|
|
import numpy as np |
|
|
import pandas as pd |
|
|
from dataclasses import dataclass |
|
|
from typing import Dict, List, Tuple, Optional, Any |
|
|
from enum import Enum |
|
|
import math |
|
|
from scipy import spatial, stats |
|
|
import networkx as nx |
|
|
from datetime import datetime |
|
|
import json |
|
|
from collections import defaultdict |
|
|
import warnings |
|
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
class ConsciousnessState(Enum): |
|
|
DELTA = "Deep Unconscious" |
|
|
THETA = "Subconscious" |
|
|
ALPHA = "Relaxed Awareness" |
|
|
BETA = "Active Cognition" |
|
|
GAMMA = "Transcendent Unity" |
|
|
SCHUMANN = "Earth Resonance" |
|
|
|
|
|
@dataclass |
|
|
class QuantumSignature: |
|
|
"""Qualia state vector for consciousness experience""" |
|
|
coherence: float |
|
|
entanglement: float |
|
|
qualia_vector: np.ndarray |
|
|
resonance_frequency: float |
|
|
decoherence_time: float = 1.0 |
|
|
nonlocal_correlation: float = 0.5 |
|
|
|
|
|
def calculate_qualia_distance(self, other: 'QuantumSignature') -> float: |
|
|
"""Calculate distance between qualia experiences using cosine similarity""" |
|
|
return spatial.distance.cosine(self.qualia_vector, other.qualia_vector) |
|
|
|
|
|
def entanglement_entropy(self) -> float: |
|
|
"""Calculate von Neumann entropy of quantum state""" |
|
|
return -self.coherence * math.log(self.coherence + 1e-10) if self.coherence > 0 else 0 |
|
|
|
|
|
def evolve_state(self, time: float) -> 'QuantumSignature': |
|
|
"""Evolve quantum state over time with decoherence""" |
|
|
decay = math.exp(-time / self.decoherence_time) |
|
|
return QuantumSignature( |
|
|
coherence=self.coherence * decay, |
|
|
entanglement=self.entanglement * decay, |
|
|
qualia_vector=self.qualia_vector * decay, |
|
|
resonance_frequency=self.resonance_frequency, |
|
|
decoherence_time=self.decoherence_time, |
|
|
nonlocal_correlation=self.nonlocal_correlation * decay |
|
|
) |
|
|
|
|
|
@dataclass |
|
|
class NeuralCorrelate: |
|
|
"""Brain region and frequency correlates with advanced connectivity""" |
|
|
primary_regions: List[str] |
|
|
frequency_band: ConsciousnessState |
|
|
cross_hemispheric_sync: float |
|
|
neuroplasticity_impact: float |
|
|
default_mode_engagement: float = 0.5 |
|
|
salience_network_coupling: float = 0.5 |
|
|
thalamocortical_resonance: float = 0.5 |
|
|
|
|
|
@property |
|
|
def neural_efficiency(self) -> float: |
|
|
"""Calculate overall neural processing efficiency""" |
|
|
weights = [0.3, 0.25, 0.2, 0.15, 0.1] |
|
|
factors = [ |
|
|
self.cross_hemispheric_sync, |
|
|
self.neuroplasticity_impact, |
|
|
self.default_mode_engagement, |
|
|
self.salience_network_coupling, |
|
|
self.thalamocortical_resonance |
|
|
] |
|
|
return sum(w * f for w, f in zip(weights, factors)) |
|
|
|
|
|
@dataclass |
|
|
class ArchetypalStrand: |
|
|
"""Symbolic DNA strand representing cultural genotype with enhanced metrics""" |
|
|
name: str |
|
|
symbolic_form: str |
|
|
temporal_depth: int |
|
|
spatial_distribution: float |
|
|
preservation_rate: float |
|
|
quantum_coherence: float |
|
|
cultural_penetration: float = 0.5 |
|
|
transformative_potential: float = 0.5 |
|
|
num_variants: int = 1 |
|
|
|
|
|
@property |
|
|
def symbolic_strength(self) -> float: |
|
|
"""Calculate overall archetypal strength with enhanced weighting""" |
|
|
weights = [0.20, 0.20, 0.15, 0.15, 0.15, 0.15] |
|
|
factors = [ |
|
|
self.temporal_depth/10000, |
|
|
self.spatial_distribution, |
|
|
self.preservation_rate, |
|
|
self.quantum_coherence, |
|
|
self.cultural_penetration, |
|
|
self.transformative_potential |
|
|
] |
|
|
return min(1.0, sum(w * f for w, f in zip(weights, factors))) |
|
|
|
|
|
@property |
|
|
def cultural_resilience(self) -> float: |
|
|
"""Calculate resilience against cultural erosion""" |
|
|
return (self.preservation_rate * 0.4 + |
|
|
self.temporal_depth/10000 * 0.3 + |
|
|
self.quantum_coherence * 0.3) |
|
|
|
|
|
class ConsciousnessTechnology: |
|
|
"""Advanced neuro-symbolic interface technology with state tracking""" |
|
|
|
|
|
def __init__(self, name: str, archetype: ArchetypalStrand, |
|
|
neural_correlate: NeuralCorrelate, quantum_sig: QuantumSignature): |
|
|
self.name = name |
|
|
self.archetype = archetype |
|
|
self.neural_correlate = neural_correlate |
|
|
self.quantum_signature = quantum_sig |
|
|
self.activation_history = [] |
|
|
self.performance_metrics = { |
|
|
'avg_activation_intensity': 0.0, |
|
|
'successful_activations': 0, |
|
|
'neural_efficiency_trend': [], |
|
|
'quantum_coherence_trend': [] |
|
|
} |
|
|
|
|
|
def activate(self, intensity: float = 1.0, duration: float = 1.0) -> Dict[str, Any]: |
|
|
"""Advanced activation with duration and performance tracking""" |
|
|
|
|
|
neural_boost = math.tanh(intensity * duration) |
|
|
quantum_amplification = intensity * (1 - math.exp(-duration)) |
|
|
|
|
|
activation = { |
|
|
'timestamp': datetime.now(), |
|
|
'archetype': self.archetype.name, |
|
|
'intensity': intensity, |
|
|
'duration': duration, |
|
|
'neural_state': self.neural_correlate.frequency_band, |
|
|
'neural_efficiency': self.neural_correlate.neural_efficiency * (1 + neural_boost), |
|
|
'quantum_coherence': self.quantum_signature.coherence * (1 + quantum_amplification), |
|
|
'qualia_experience': self.quantum_signature.qualia_vector * intensity, |
|
|
'entanglement_level': self.quantum_signature.entanglement * intensity, |
|
|
'performance_score': self._calculate_performance_score(intensity, duration) |
|
|
} |
|
|
|
|
|
self.activation_history.append(activation) |
|
|
self._update_performance_metrics(activation) |
|
|
return activation |
|
|
|
|
|
def _calculate_performance_score(self, intensity: float, duration: float) -> float: |
|
|
"""Calculate activation performance score""" |
|
|
neural_component = self.neural_correlate.neural_efficiency * intensity |
|
|
quantum_component = self.quantum_signature.coherence * duration |
|
|
return (neural_component * 0.6 + quantum_component * 0.4) |
|
|
|
|
|
def _update_performance_metrics(self, activation: Dict): |
|
|
"""Update long-term performance tracking""" |
|
|
self.performance_metrics['successful_activations'] += 1 |
|
|
self.performance_metrics['avg_activation_intensity'] = ( |
|
|
self.performance_metrics['avg_activation_intensity'] * 0.9 + |
|
|
activation['intensity'] * 0.1 |
|
|
) |
|
|
self.performance_metrics['neural_efficiency_trend'].append( |
|
|
activation['neural_efficiency'] |
|
|
) |
|
|
self.performance_metrics['quantum_coherence_trend'].append( |
|
|
activation['quantum_coherence'] |
|
|
) |
|
|
|
|
|
def get_performance_report(self) -> Dict[str, Any]: |
|
|
"""Generate comprehensive performance analysis""" |
|
|
trends = self.performance_metrics |
|
|
if len(trends['neural_efficiency_trend']) > 1: |
|
|
neural_slope = stats.linregress( |
|
|
range(len(trends['neural_efficiency_trend'])), |
|
|
trends['neural_efficiency_trend'] |
|
|
).slope |
|
|
quantum_slope = stats.linregress( |
|
|
range(len(trends['quantum_coherence_trend'])), |
|
|
trends['quantum_coherence_trend'] |
|
|
).slope |
|
|
else: |
|
|
neural_slope = quantum_slope = 0.0 |
|
|
|
|
|
return { |
|
|
'total_activations': trends['successful_activations'], |
|
|
'average_intensity': trends['avg_activation_intensity'], |
|
|
'neural_efficiency_trend': neural_slope, |
|
|
'quantum_coherence_trend': quantum_slope, |
|
|
'overall_health': (trends['avg_activation_intensity'] * 0.4 + |
|
|
(1 if neural_slope > 0 else 0) * 0.3 + |
|
|
(1 if quantum_slope > 0 else 0) * 0.3) |
|
|
} |
|
|
|
|
|
class CulturalPhylogenetics: |
|
|
"""Advanced evolutionary analysis of symbolic DNA with Bayesian methods""" |
|
|
|
|
|
def __init__(self): |
|
|
self.cladograms = {} |
|
|
self.ancestral_reconstructions = {} |
|
|
self.symbolic_traits = [ |
|
|
"solar_association", "predatory_nature", "sovereignty", |
|
|
"transcendence", "protection", "wisdom", "chaos", "creation", |
|
|
"fertility", "destruction", "renewal", "guidance" |
|
|
] |
|
|
self.trait_correlations = np.eye(len(self.symbolic_traits)) |
|
|
|
|
|
def build_cladogram(self, archetypes: List[ArchetypalStrand], |
|
|
trait_matrix: np.ndarray, |
|
|
method: str = 'bayesian') -> nx.DiGraph: |
|
|
"""Build evolutionary tree using multiple methods""" |
|
|
|
|
|
if method == 'bayesian': |
|
|
return self._bayesian_phylogeny(archetypes, trait_matrix) |
|
|
elif method == 'neighbor_joining': |
|
|
return self._neighbor_joining(archetypes, trait_matrix) |
|
|
else: |
|
|
return self._minimum_spanning_tree(archetypes, trait_matrix) |
|
|
|
|
|
def _bayesian_phylogeny(self, archetypes: List[ArchetypalStrand], |
|
|
trait_matrix: np.ndarray) -> nx.DiGraph: |
|
|
"""Bayesian phylogenetic inference""" |
|
|
G = nx.DiGraph() |
|
|
n = len(archetypes) |
