY PROTOCOL:") |
|
|
print(f" Efficacy Score: {protocol.efficacy_score:.3f}") |
|
|
print(f" Implementation Cost: {protocol.implementation_cost:.3f}") |
|
|
print(f" Target Metrics: {[m.value for m in protocol.target_metrics]}") |
|
|
|
|
|
|
|
|
report = await engine.get_system_health_report(analysis.system_id) |
|
|
|
|
|
print(f"📈 HEALTH REPORT:") |
|
|
print(f" Recommendation: {report['recommendation_level']}") |
|
|
print(f" Net Benefit: {protocol.efficacy_score - protocol.implementation_cost:.3f}") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Demonstration error: {e}") |
|
|
return None |
|
|
|
|
|
return report |
|
|
|
|
|
if __name__ == "__main__": |
|
|
report = asyncio.run(demonstrate_production_engine()) |
|
|
if report: |
|
|
print(f"\n✅ ENGINE OPERATIONAL - System: {report['system_id']}") |
|
|
|