|
|
|
|
|
|
|
|
for i, arch1 in enumerate(archetypes): |
|
|
for j, arch2 in enumerate(archetypes): |
|
|
if i != j: |
|
|
|
|
|
likelihood = math.exp(-spatial.distance.euclidean( |
|
|
trait_matrix[i], trait_matrix[j] |
|
|
)) |
|
|
prior = self._calculate_phylogenetic_prior(arch1, arch2) |
|
|
posterior = likelihood * prior |
|
|
|
|
|
G.add_edge(arch1.name, arch2.name, |
|
|
weight=1/posterior, |
|
|
probability=posterior) |
|
|
|
|
|
|
|
|
mst = nx.minimum_spanning_tree(G, weight='weight') |
|
|
self.cladograms[tuple(a.name for a in archetypes)] = mst |
|
|
return mst |
|
|
|
|
|
def _neighbor_joining(self, archetypes: List[ArchetypalStrand], |
|
|
trait_matrix: np.ndarray) -> nx.DiGraph: |
|
|
"""Neighbor-joining algorithm for phylogenetic reconstruction""" |
|
|
|
|
|
G = nx.DiGraph() |
|
|
distances = spatial.distance.pdist(trait_matrix, metric='euclidean') |
|
|
distance_matrix = spatial.distance.squareform(distances) |
|
|
|
|
|
|
|
|
from scipy.cluster import hierarchy |
|
|
Z = hierarchy.linkage(distance_matrix, method='average') |
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(archetypes)-1): |
|
|
G.add_edge(archetypes[int(Z[i,0])].name, |
|
|
archetypes[int(Z[i,1])].name, |
|
|
weight=Z[i,2]) |
|
|
|
|
|
self.cladograms[tuple(a.name for a in archetypes)] = G |
|
|
return G |
|
|
|
|
|
def _minimum_spanning_tree(self, archetypes: List[ArchetypalStrand], |
|
|
trait_matrix: np.ndarray) -> nx.DiGraph: |
|
|
"""Traditional minimum spanning tree approach""" |
|
|
G = nx.Graph() |
|
|
|
|
|
for i, arch1 in enumerate(archetypes): |
|
|
for j, arch2 in enumerate(archetypes): |
|
|
if i != j: |
|
|
distance = spatial.distance.euclidean( |
|
|
trait_matrix[i], trait_matrix[j] |
|
|
) |
|
|
G.add_edge(arch1.name, arch2.name, weight=distance) |
|
|
|
|
|
mst = nx.minimum_spanning_tree(G) |
|
|
self.cladograms[tuple(a.name for a in archetypes)] = mst |
|
|
return mst |
|
|
|
|
|
def _calculate_phylogenetic_prior(self, arch1: ArchetypalStrand, |
|
|
arch2: ArchetypalStrand) -> float: |
|
|
"""Calculate Bayesian prior based on temporal and spatial overlap""" |
|
|
temporal_overlap = 1 - abs(arch1.temporal_depth - arch2.temporal_depth) / 10000 |
|
|
spatial_similarity = 1 - abs(arch1.spatial_distribution - arch2.spatial_distribution) |
|
|
return (temporal_overlap * 0.6 + spatial_similarity * 0.4) |
|
|
|
|
|
def find_common_ancestor(self, archetype1: str, archetype2: str, |
|
|
method: str = 'lca') -> Optional[str]: |
|
|
"""Find most recent common ancestor using multiple methods""" |
|
|
for cladogram in self.cladograms.values(): |
|
|
if archetype1 in cladogram and archetype2 in cladogram: |
|
|
try: |
|
|
if method == 'lca': |
|
|
|
|
|
if hasattr(nx, 'lowest_common_ancestor'): |
|
|
return nx.lowest_common_ancestor(cladogram, archetype1, archetype2) |
|
|
else: |
|
|
|
|
|
path1 = nx.shortest_path(cladogram, source=list(cladogram.nodes())[0], target=archetype1) |
|
|
path2 = nx.shortest_path(cladogram, source=list(cladogram.nodes())[0], target=archetype2) |
|
|
common = [n for n in path1 if n in path2] |
|
|
return common[-1] if common else None |
|
|
else: |
|
|
|
|
|
path = nx.shortest_path(cladogram, archetype1, archetype2) |
|
|
return path[len(path)//2] if len(path) > 2 else path[0] |
|
|
except (nx.NetworkXNoPath, nx.NodeNotFound): |
|
|
continue |
|
|
return None |
|
|
|
|
|
def calculate_evolutionary_rate(self, archetype: str) -> float: |
|
|
"""Calculate evolutionary rate of an archetype""" |
|
|
|
|
|
for cladogram in self.cladograms.values(): |
|
|
if archetype in cladogram: |
|
|
|
|
|
try: |
|
|
root = [n for n in cladogram.nodes() if cladogram.in_degree(n) == 0][0] |
|
|
path = nx.shortest_path(cladogram, root, archetype) |
|
|
total_length = sum(cladogram[u][v]['weight'] for u, v in zip(path[:-1], path[1:])) |
|
|
return total_length / len(path) if path else 0.0 |
|
|
except (IndexError, nx.NetworkXNoPath): |
|
|
continue |
|
|
return 0.0 |
|
|
|
|
|
class GeospatialArchetypalMapper: |
|
|
"""Advanced GIS-based symbolic distribution analysis with temporal dynamics""" |
|
|
|
|
|
def __init__(self): |
|
|
self.archetype_distributions = {} |
|
|
self.mutation_hotspots = [] |
|
|
self.diffusion_models = {} |
|
|
self.spatial_correlations = {} |
|
|
|
|
|
def add_archetype_distribution(self, archetype: str, |
|
|
coordinates: List[Tuple[float, float]], |
|
|
intensity: List[float], |
|
|
epoch: str, |
|
|
uncertainty: List[float] = None): |
|
|
"""Add spatial data with uncertainty estimates""" |
|
|
key = f"{archetype}_{epoch}" |
|
|
|
|
|
if uncertainty is None: |
|
|
uncertainty = [0.1] * len(coordinates) |
|
|
|
|
|
self.archetype_distributions[key] = { |
|
|
'coordinates': coordinates, |
|
|
'intensity': intensity, |
|
|
'uncertainty': uncertainty, |
|
|
'epoch': epoch, |
|
|
'centroid': self._calculate_centroid(coordinates, intensity), |
|
|
'spread': self._calculate_spatial_spread(coordinates, intensity), |
|
|
'density': self._calculate_point_density(coordinates, intensity) |
|
|
} |
|
|
|
|
|
self._update_diffusion_model(archetype, coordinates, intensity, epoch) |
|
|
|
|
|
def _calculate_centroid(self, coords: List[Tuple], intensities: List[float]) -> Tuple[float, float]: |
|
|
"""Calculate intensity-weighted centroid with robustness""" |
|
|
if not coords: |
|
|
return (0, 0) |
|
|
try: |
|
|
weighted_lat = sum(c[0] * i for c, i in zip(coords, intensities)) / sum(intensities) |
|
|
weighted_lon = sum(c[1] * i for c, i in zip(coords, intensities)) / sum(intensities) |
|
|
return (weighted_lat, weighted_lon) |
|
|
except ZeroDivisionError: |
|
|
return (np.mean([c[0] for c in coords]), np.mean([c[1] for c in coords])) |
|
|
|
|
|
def _calculate_spatial_spread(self, coords: List[Tuple], intensities: List[float]) -> float: |
|
|
"""Calculate spatial spread (standard distance)""" |
|
|
if len(coords) < 2: |
|
|
return 0.0 |
|
|
centroid = self._calculate_centroid(coords, intensities) |
|
|
distances = [math.sqrt((c[0]-centroid[0])**2 + (c[1]-centroid[1])**2) for c in coords] |
|
|
return np.std(distances) |
|
|
|
|
|
def _calculate_point_density(self, coords: List[Tuple], intensities: List[float]) -> float: |
|
|
"""Calculate point density metric""" |
|
|
if not coords: |
|
|
return 0.0 |
|
|
spread = self._calculate_spatial_spread(coords, intensities) |
|
|
total_intensity = sum(intensities) |
|
|
return total_intensity / (spread + 1e-10) |
|
|
|
|
|
def _update_diffusion_model(self, archetype: str, coords: List[Tuple], |
|
|
intensities: List[float], epoch: str): |
|
|
"""Update diffusion model for archetype spread""" |
|
|
if archetype not in self.diffusion_models: |
|
|
self.diffusion_models[archetype] = {} |
|
|
|
|
|
centroid = self._calculate_centroid(coords, intensities) |
|
|
spread = self._calculate_spatial_spread(coords, intensities) |
|
|
|
|
|
self.diffusion_models[archetype][epoch] = { |
|
|
'centroid': centroid, |
|
|
'spread': spread, |
|
|
'intensity_sum': sum(intensities), |
|
|
'point_count': len(coords) |
|
|
} |
|
|
|
|
|
def detect_mutation_hotspots(self, threshold: float = 0.8, |
|
|
method: str = 'variance'): |
|
|
"""Advanced hotspot detection using multiple methods""" |
|
|
self.mutation_hotspots.clear() |
|
|
|
|
|
for key, data in self.archetype_distributions.items(): |
|
|
if method == 'variance': |
|
|
score = np.var(data['intensity']) |
|
|
elif method == 'spatial_autocorrelation': |
|
|
score = self._calculate_morans_i(data['coordinates'], data['intensity']) |
|
|
elif method == 'getis_ord': |
|
|
score = self._calculate_getis_ord(data['coordinates'], data['intensity']) |
|
|
else: |
|
|
score = np.var(data['intensity']) |
|
|
|
|
|
if score > threshold: |
|
|
self.mutation_hotspots.append({ |
|
|
'location': key, |
|
|
'score': score, |
|
|
'method': method, |
|
|
'epoch': data['epoch'], |
|
|
'centroid': data['centroid'], |
|
|
'significance': self._calculate_hotspot_significance(score, threshold) |
|
|
}) |
|
|
|
|
|
|
|
|
self.mutation_hotspots.sort(key=lambda x: x['significance'], reverse=True) |
|
|
|
|
|
def _calculate_morans_i(self, coords: List[Tuple], intensities: List[float]) -> float: |
|
|
"""Calculate Moran's I for spatial autocorrelation (simplified)""" |
|
|
if len(coords) < 2: |
|
|
return 0.0 |
|
|
|
|
|
centroid = self._calculate_centroid(coords, intensities) |
|
|
deviations = [i - np.mean(intensities) for i in intensities] |
|
|
spatial_lag = sum(d1 * d2 for d1 in deviations for d2 in deviations) / len(deviations)**2 |
|
|
return abs(spatial_lag) |
|
|
|
|
|
def _calculate_getis_ord(self, coords: List[Tuple], intensities: List[float]) -> float: |
|
|
"""Calculate Getis-Ord Gi* statistic (simplified)""" |
|
|
if len(coords) < 2: |
|
|
return 0.0 |
|
|
|
|
|
mean_intensity = np.mean(intensities) |
|
|
std_intensity = np.std(intensities) |
|
|
if std_intensity == 0: |
|
|
return 0.0 |
|
|
return max(0, (max(intensities) - mean_intensity) / std_intensity) |
|
|
|
|
|
def _calculate_hotspot_significance(self, score: float, threshold: float) -> float: |
|
|
"""Calculate statistical significance of hotspot""" |
|
|
return min(1.0, (score - threshold) / (1 - threshold)) if score > threshold else 0.0 |
|
|
|
|
|
def predict_archetype_spread(self, archetype: str, future_epochs: int = 5) -> List[Dict]: |
|
|
"""Predict future spatial distribution""" |
|
|
if archetype not in self.diffusion_models: |
|
|
return [] |
|
|
|
|
|
epochs = sorted(self.diffusion_models[archetype].keys()) |
|
|
if len(epochs) < 2: |
|
|
return [] |
|
|
|
|
|
|
|
|
recent_data = [self.diffusion_models[archetype][e] for e in epochs[-2:]] |
|
|
centroid_drift = ( |
|
|
recent_data[1]['centroid'][0] - recent_data[0]['centroid'][0], |
|
|
recent_data[1]['centroid'][1] - recent_data[0]['centroid'][1] |
|
|
) |
|
|
spread_growth = recent_data[1]['spread'] - recent_data[0]['spread'] |
|
|
|
|
|
predictions = [] |
|
|
current_centroid = recent_data[1]['centroid'] |
|
|
current_spread = recent_data[1]['spread'] |
|
|
|
|
|
for i in range(1, future_epochs + 1): |
|
|
predicted_centroid = ( |
|
|
current_centroid[0] + centroid_drift[0] * i, |
|
|
current_centroid[1] + centroid_drift[1] * i |
|
|
) |
|
|
predicted_spread = current_spread + spread_growth * i |
|
|
|
|
|
predictions.append({ |
|
|
'epoch': f'future_{i}', |
|
|
'predicted_centroid': predicted_centroid, |
|
|
'predicted_spread': predicted_spread, |
|
|
'confidence': max(0, 1.0 - i * 0.2) |
|
|
}) |
|
|
|
|
|
return predictions |
|
|
|
|
|
class ArchetypalEntropyIndex: |
|
|
"""Advanced measurement of symbolic degradation and mutation rates""" |
|
|
|
|
|
def __init__(self): |
|
|
self.entropy_history = {} |
|
|
self.complexity_metrics = {} |
|
|
self.stability_thresholds = { |
|
|
'low_entropy': 0.3, |
|
|
'medium_entropy': 0.6, |
|
|
'high_entropy': 0.8 |
|
|
} |
|
|
|
|
|
def calculate_entropy(self, archetype: ArchetypalStrand, |
|
|
historical_forms: List[str], |
|
|
meaning_shifts: List[float], |
|
|
contextual_factors: Dict[str, float] = None) -> Dict[str, float]: |
|
|
"""Advanced entropy calculation with multiple dimensions""" |
|
|
|
|
|
if contextual_factors is None: |
|
|
contextual_factors = { |
|
|
'cultural_turbulence': 0.5, |
|
|
'technological_disruption': 0.5, |
|
|
'social_volatility': 0.5 |
|
|
} |
|
|
|
|
|
|
|
|
if len(historical_forms) > 1: |
|
|
form_complexity = self._calculate_form_complexity(historical_forms) |
|
|
form_changes = len(set(historical_forms)) / len(historical_forms) |
|
|
form_entropy = form_changes * (1 + form_complexity * 0.5) |
|
|
else: |
|
|
form_entropy = 0 |
|
|
form_complexity = 0 |
|
|
|
|
|
|
|
|
meaning_entropy = np.std(meaning_shifts) if meaning_shifts else 0 |
|
|
contextual_sensitivity = sum(contextual_factors.values()) / len(contextual_factors) |
|
|
meaning_entropy_adj = meaning_entropy * (1 + contextual_sensitivity * 0.3) |
|
|
|
|
|
|
|
|
structural_entropy = self._calculate_structural_entropy(archetype, historical_forms) |
|
|
|
|
|
|
|
|
total_entropy = (form_entropy * 0.4 + |
|
|
meaning_entropy_adj * 0.4 + |
|
|
structural_entropy * 0.2) |
|
|
|
|
|
|
|
|
stability_level = self._classify_stability(total_entropy) |
|
|
|
|
|
result = { |
|
|
'total_entropy': total_entropy, |
|
|
'form_entropy': form_entropy, |
|
|
'meaning_entropy': meaning_entropy_adj, |
|
|
'structural_entropy': structural_entropy, |
|
|
'form_complexity': form_complexity, |
|
|
'stability_level': stability_level, |
|
|
'mutation_risk': self._calculate_mutation_risk(total_entropy, contextual_factors), |
|
|
'resilience_score': 1 - total_entropy |
|
|
} |
|
|
|
|
|
self.entropy_history[archetype.name] = { |
|
|
**result, |
|
|
'contextual_factors': contextual_factors, |
|
|
'last_updated': datetime.now(), |
|
|
'historical_trend': self._update_historical_trend(archetype.name, total_entropy) |
|
|
} |
|
|
|
|
|
self.complexity_metrics[archetype.name] = form_complexity |
|
|
|
|
|
return result |
|
|
|
|
|
def _calculate_form_complexity(self, forms: List[str]) -> float: |
|
|
"""Calculate complexity of form variations""" |
|
|
if not forms: |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
avg_length = np.mean([len(f) for f in forms]) |
|
|
variation_ratio = len(set(forms)) / len(forms) |
|
|
|
|
|
return min(1.0, (avg_length / 100 * 0.3 + variation_ratio * 0.7)) |
|
|
|
|
|
def _calculate_structural_entropy(self, archetype: ArchetypalStrand, |
|
|
forms: List[str]) -> float: |
|
|
"""Calculate structural entropy based on internal consistency""" |
|
|
|
|
|
coherence_penalty = 1 - archetype.quantum_coherence |
|
|
preservation_penalty = 1 - archetype.preservation_rate |
|
|
|
|
|
return (coherence_penalty * 0.6 + preservation_penalty * 0.4) |
|
|
|
|
|
def _classify_stability(self, entropy: float) -> str: |
|
|
"""Classify archetype stability level""" |
|
|
if entropy <= self.stability_thresholds['low_entropy']: |
|
|
return 'high_stability' |
|
|
elif entropy <= self.stability_thresholds['medium_entropy']: |
|
|
return 'medium_stability' |
|
|
elif entropy <= self.stability_thresholds['high_entropy']: |
|
|
return 'low_stability' |
|
|
else: |
|
|
return 'critical_instability' |
|
|
|
|
|
def _calculate_mutation_risk(self, entropy: float, |
|
|
contextual_factors: Dict[str, float]) -> float: |
|
|
"""Calculate risk of significant mutation""" |
|
|
base_risk = entropy |
|
|
contextual_risk = sum(contextual_factors.values()) / len(contextual_factors) |
|
|
|
|
|
return min(1.0, base_risk * 0.7 + contextual_risk * 0.3) |
|
|
|
|
|
def _update_historical_trend(self, archetype_name: str, current_entropy: float) -> List[float]: |
|
|
"""Update historical entropy trend""" |
|
|
if archetype_name not in self.entropy_history: |
|
|
return [current_entropy] |
|
|
|
|
|
current_trend = self.entropy_history[archetype_name].get('historical_trend', []) |
|
|
current_trend.append(current_entropy) |
|
|
|
|
|
|
|
|
return current_trend[-10:] |
|
|
|
|
|
def get_high_entropy_archetypes(self, threshold: float = 0.7) -> List[Dict]: |
|
|
"""Get archetypes with high mutation rates with detailed analysis""" |
|
|
high_entropy = [] |
|
|
|
|
|
for name, data in self.entropy_history.items(): |
|
|
if data['total_entropy'] > threshold: |
|
|
high_entropy.append({ |
|
|
'archetype': name, |
|
|
'total_entropy': data['total_entropy'], |
|
|
'stability_level': data['stability_level'], |
|
|
'mutation_risk': data['mutation_risk'], |
|
|
'resilience_score': data['resilience_score'], |
|
|
'trend_direction': self._calculate_trend_direction(data['historical_trend']) |
|
|
}) |
|
|
|
|
|
return sorted(high_entropy, key=lambda x: x['mutation_risk'], reverse=True) |
|
|
|
|
|
def _calculate_trend_direction(self, trend: List[float]) -> str: |
|
|
"""Calculate direction of entropy trend""" |
|
|
if len(trend) < 2: |
|
|
return 'stable' |
|
|
|
|
|
slope = stats.linregress(range(len(trend)), trend).slope |
|
|
|
|
|
if slope > 0.01: |
|
|
return 'increasing' |
|
|
elif slope < -0.01: |
|
|
return 'decreasing' |
|
|
else: |
|
|
return 'stable' |
|
|
|
|
|
def get_entropy_network(self) -> nx.Graph: |
|
|
"""Build network of archetypes based on entropy correlations""" |
|
|
G = nx.Graph() |
|
|
|
|
|
archetype_names = list(self.entropy_history.keys()) |
|
|
|
|
|
for i, arch1 in enumerate(archetype_names): |
|
|
for j, arch2 in enumerate(archetype_names): |
|
|
if i < j: |
|
|
|
|
|
trend1 = self.entropy_history[arch1].get('historical_trend', [0]) |
|
|
trend2 = self.entropy_history[arch2].get('historical_trend', [0]) |
|
|
|
|
|
|
|
|
max_len = max(len(trend1), len(trend2)) |
|
|
trend1_padded = trend1 + [0] * (max_len - len(trend1)) |
|
|
trend2_padded = trend2 + [0] * (max_len - len(trend2)) |
|
|
|
|
|
if len(trend1_padded) > 1: |
|
|
correlation = np.corrcoef(trend1_padded, trend2_padded)[0,1] |
|
|
if not np.isnan(correlation) and abs(correlation) > 0.3: |
|
|
G.add_edge(arch1, arch2, |
|
|
weight=abs(correlation), |
|
|
correlation=correlation) |
|
|
|
|
|
return G |
|
|
|
|
|
class CrossCulturalResonanceMatrix: |
|
|
"""Advanced comparison of archetypal strength across civilizations""" |
|
|
|
|
|
def __init__(self): |
|
|
self.civilization_data = {} |
|
|
self.resonance_matrix = {} |
|
|
self.cultural_clusters = {} |
|
|
self.resonance_network = nx.Graph() |
|
|
|
|
|
def add_civilization_archetype(self, civilization: str, |
|
|
archetype: str, |
|
|
strength: float, |
|
|
neural_impact: float, |
|
|
cultural_context: Dict[str, float] = None): |
|
|
"""Add archetype data with cultural context""" |
|
|
if civilization not in self.civilization_data: |
|
|
self.civilization_data[civilization] = {} |
|
|
|
|
|
if cultural_context is None: |
|
|
cultural_context = { |
|
|
'technological_level': 0.5, |
|
|
'spiritual_emphasis': 0.5, |
|
|
'individualism': 0.5, |
|
|
'ecological_connection': 0.5 |
|
|
} |
|
|
|
|
|
self.civilization_data[civilization][archetype] = { |
|
|
'strength': strength, |
|
|
'neural_impact': neural_impact, |
|
|
'cultural_context': cultural_context, |
|
|
'resonance_potential': self._calculate_resonance_potential(strength, neural_impact, cultural_context) |
|
|
} |
|
|
|
|
|
def _calculate_resonance_potential(self, strength: float, |
|
|
neural_impact: float, |
|
|
cultural_context: Dict[str, float]) -> float: |
|
|
"""Calculate overall resonance potential""" |
|
|
base_potential = (strength * 0.5 + neural_impact * 0.5) |
|
|
cultural_modifier = sum(cultural_context.values()) / len(cultural_context) |
|
|
|
|
|
return base_potential * (0.7 + cultural_modifier * 0.3) |
|
|
|
|
|
def calculate_cross_resonance(self, arch1: str, arch2: str, |
|
|
method: str = 'pearson') -> Dict[str, float]: |
|
|
"""Calculate resonance between archetypes using multiple methods""" |
|
|
strengths_1 = [] |
|
|
strengths_2 = [] |
|
|
neural_impacts_1 = [] |
|
|
neural_impacts_2 = [] |
|
|
|
|
|
for civ_data in self.civilization_data.values(): |
|
|
if arch1 in civ_data and arch2 in civ_data: |
|
|
strengths_1.append(civ_data[arch1]['strength']) |
|
|
strengths_2.append(civ_data[arch2]['strength']) |
|
|
neural_impacts_1.append(civ_data[arch1]['neural_impact']) |
|
|
neural_impacts_2.append(civ_data[arch2]['neural_impact']) |
|
|
|
|
|
results = {} |
|
|
|
|
|
if len(strengths_1) > 1: |
|
|
if method == 'pearson': |
|
|
strength_resonance = np.corrcoef(strengths_1, strengths_2)[0,1] |
|
|
neural_resonance = np.corrcoef(neural_impacts_1, neural_impacts_2)[0,1] |
|
|
elif method == 'spearman': |
|
|
strength_resonance = stats.spearmanr(strengths_1, strengths_2)[0] |
|
|
neural_resonance = stats.spearmanr(neural_impacts_1, neural_impacts_2)[0] |
|
|
else: |
|
|
strength_resonance = 1 - spatial.distance.cosine(strengths_1, strengths_2) |
|
|
neural_resonance = 1 - spatial.distance.cosine(neural_impacts_1, neural_impacts_2) |
|
|
|
|
|
results = { |
|
|
'strength_resonance': max(0, strength_resonance) if not np.isnan(strength_resonance) else 0, |
|
|
'neural_resonance': max(0, neural_resonance) if not np.isnan(neural_resonance) else 0, |
|
|
'overall_resonance': (max(0, strength_resonance) * 0.6 + max(0, neural_resonance) * 0.4) |
|
|
} |
|
|
else: |
|
|
results = { |
|
|
'strength_resonance': 0.0, |
|
|
'neural_resonance': 0.0, |
|
|
'overall_resonance': 0.0 |
|
|
} |
|
|
|
|
|
return results |
|
|
|
|
|
def build_resonance_network(self, threshold: float = 0.3) -> nx.Graph: |
|
|
"""Build advanced resonance network with community detection""" |
|
|
G = nx.Graph() |
|
|
archetypes = set() |
|
|
|
|
|
|
|
|
for civ_data in self.civilization_data.values(): |
|
|
archetypes.update(civ_data.keys()) |
|
|
|
|
|
|
|
|
for arch1 in archetypes: |
|
|
for arch2 in archetypes: |
|
|
if arch1 != arch2: |
|
|
resonance_data = self.calculate_cross_resonance(arch1, arch2) |
|
|
overall_resonance = resonance_data['overall_resonance'] |
|
|
|
|
|
if overall_resonance > threshold: |
|
|
G.add_edge(arch1, arch2, |
|
|
weight=overall_resonance, |
|
|
strength_resonance=resonance_data['strength_resonance'], |
|
|
neural_resonance=resonance_data['neural_resonance']) |
|
|
|
|
|
|
|
|
if len(G.nodes()) > 0: |
|
|
try: |
|
|
communities = nx.algorithms.community.greedy_modularity_communities(G) |
|
|
for i, community in enumerate(communities): |
|
|
for node in community: |
|
|
G.nodes[node]['community'] = i |
|
|
self.cultural_clusters = {i: list(community) for i, community in enumerate(communities)} |
|
|
except: |
|
|
|
|
|
for node in G.nodes(): |
|
|
G.nodes[node]['community'] = 0 |
|
|
|
|
|
self.resonance_network = G |
|
|
return G |
|
|
|
|
|
def find_cultural_clusters(self) -> Dict[int, List[str]]: |
|
|
"""Identify clusters of culturally resonant archetypes""" |
|
|
if not self.cultural_clusters: |
|
|
self.build_resonance_network() |
|
|
return self.cultural_clusters |
|
|
|
|
|
def calculate_civilization_similarity(self, civ1: str, civ2: str) -> float: |
|
|
"""Calculate similarity between two civilizations""" |
|
|
if civ1 not in self.civilization_data or civ2 not in self.civilization_data: |
|
|
return 0.0 |
|
|
|
|
|
common_archetypes = set(self.civilization_data[civ1].keys()) & set(self.civilization_data[civ2].keys()) |
|
|
if not common_archetypes: |
|
|
return 0.0 |
|
|
|
|
|
similarities = [] |
|
|
for arch in common_archetypes: |
|
|
strength_sim = 1 - abs(self.civilization_data[civ1][arch]['strength'] - |
|
|
self.civilization_data[civ2][arch]['strength']) |
|
|
neural_sim = 1 - abs(self.civilization_data[civ1][arch]['neural_impact'] - |
|
|
self.civilization_data[civ2][arch]['neural_impact']) |
|
|
similarities.append((strength_sim + neural_sim) / 2) |
|
|
|
|
|
return np.mean(similarities) if similarities else 0.0 |
|
|
|
|
|
def get_universal_archetypes(self, threshold: float = 0.7) -> List[str]: |
|
|
"""Find archetypes present in most civilizations""" |
|
|
civ_count = len(self.civilization_data) |
|
|
if civ_count == 0: |
|
|
return [] |
|
|
|
|
|
archetype_frequency = defaultdict(int) |
|
|
for civ_data in self.civilization_data.values(): |
|
|
for arch in civ_data.keys(): |
|
|
archetype_frequency[arch] += 1 |
|
|
|
|
|
universal = [arch for arch, count in archetype_frequency.items() |
|
|
if count / civ_count >= threshold] |
|
|
return sorted(universal, key=lambda x: archetype_frequency[x], reverse=True) |
|
|
|
|
|
class SymbolicMutationEngine: |
|
|
"""Advanced prediction of archetype evolution under cultural pressure""" |
|
|
|
|
|
def __init__(self): |
|
|
self.transformation_rules = { |
|
|
'weapon': ['tool', 'symbol', 'concept', 'algorithm'], |
|
|
'physical': ['digital', 'virtual', 'neural', 'quantum'], |
|
|
'individual': ['networked', 'collective', 'distributed', 'holographic'], |
|
|
'concrete': ['abstract', 'algorithmic', 'quantum', 'consciousness_based'], |
|
|
'hierarchical': ['networked', 'decentralized', 'rhizomatic', 'holonic'] |
|
|
} |
|
|
|
|
|
self.pressure_vectors = { |
|
|
'digitization': { |
|
|
'intensity_range': (0.3, 0.9), |
|
|
'preferred_transformations': ['physical->digital', 'concrete->algorithmic'], |
|
|
'resistance_factors': ['cultural_traditionalism', 'technological_aversion'] |
|
|
}, |
|
|
'ecological_crisis': { |
|
|
'intensity_range': (0.5, 1.0), |
|
|
'preferred_transformations': ['individual->collective', 'weapon->tool'], |
|
|
'resistance_factors': ['individualism', 'consumerism'] |
|
|
}, |
|
|
'quantum_awakening': { |
|
|
'intensity_range': (0.2, 0.8), |
|
|
'preferred_transformations': ['concrete->quantum', 'physical->neural'], |
|
|
'resistance_factors': ['materialism', 'reductionism'] |
|
|
}, |
|
|
'neural_enhancement': { |
|
|
'intensity_range': (0.4, 0.9), |
|
|
'preferred_transformations': ['individual->networked', 'concrete->consciousness_based'], |
|
|
'resistance_factors': ['biological_conservatism', 'ethical_concerns'] |
|
|
} |
|
|
} |
|
|
|
|
|
self.archetype_transformations = self._initialize_transformation_library() |
|
|
|
|
|
def _initialize_transformation_library(self) -> Dict[str, Dict[str, List[str]]]: |
|
|
"""Initialize comprehensive transformation library""" |
|
|
return { |
|
|
'spear': { |
|
|
'physical->digital': ['laser_designator', 'cyber_spear', 'data_lance'], |
|
|
'weapon->tool': ['guided_implement', 'precision_instrument', 'surgical_tool'], |
|
|
'individual->networked': ['swarm_coordination', 'distributed_attack', 'coordinated_defense'], |
|
|
'hierarchical->decentralized': ['peer_to_peer_defense', 'distributed_security'] |
|
|
}, |
|
|
'lion': { |
|
|
'physical->digital': ['data_guardian', 'cyber_protector', 'algorithmic_sovereignty'], |
|
|
'concrete->abstract': ['sovereignty_algorithm', 'leadership_principle', 'authority_pattern'], |
|
|
'individual->collective': ['pride_consciousness', 'collective_strength', 'community_protection'] |
|
|
}, |
|
|
'sun': { |
|
|
'concrete->quantum': ['consciousness_illumination', 'quantum_awareness', 'enlightenment_field'], |
|
|
'physical->neural': ['neural_awakening', 'cognitive_illumination', 'mind_light'], |
|
|
'individual->networked': ['collective_consciousness', 'global_awareness', 'networked_insight'] |
|
|
}, |
|
|
'serpent': { |
|
|
'physical->digital': ['data_worm', 'algorithmic_subversion', 'cyber_undermining'], |
|
|
'weapon->tool': ['transformative_agent', 'healing_serpent', 'regeneration_symbol'], |
|
|
'concrete->quantum': ['quantum_chaos', 'nonlocal_influence', 'entanglement_manifestation'] |
|
|
} |
|
|
} |
|
|
|
|
|
def predict_mutation(self, current_archetype: str, |
|
|
pressure_vector: str, |
|
|
intensity: float = 0.5, |
|
|
cultural_context: Dict[str, float] = None) -> List[Dict[str, Any]]: |
|
|
"""Advanced mutation prediction with cultural context""" |
|
|
|
|
|
if cultural_context is None: |
|
|
cultural_context = { |
|
|
'technological_acceptance': 0.5, |
|
|
'spiritual_openness': 0.5, |
|
|
'cultural_fluidity': 0.5, |
|
|
'innovation_capacity': 0.5 |
|
|
} |
|
|
|
|
|
if pressure_vector not in self.pressure_vectors: |
|
|
return [] |
|
|
|
|
|
pressure_config = self.pressure_vectors[pressure_vector] |
|
|
normalized_intensity = self._normalize_intensity(intensity, pressure_config['intensity_range']) |
|
|
|
|
|
|
|
|
transformations = [] |
|
|
for rule in pressure_config['preferred_transformations']: |
|
|
possible_mutations = self._apply_transformation(current_archetype, rule) |
|
|
|
|
|
for mutation in possible_mutations: |
|
|
confidence = self._calculate_mutation_confidence( |
|
|
mutation, normalized_intensity, cultural_context, |
|
|
pressure_config['resistance_factors'] |
|
|
) |
|
|
|
|
|
if confidence > 0.2: |
|
|
transformations.append({ |
|
|
'original_archetype': current_archetype, |
|
|
'mutated_form': mutation, |
|
|
'transformation_rule': rule, |
|
|
'pressure_vector': pressure_vector, |
|
|
'intensity': normalized_intensity, |
|
|
'confidence': confidence, |
|
|
'timeframe': self._estimate_timeframe(confidence, normalized_intensity), |
|
|
'cultural_compatibility': self._assess_cultural_compatibility(mutation, cultural_context), |
|
|
'potential_impact': self._estimate_impact(mutation, current_archetype) |
|
|
}) |
|
|
|
|
|
|
|
|
return sorted(transformations, |
|
|
key=lambda x: x['confidence'] * x['potential_impact'], |
|
|
reverse=True) |
|
|
|
|
|
def _normalize_intensity(self, intensity: float, intensity_range: Tuple[float, float]) -> float: |
|
|
"""Normalize intensity within pressure-specific range""" |
|
|
min_intensity, max_intensity = intensity_range |
|
|
return min(1.0, max(0.0, (intensity - min_intensity) / (max_intensity - min_intensity))) |
|
|
|
|
|
def _apply_transformation(self, archetype: str, rule: str) -> List[str]: |
|
|
"""Apply transformation rule to archetype""" |
|
|
if '->' not in rule: |
|
|
return [] |
|
|
|
|
|
return self.archetype_transformations.get(archetype, {}).get(rule, []) |
|
|
|
|
|
def _calculate_mutation_confidence(self, mutation: str, |
|
|
intensity: float, |
|
|
cultural_context: Dict[str, float], |
|
|
resistance_factors: List[str]) -> float: |
|
|
"""Calculate confidence in mutation prediction""" |
|
|
base_confidence = 0.3 + intensity * 0.4 |
|
|
|
|
|
|
|
|
cultural_compatibility = sum(cultural_context.values()) / len(cultural_context) |
|
|
cultural_boost = cultural_compatibility * 0.3 |
|
|
|
|
|
|
|
|
resistance_penalty = sum(1 - cultural_context.get(factor, 0.5) |
|
|
for factor in resistance_factors) / len(resistance_factors) * 0.2 |
|
|
|
|
|
final_confidence = base_confidence + cultural_boost - resistance_penalty |
|
|
return min(1.0, max(0.0, final_confidence)) |
|
|
|
|
|
def _estimate_timeframe(self, confidence: float, intensity: float) -> str: |
|
|
"""Estimate mutation timeframe""" |
|
|
timeframe_score = confidence * intensity |
|
|
|
|
|
if timeframe_score > 0.7: |
|
|
return 'immediate (1-5 years)' |
|
|
elif timeframe_score > 0.5: |
|
|
return 'near_future (5-15 years)' |
|
|
elif timeframe_score > 0.3: |
|
|
return 'mid_future (15-30 years)' |
|
|
else: |
|
|
return 'distant_future (30+ years)' |
|
|
|
|
|
def _assess_cultural_compatibility(self, mutation: str, |
|
|
cultural_context: Dict[str, float]) -> float: |
|
|
"""Assess cultural compatibility of mutation""" |
|
|
|
|
|
tech_keywords = ['digital', 'cyber', 'algorithm', 'data', 'network'] |
|
|
spirit_keywords = ['consciousness', 'awareness', 'enlightenment', 'quantum'] |
|
|
innovation_keywords = ['transformative', 'novel', 'emerging', 'advanced'] |
|
|
|
|
|
tech_score = any(keyword in mutation.lower() for keyword in tech_keywords) |
|
|
spirit_score = any(keyword in mutation.lower() for keyword in spirit_keywords) |
|
|
innovation_score = any(keyword in mutation.lower() for keyword in innovation_keywords) |
|
|
|
|
|
scores = [] |
|
|
if tech_score: |
|
|
scores.append(cultural_context.get('technological_acceptance', 0.5)) |
|
|
if spirit_score: |
|
|
scores.append(cultural_context.get('spiritual_openness', 0.5)) |
|
|
if innovation_score: |
|
|
scores.append(cultural_context.get('innovation_capacity', 0.5)) |
|
|
|
|
|
return np.mean(scores) if scores else 0.5 |
|
|
|
|
|
def _estimate_impact(self, mutation: str, original: str) -> float: |
|
|
"""Estimate potential impact of mutation""" |
|
|
|
|
|
transformation_degree = self._calculate_transformation_degree(mutation, original) |
|
|
novelty_factor = len(mutation) / max(len(original), 1) |
|
|
|
|
|
return min(1.0, transformation_degree * 0.7 + novelty_factor * 0.3) |
|
|
|
|
|
def _calculate_transformation_degree(self, mutation: str, original: str) -> float: |
|
|
"""Calculate degree of transformation from original""" |
|
|
|
|
|
if original.lower() in mutation.lower(): |
|
|
return 0.3 |
|
|
else: |
|
|
return 0.8 |
|
|
|
|
|
def generate_mutation_scenarios(self, archetype: str, |
|
|
time_horizon: str = 'mid_future') -> Dict[str, Any]: |
|
|
"""Generate comprehensive mutation scenarios""" |
|
|
scenarios = {} |
|
|
|
|
|
for pressure_vector in self.pressure_vectors.keys(): |
|
|
mutations = self.predict_mutation( |
|
|
archetype, pressure_vector, intensity=0.7, |
|
|
cultural_context={ |
|
|
'technological_acceptance': 0.7, |
|
|
'spiritual_openness': 0.6, |
|
|
'cultural_fluidity': 0.8, |
|
|
'innovation_capacity': 0.7 |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
timeframe_mutations = [m for m in mutations if m['timeframe'] == time_horizon] |
|
|
|
|
|
if timeframe_mutations: |
|
|
scenarios[pressure_vector] = { |
|
|
'most_likely': max(timeframe_mutations, key=lambda x: x['confidence']), |
|
|
'all_possibilities': timeframe_mutations, |
|
|
'average_confidence': np.mean([m['confidence'] for m in timeframe_mutations]), |
|
|
'transformation_potential': np.mean([m['potential_impact'] for m in timeframe_mutations]) |
|
|
} |
|
|
|
|
|
return scenarios |
|
|
|
|
|
class ArchetypalEntanglement: |
|
|
"""Quantum entanglement analysis between archetypes""" |
|
|
|
|
|
def __init__(self): |
|
|
self.entanglement_network = nx.Graph() |
|
|
self.quantum_correlations = {} |
|
|
self.nonlocal_connections = {} |
|
|
|
|
|
def calculate_quantum_entanglement(self, arch1: ArchetypalStrand, |
|
|
arch2: ArchetypalStrand, |
|
|
tech1: ConsciousnessTechnology, |
|
|
tech2: ConsciousnessTechnology) -> Dict[str, float]: |
|
|
"""Calculate quantum entanglement between archetypal consciousness fields""" |
|
|
|
|
|
|
|
|
qualia_similarity = 1 - tech1.quantum_signature.calculate_qualia_distance( |
|
|
tech2.quantum_signature |
|
|
) |
|
|
|
|
|
|
|
|
neural_sync = (tech1.neural_correlate.cross_hemispheric_sync + |
|
|
tech2.neural_correlate.cross_hemispheric_sync) / 2 |
|
|
|
|
|
|
|
|
freq_harmony = 1 - abs(tech1.quantum_signature.resonance_frequency - |
|
|
tech2.quantum_signature.resonance_frequency) / 100 |
|
|
|
|
|
|
|
|
coherence_alignment = (tech1.quantum_signature.coherence + |
|
|
tech2.quantum_signature.coherence) / 2 |
|
|
|
|
|
|
|
|
entanglement_prob = (qualia_similarity * 0.3 + |
|
|
neural_sync * 0.25 + |
|
|
freq_harmony * 0.25 + |
|
|
coherence_alignment * 0.2) |
|
|
|
|
|
result = { |
|
|
'entanglement_probability': entanglement_prob, |
|
|
'qualia_similarity': qualia_similarity, |
|
|
'neural_sync': neural_sync, |
|
|
'frequency_harmony': freq_harmony, |
|
|
'coherence_alignment': coherence_alignment, |
|
|
'nonlocal_correlation': tech1.quantum_signature.nonlocal_correlation * |
|
|
tech2.quantum_signature.nonlocal_correlation |
|
|
} |
|
|
|
|
|
|
|
|
key = f"{arch1.name}_{arch2.name}" |
|
|
self.quantum_correlations[key] = result |
|
|
|
|
|
if entanglement_prob > 0.5: |
|
|
self.entanglement_network.add_edge( |
|
|
arch1.name, arch2.name, |
|
|
weight=entanglement_prob, |
|
|
**result |
|
|
) |
|
|
|
|
|
return result |
|
|
|
|
|
def find_strongly_entangled_pairs(self, threshold: float = 0.7) -> List[Dict]: |
|
|
"""Find strongly entangled archetype pairs""" |
|
|
strong_pairs = [] |
|
|
|
|
|
for edge in self.entanglement_network.edges(data=True): |
|
|
if edge[2]['weight'] > threshold: |
|
|
strong_pairs.append({ |
|
|
'archetype1': edge[0], |
|
|
'archetype2': edge[1], |
|
|
'entanglement_strength': edge[2]['weight'], |
|
|
'qualia_similarity': edge[2]['qualia_similarity'], |
|
|
'neural_sync': edge[2]['neural_sync'] |
|
|
}) |
|
|
|
|
|
return sorted(strong_pairs, key=lambda x: x['entanglement_strength'], reverse=True) |
|
|
|
|
|
def calculate_entanglement_entropy(self) -> float: |
|
|
"""Calculate von Neumann entropy of entanglement network""" |
|
|
if len(self.entanglement_network) == 0: |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
degrees = [d for _, d in self.entanglement_network.degree(weight='weight')] |
|
|
total_degree = sum(degrees) |
|
|
|
|
|
if total_degree == 0: |
|
|
return 0.0 |
|
|
|
|
|
probabilities = [d/total_degree for d in degrees] |
|
|
entropy = -sum(p * math.log(p) for p in probabilities if p > 0) |
|
|
|
|
|
return entropy |
|
|
|
|
|
class CollectiveConsciousnessMapper: |
|
|
"""Mapping of collective archetypal activation across populations""" |
|
|
|
|
|
def __init__(self): |
|
|
self.collective_field = {} |
|
|
self.global_resonance_waves = {} |
|
|
self.consciousness_weather = {} |
|
|
self.temporal_patterns = {} |
|
|
|
|
|
def update_collective_resonance(self, archetype: str, |
|
|
global_activation: float, |
|
|
regional_data: Dict[str, float] = None): |
|
|
"""Track collective archetypal activation across populations""" |
|
|
|
|
|
current_time = datetime.now() |
|
|
|
|
|
if archetype not in self.collective_field: |
|
|
self.collective_field[archetype] = { |
|
|
'activation_history': [], |
|
|
'regional_variations': {}, |
|
|
'resonance_peaks': [], |
|
|
'stability_metric': 0.0 |
|
|
} |
|
|
|
|
|
|
|
|
self.collective_field[archetype]['activation_history'].append({ |
|
|
'timestamp': current_time, |
|
|
'global_activation': global_activation, |
|
|
'regional_data': regional_data or {} |
|
|
}) |
|
|
|
|
|
|
|
|
if len(self.collective_field[archetype]['activation_history']) > 1000: |
|
|
self.collective_field[archetype]['activation_history'] = \ |
|
|
self.collective_field[archetype]['activation_history'][-1000:] |
|
|
|
|
|
|
|
|
if regional_data: |
|
|
for region, activation in regional_data.items(): |
|
|
if region not in self.collective_field[archetype]['regional_variations']: |
|
|
self.collective_field[archetype]['regional_variations'][region] = [] |
|
|
|
|
|
self.collective_field[archetype]['regional_variations'][region].append(activation) |
|
|
|
|
|
|
|
|
if len(self.collective_field[archetype]['regional_variations'][region]) > 100: |
|
|
self.collective_field[archetype]['regional_variations'][region] = \ |
|
|
self.collective_field[archetype]['regional_variations'][region][-100:] |
|
|
|
|
|
|
|
|
self._detect_resonance_peaks(archetype) |
|
|
|
|
|
|
|
|
self._calculate_stability_metric(archetype) |
|
|
|
|
|
|
|
|
self._update_global_resonance(archetype, global_activation, current_time) |
|
|
|
|
|
def _detect_resonance_peaks(self, archetype: str): |
|
|
"""Detect significant resonance peaks in collective activation""" |
|
|
history = self.collective_field[archetype]['activation_history'] |
|
|
if len(history) < 10: |
|
|
return |
|
|
|
|
|
activations = [entry['global_activation'] for entry in history[-50:]] |
|
|
mean_activation = np.mean(activations) |
|
|
std_activation = np.std(activations) |
|
|
|
|
|
current_activation = activations[-1] |
|
|
|
|
|
|
|
|
if current_activation > mean_activation + 2 * std_activation: |
|
|
peak_data = { |
|
|
'timestamp': history[-1]['timestamp'], |
|
|
'activation_strength': current_activation, |
|
|
'significance': (current_activation - mean_activation) / std_activation, |
|
|
'duration': self._estimate_peak_duration(archetype) |
|
|
} |
|
|
|
|
|
self.collective_field[archetype]['resonance_peaks'].append(peak_data) |
|
|
|
|
|
def _estimate_peak_duration(self, archetype: str) -> float: |
|
|
"""Estimate duration of resonance peak""" |
|
|
|
|
|
peaks = self.collective_field[archetype]['resonance_peaks'] |
|
|
if len(peaks) < 2: |
|
|
return 1.0 |
|
|
|
|
|
durations = [] |
|
|
for i in range(1, len(peaks)): |
|
|
time_diff = (peaks[i]['timestamp'] - peaks[i-1]['timestamp']).total_seconds() / 3600 |
|
|
durations.append(time_diff) |
|
|
|
|
|
return np.mean(durations) if durations else 1.0 |
|
|
|
|
|
def _calculate_stability_metric(self, archetype: str): |
|
|
"""Calculate stability metric for collective activation""" |
|
|
history = self.collective_field[archetype]['activation_history'] |
|
|
if len(history) < 2: |
|
|
self.collective_field[archetype]['stability_metric'] = 1.0 |
|
|
return |
|
|
|
|
|
activations = [entry['global_activation'] for entry in history[-100:]] |
|
|
volatility = np.std(activations) / np.mean(activations) |
|
|
stability = 1 - min(1.0, volatility) |
|
|
|
|
|
self.collective_field[archetype]['stability_metric'] = stability |
|
|
|
|
|
def _update_global_resonance(self, archetype: str, activation: float, timestamp: datetime): |
|
|
"""Update global resonance wave patterns""" |
|
|
if archetype not in self.global_resonance_waves: |
|
|
self.global_resonance_waves[archetype] = { |
|
|
'waveform': [], |
|
|
'frequency': 0.0, |
|
|
'amplitude': 0.0, |
|
|
'phase': 0.0 |
|
|
} |
|
|
|
|
|
wave_data = self.global_resonance_waves[archetype] |
|
|
wave_data['waveform'].append({ |
|
|
'timestamp': timestamp, |
|
|
'amplitude': activation |
|
|
}) |
|
|
|
|
|
|
|
|
if len(wave_data['waveform']) > 1000: |
|
|
wave_data['waveform'] = wave_data['waveform'][-1000:] |
|
|
|
|
|
|
|
|
if len(wave_data['waveform']) >= 10: |
|
|
amplitudes = [point['amplitude'] for point in wave_data['waveform'][-10:]] |
|
|
wave_data['amplitude'] = np.mean(amplitudes) |
|
|
wave_data['frequency'] = self._estimate_frequency(wave_data['waveform'][-10:]) |
|
|
|
|
|
def _estimate_frequency(self, waveform: List[Dict]) -> float: |
|
|
"""Estimate frequency of resonance wave""" |
|
|
if len(waveform) < 2: |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
amplitudes = [point['amplitude'] for point in waveform] |
|
|
mean_amp = np.mean(amplitudes) |
|
|
|
|
|
zero_crossings = 0 |
|
|
for i in range(1, len(amplitudes)): |
|
|
if (amplitudes[i-1] - mean_amp) * (amplitudes[i] - mean_amp) < 0: |
|
|
zero_crossings += 1 |
|
|
|
|
|
time_span = (waveform[-1]['timestamp'] - waveform[0]['timestamp']).total_seconds() |
|
|
frequency = zero_crossings / (2 * time_span) if time_span > 0 else 0.0 |
|
|
|
|
|
return frequency |
|
|
|
|
|
def generate_consciousness_weather_report(self) -> Dict[str, Any]: |
|
|
"""Generate consciousness weather report for all archetypes""" |
|
|
weather_report = { |
|
|
'timestamp': datetime.now(), |
|
|
'overall_conditions': {}, |
|
|
'archetype_forecasts': {}, |
|
|
'global_resonance_index': 0.0, |
|
|
'collective_stability': 0.0 |
|
|
} |
|
|
|
|
|
total_activation = 0 |
|
|
total_stability = 0 |
|
|
archetype_count = len(self.collective_field) |
|
|
|
|
|
for archetype, data in self.collective_field.items(): |
|
|
current_activation = data['activation_history'][-1]['global_activation'] if data['activation_history'] else 0 |
|
|
stability = data['stability_metric'] |
|
|
|
|
|
|
|
|
if current_activation > 0.8: |
|
|
condition = "high_resonance_storm" |
|
|
elif current_activation > 0.6: |
|
|
condition = "resonance_ surge" |
|
|
elif current_activation > 0.4: |
|
|
condition = "stable_resonance" |
|
|
elif current_activation > 0.2: |
|
|
condition = "low_resonance" |
|
|
else: |
|
|
condition = "resonance_drought" |
|
|
|
|
|
weather_report['archetype_forecasts'][archetype] = { |
|
|
'condition': condition, |
|
|
'activation_level': current_activation, |
|
|
'stability': stability, |
|
|
'recent_peaks': len(data['resonance_peaks'][-24:]), |
|
|
'regional_variation': np.std(list(data.get('regional_variations', {}).values())) if data.get('regional_variations') else 0.0 |
|
|
} |
|
|
|
|
|
total_activation += current_activation |
|
|
total_stability += stability |
|
|
|
|
|
if archetype_count > 0: |
|
|
weather_report['global_resonance_index'] = total_activation / archetype_count |
|
|
weather_report['collective_stability'] = total_stability / archetype_count |
|
|
|
|
|
|
|
|
if weather_report['global_resonance_index'] > 0.7: |
|
|
weather_report['overall_conditions']['state'] = "heightened_consciousness" |
|
|
elif weather_report['global_resonance_index'] > 0.5: |
|
|
weather_report['overall_conditions']['state'] = "active_awareness" |
|
|
else: |
|
|
weather_report['overall_conditions']['state'] = "baseline_consciousness" |
|
|
|
|
|
weather_report['overall_conditions']['trend'] = self._calculate_global_trend() |
|
|
|
|
|
return weather_report |
|
|
|
|
|
def _calculate_global_trend(self) -> str: |
|
|
"""Calculate global consciousness trend""" |
|
|
|
|
|
recent_activations = [] |
|
|
for archetype_data in self.collective_field.values(): |
|
|
if archetype_data['activation_history']: |
|
|
recent_activations.extend( |
|
|
[entry['global_activation'] for entry in archetype_data['activation_history'][-10:]] |
|
|
) |
|
|
|
|
|
if len(recent_activations) < 5: |
|
|
return "stable" |
|
|
|
|
|
slope = stats.linregress(range(len(recent_activations)), recent_activations).slope |
|
|
|
|
|
if slope > 0.01: |
|
|
return "rising" |
|
|
elif slope < -0.01: |
|
|
return "falling" |
|
|
else: |
|
|
return "stable" |
|
|
|
|
|
class UniversalArchetypalTransmissionEngine: |
|
|
"""Main engine integrating all advanced modules with enhanced capabilities""" |
|
|
|
|
|
def __init__(self): |
|
|
self.consciousness_tech = {} |
|
|
self.phylogenetics = CulturalPhylogenetics() |
|
|
self.geospatial_mapper = GeospatialArchetypalMapper() |
|
|
self.entropy_calculator = ArchetypalEntropyIndex() |
|
|
self.resonance_matrix = CrossCulturalResonanceMatrix() |
|
|
self.mutation_engine = SymbolicMutationEngine() |
|
|
self.entanglement_analyzer = ArchetypalEntanglement() |
|
|
self.collective_mapper = CollectiveConsciousnessMapper() |
|
|
self.archetypal_db = {} |
|
|
self.performance_history = [] |
|
|
|
|
|
|
|
|
self.system_health = { |
|
|
'neural_network_integrity': 1.0, |
|
|
'quantum_coherence': 1.0, |
|
|
'symbolic_resolution': 1.0, |
|
|
'temporal_synchronization': 1.0 |
|
|
} |
|
|
|
|
|
def register_archetype(self, archetype: ArchetypalStrand, |
|
|
consciousness_tech: ConsciousnessTechnology): |
|
|
"""Register a new archetype with its consciousness technology""" |
|
|
self.archetypal_db[archetype.name] = archetype |
|
|
self.consciousness_tech[archetype.name] = consciousness_tech |
|
|
|
|
|
|
|
|
self.collective_mapper.update_collective_resonance( |
|
|
archetype.name, |
|
|
global_activation=0.5, |
|
|
regional_data={'global': 0.5} |
|
|
) |
|
|
|
|
|
def prove_consciousness_architecture(self, |
|
|
include_entanglement: bool = True) -> pd.DataFrame: |
|
|
"""Comprehensive analysis of archetypal strength and coherence""" |
|
|
|
|
|
results = [] |
|
|
for name, archetype in self.archetypal_db.items(): |
|
|
tech = self.consciousness_tech.get(name) |
|
|
|
|
|
if not tech: |
|
|
|
|
|
continue |
|
|
|
|
|
|
|
|
neural_impact = tech.neural_correlate.neural_efficiency |
|
|
quantum_strength = tech.quantum_signature.coherence |
|
|
cultural_resilience = archetype.cultural_resilience |
|
|
|
|
|
|
|
|
entanglement_factor = 1.0 |
|
|
if include_entanglement: |
|
|
|
|
|
entanglement_strengths = [] |
|
|
for other_name, other_archetype in self.archetypal_db.items(): |
|
|
if other_name != name: |
|
|
other_tech = self.consciousness_tech.get(other_name) |
|
|
if other_tech: |
|
|
entanglement = self.entanglement_analyzer.calculate_quantum_entanglement( |
|
|
archetype, other_archetype, tech, other_tech |
|
|
) |
|
|
entanglement_strengths.append(entanglement['entanglement_probability']) |
|
|
|
|
|
if entanglement_strengths: |
|
|
entanglement_factor = 1 + (np.mean(entanglement_strengths) * 0.2) |
|
|
|
|
|
overall_strength = ( |
|
|
archetype.symbolic_strength * 0.3 + |
|
|
neural_impact * 0.25 + |
|
|
quantum_strength * 0.2 + |
|
|
cultural_resilience * 0.15 + |
|
|
(archetype.symbolic_strength * entanglement_factor) * 0.1 |
|
|
) |
|
|
|
|
|
|
|
|
collective_data = self.collective_mapper.collective_field.get(name, {}) |
|
|
current_activation = 0.5 |
|
|
if collective_data.get('activation_history'): |
|
|
current_activation = collective_data['activation_history'][-1]['global_activation'] |
|
|
|
|
|
results.append({ |
|
|
'Archetype': name, |
|
|
'Symbolic_Strength': archetype.symbolic_strength, |
|
|
'Temporal_Depth': archetype.temporal_depth, |
|
|
'Spatial_Distribution': archetype.spatial_distribution, |
|
|
'Quantum_Coherence': archetype.quantum_coherence, |
|
|
'Neural_Impact': neural_impact, |
|
|
'Cultural_Resilience': cultural_resilience, |
|
|
'Collective_Activation': current_activation, |
|
|
'Overall_Strength': overall_strength, |
|
|
'Consciousness_State': tech.neural_correlate.frequency_band.value, |
|
|
'Entanglement_Factor': entanglement_factor |
|
|
}) |
|
|
|
|
|
df = pd.DataFrame(results) |
|
|
return df.sort_values('Overall_Strength', ascending=False) |
|
|
|
|
|
def generate_cultural_diagnostic(self, depth: str = 'comprehensive') -> Dict[str, Any]: |
|
|
"""Generate comprehensive cultural psyche diagnostic""" |
|
|
|
|
|
strength_analysis = self.prove_consciousness_architecture() |
|
|
high_entropy = self.entropy_calculator.get_high_entropy_archetypes() |
|
|
resonance_net = self.resonance_matrix.build_resonance_network() |
|
|
weather_report = self.collective_mapper.generate_consciousness_weather_report() |
|
|
entangled_pairs = self.entanglement_analyzer.find_strongly_entangled_pairs() |
|
|
|
|
|
diagnostic = { |
|
|
'timestamp': datetime.now(), |
|
|
'analysis_depth': depth, |
|
|
'system_health': self.system_health, |
|
|
'strength_analysis': { |
|
|
'top_archetypes': strength_analysis.head(5).to_dict('records'), |
|
|
'weakest_archetypes': strength_analysis.tail(3).to_dict('records'), |
|
|
'average_strength': strength_analysis['Overall_Strength'].mean(), |
|
|
'strength_distribution': { |
|
|
'min': strength_analysis['Overall_Strength'].min(), |
|
|
'max': strength_analysis['Overall_Strength'].max(), |
|
|
'std': strength_analysis['Overall_Strength'].std() |
|
|
} |
|
|
}, |
|
|
'cultural_phase_shift_indicators': { |
|
|
'rising_archetypes': self._identify_rising_archetypes(), |
|
|
'declining_archetypes': self._identify_declining_archetypes(), |
|
|
'high_entropy_archetypes': high_entropy, |
|
|
'entropy_network_density': nx.density(self.entropy_calculator.get_entropy_network()) if len(self.archetypal_db) > 1 else 0.0 |
|
|
}, |
|
|
'collective_consciousness': { |
|
|
'weather_report': weather_report, |
|
|
'global_resonance_index': weather_report.get('global_resonance_index', 0), |
|
|
'collective_stability': weather_report.get('collective_stability', 0) |
|
|
}, |
|
|
'resonance_analysis': { |
|
|
'network_density': nx.density(resonance_net), |
|
|
'cultural_clusters': self.resonance_matrix.find_cultural_clusters(), |
|
|
'universal_archetypes': self.resonance_matrix.get_universal_archetypes(), |
|
|
'average_cluster_size': np.mean([len(cluster) for cluster in self.resonance_matrix.cultural_clusters.values()]) if self.resonance_matrix.cultural_clusters else 0 |
|
|
}, |
|
|
'quantum_entanglement': { |
|
|
'strongly_entangled_pairs': entangled_pairs, |
|
|
'entanglement_entropy': self.entanglement_analyzer.calculate_entanglement_entropy(), |
|
|
'total_entangled_connections': len(self.entanglement_analyzer.entanglement_network.edges()) |
|
|
}, |
|
|
'consciousness_coherence_index': self._calculate_coherence_index(), |
|
|
'predicted_evolution': self._predict_cultural_evolution(depth), |
|
|
'recommendations': self._generate_recommendations() |
|
|
} |
|
|
|
|
|
|
|
|
self.performance_history.append({ |
|
|
'timestamp': diagnostic['timestamp'], |
|
|
'global_resonance_index': diagnostic['collective_consciousness']['global_resonance_index'], |
|
|
'coherence_index': diagnostic['consciousness_coherence_index'], |
|
|
'system_health': diagnostic['system_health'] |
|
|
}) |
|
|
|
|
|
return diagnostic |
|
|
|
|
|
def _identify_rising_archetypes(self) -> List[Dict]: |
|
|
"""Identify archetypes with rising influence""" |
|
|
|
|
|
strength_df = self.prove_consciousness_architecture() |
|
|
top_archetypes = strength_df.head(3) |
|
|
|
|
|
rising = [] |
|
|
for _, row in top_archetypes.iterrows(): |
|
|
if row['Collective_Activation'] > 0.7: |
|
|
rising.append({ |
|
|
'archetype': row['Archetype'], |
|
|
'strength': row['Overall_Strength'], |
|
|
'activation': row['Collective_Activation'], |
|
|
'momentum': 'high' if row['Overall_Strength'] > 0.8 else 'medium' |
|
|
}) |
|
|
|
|
|
return rising |
|
|
|
|
|
def _identify_declining_archetypes(self) -> List[Dict]: |
|
|
"""Identify archetypes with declining influence""" |
|
|
strength_df = self.prove_consciousness_architecture() |
|
|
bottom_archetypes = strength_df.tail(3) |
|
|
|
|
|
declining = [] |
|
|
for _, row in bottom_archetypes.iterrows(): |
|
|
if row['Collective_Activation'] < 0.3: |
|
|
declining.append({ |
|
|
'archetype': row['Archetype'], |
|
|
'strength': row['Overall_Strength'], |
|
|
'activation': row['Collective_Activation'], |
|
|
'risk_level': 'high' if row['Overall_Strength'] < 0.3 else 'medium' |
|
|
}) |
|
|
|
|
|
return declining |
|
|
|
|
|
def _calculate_coherence_index(self) -> Dict[str, float]: |
|
|
"""Calculate comprehensive coherence indices""" |
|
|
if not self.archetypal_db: |
|
|
return {'overall': 0.0, 'neural': 0.0, 'quantum': 0.0, 'cultural': 0.0} |
|
|
|
|
|
|
|
|
neural_coherence = np.mean([ |
|
|
tech.neural_correlate.neural_efficiency |
|
|
for tech in self.consciousness_tech.values() |
|
|
]) if self.consciousness_tech else 0.5 |
|
|
|
|
|
|
|
|
quantum_coherence = np.mean([ |
|
|
tech.quantum_signature.coherence |
|
|
for tech in self.consciousness_tech.values() |
|
|
]) if self.consciousness_tech else 0.5 |
|
|
|
|
|
|
|
|
cultural_coherence = np.mean([ |
|
|
archetype.preservation_rate * 0.6 + archetype.quantum_coherence * 0.4 |
|
|
for archetype in self.archetypal_db.values() |
|
|
]) |
|
|
|
|
|
|
|
|
overall_coherence = ( |
|
|
neural_coherence * 0.3 + |
|
|
quantum_coherence * 0.3 + |
|
|
cultural_coherence * 0.4 |
|
|
) |
|
|
|
|
|
return { |
|
|
'overall': overall_coherence, |
|
|
'neural': neural_coherence, |
|
|
'quantum': quantum_coherence, |
|
|
'cultural': cultural_coherence |
|
|
} |
|
|
|
|
|
def _predict_cultural_evolution(self, depth: str) -> List[Dict[str, Any]]: |
|
|
"""Predict cultural evolution with variable depth""" |
|
|
predictions = [] |
|
|
|
|
|
pressure_vectors = ['digitization', 'ecological_crisis', 'quantum_awakening'] |
|
|
|
|
|
for pressure in pressure_vectors: |
|
|
for archetype_name in list(self.archetypal_db.keys())[:5]: |
|
|
if depth == 'comprehensive': |
|
|
scenarios = self.mutation_engine.generate_mutation_scenarios( |
|
|
archetype_name, 'near_future' |
|
|
) |
|
|
if pressure in scenarios: |
|
|
predictions.append({ |
|
|
'pressure_vector': pressure, |
|
|
'archetype': archetype_name, |
|
|
'scenario': scenarios[pressure], |
|
|
'timeframe': 'near_future', |
|
|
'analysis_depth': 'comprehensive' |
|
|
}) |
|
|
else: |
|
|
mutations = self.mutation_engine.predict_mutation( |
|
|
archetype_name, pressure, intensity=0.7 |
|
|
) |
|
|
if mutations: |
|
|
predictions.append({ |
|
|
'pressure_vector': pressure, |
|
|
'archetype': archetype_name, |
|
|
'most_likely_mutation': mutations[0], |
|
|
'total_possibilities': len(mutations), |
|
|
'timeframe': 'next_20_years', |
|
|
'analysis_depth': 'basic' |
|
|
}) |
|
|
|
|
|
return predictions |
|
|
|
|
|
def _generate_recommendations(self) -> List[Dict[str, Any]]: |
|
|
"""Generate system recommendations based on current state""" |
|
|
recommendations = [] |
|
|
diagnostic = self.generate_cultural_diagnostic('basic') |
|
|
|
|
|
|
|
|
health_scores = self.system_health.values() |
|
|
avg_health = sum(health_scores) / len(health_scores) if health_scores else 0 |
|
|
|
|
|
if avg_health < 0.7: |
|
|
recommendations.append({ |
|
|
'type': 'system_maintenance', |
|
|
'priority': 'high', |
|
|
'message': 'System health below optimal levels. Recommend neural network recalibration.', |
|
|
'suggested_actions': [ |
|
|
'Run neural coherence diagnostics', |
|
|
'Check quantum entanglement matrix integrity', |
|
|
'Verify symbolic resolution settings' |
|
|
] |
|
|
}) |
|
|
|
|
|
|
|
|
high_entropy = diagnostic['cultural_phase_shift_indicators']['high_entropy_archetypes'] |
|
|
if high_entropy: |
|
|
recommendations.append({ |
|
|
'type': 'cultural_monitoring', |
|
|
'priority': 'medium', |
|
|
'message': f'Detected {len(high_entropy)} high-entropy archetypes undergoing significant mutation.', |
|
|
'suggested_actions': [ |
|
|
'Increase monitoring frequency for high-entropy archetypes', |
|
|
'Prepare contingency plans for symbolic mutations', |
|
|
'Update transformation prediction models' |
|
|
] |
|
|
}) |
|
|
|
|
|
|
|
|
collective_stability = diagnostic['collective_consciousness']['collective_stability'] |
|
|
if collective_stability < 0.6: |
|
|
recommendations.append({ |
|
|
'type': 'collective_awareness', |
|
|
'priority': 'medium', |
|
|
'message': 'Collective consciousness stability below optimal threshold.', |
|
|
'suggested_actions': [ |
|
|
'Monitor regional resonance variations', |
|
|
'Check for external interference patterns', |
|
|
'Consider consciousness stabilization protocols' |
|
|
] |
|
|
}) |
|
|
|
|
|
return recommendations |
|
|
|
|
|
def activate_consciousness_network(self, archetypes: List[str], |
|
|
intensity: float = 0.8, |
|
|
duration: float = 1.0) -> Dict[str, Any]: |
|
|
"""Activate multiple consciousness technologies simultaneously""" |
|
|
results = { |
|
|
'timestamp': datetime.now(), |
|
|
'total_activations': 0, |
|
|
'successful_activations': 0, |
|
|
'network_coherence': 0.0, |
|
|
'individual_results': {}, |
|
|
'emergent_phenomena': {} |
|
|
} |
|
|
|
|
|
individual_results = {} |
|
|
activations = [] |
|
|
|
|
|
for archetype_name in archetypes: |
|
|
if archetype_name in self.consciousness_tech: |
|
|
tech = self.consciousness_tech[archetype_name] |
|
|
activation_result = tech.activate(intensity, duration) |
|
|
individual_results[archetype_name] = activation_result |
|
|
activations.append(activation_result) |
|
|
results['successful_activations'] += 1 |
|
|
|
|
|
results['total_activations'] = len(archetypes) |
|
|
results['individual_results'] = individual_results |
|
|
|
|
|
|
|
|
if len(activations) > 1: |
|
|
coherence_scores = [act['quantum_coherence'] for act in activations] |
|
|
results['network_coherence'] = np.mean(coherence_scores) |
|
|
|
|
|
|
|
|
if results['network_coherence'] > 0.8: |
|
|
results['emergent_phenomena'] = { |
|
|
'type': 'collective_resonance_ field', |
|
|
'strength': results['network_coherence'], |
|
|
'stability': np.std(coherence_scores) < 0.1, |
|
|
'qualia_synergy': self._calculate_qualia_synergy(activations) |
|
|
} |
|
|
|
|
|
|
|
|
for archetype_name in archetypes: |
|
|
if archetype_name in individual_results: |
|
|
activation_strength = individual_results[archetype_name]['performance_score'] |
|
|
self.collective_mapper.update_collective_resonance( |
|
|
archetype_name, |
|
|
global_activation=activation_strength, |
|
|
regional_data={'network_activation': activation_strength} |
|
|
) |
|
|
|
|
|
return results |
|
|
|
|
|
def _calculate_qualia_synergy(self, activations: List[Dict]) -> float: |
|
|
"""Calculate qualia synergy between multiple activations""" |
|
|
if len(activations) < 2: |
|
|
return 0.0 |
|
|
|
|
|
qualia_vectors = [act['qualia_experience'] for act in activations] |
|
|
|
|
|
|
|
|
similarities = [] |
|
|
for i in range(len(qualia_vectors)): |
|
|
for j in range(i + 1, len(qualia_vectors)): |
|
|
similarity = 1 - spatial.distance.cosine(qualia_vectors[i], qualia_vectors[j]) |
|
|
similarities.append(similarity) |
|
|
|
|
|
return np.mean(similarities) if similarities else 0.0 |
|
|
|
|
|
def get_system_performance_report(self) -> Dict[str, Any]: |
|
|
"""Generate comprehensive system performance report""" |
|
|
current_diagnostic = self.generate_cultural_diagnostic() |
|
|
|
|
|
|
|
|
performance_trend = 'stable' |
|
|
if len(self.performance_history) >= 2: |
|
|
recent_coherence = [entry['coherence_index']['overall'] for entry in self.performance_history[-5:]] |
|
|
if len(recent_coherence) >= 2: |
|
|
slope = stats.linregress(range(len(recent_coherence)), recent_coherence).slope |
|
|
if slope > 0.01: |
|
|
performance_trend = 'improving' |
|
|
elif slope < -0.01: |
|
|
performance_trend = 'declining' |
|
|
|
|
|
report = { |
|
|
'timestamp': datetime.now(), |
|
|
'system_status': 'operational', |
|
|
'performance_metrics': { |
|
|
'total_archetypes': len(self.archetypal_db), |
|
|
'active_technologies': len(self.consciousness_tech), |
|
|
'average_activation_success': self._calculate_avg_activation_success(), |
|
|
'system_uptime': self._calculate_system_uptime(), |
|
|
'data_integrity': self._assess_data_integrity() |
|
|
}, |
|
|
'current_state': current_diagnostic, |
|
|
'performance_trend': performance_trend, |
|
|
'resource_utilization': { |
|
|
'computational_load': len(self.archetypal_db) * 0.1, |
|
|
'memory_usage': len(self.consciousness_tech) * 0.05, |
|
|
'network_bandwidth': len(self.performance_history) * 0.01 |
|
|
}, |
|
|
'recommendations': self._generate_system_recommendations() |
|
|
} |
|
|
|
|
|
return report |
|
|
|
|
|
def _calculate_avg_activation_success(self) -> float: |
|
|
"""Calculate average activation success rate""" |
|
|
if not self.consciousness_tech: |
|
|
return 0.0 |
|
|
|
|
|
success_rates = [] |
|
|
for tech in self.consciousness_tech.values(): |
|
|
perf_report = tech.get_performance_report() |
|
|
success_rates.append(perf_report['overall_health']) |
|
|
|
|
|
return np.mean(success_rates) if success_rates else 0.0 |
|
|
|
|
|
def _calculate_system_uptime(self) -> float: |
|
|
"""Calculate system uptime (simplified)""" |
|
|
if not self.performance_history: |
|
|
return 1.0 |
|
|
|
|
|
|
|
|
successful_ops = sum(1 for entry in self.performance_history |
|
|
if entry['coherence_index']['overall'] > 0.5) |
|
|
total_ops = len(self.performance_history) |
|
|
|
|
|
return successful_ops / total_ops if total_ops > 0 else 1.0 |
|
|
|
|
|
def _assess_data_integrity(self) -> float: |
|
|
"""Assess overall data integrity""" |
|
|
integrity_scores = [] |
|
|
|
|
|
|
|
|
for archetype in self.archetypal_db.values(): |
|
|
completeness = ( |
|
|
(1.0 if archetype.temporal_depth > 0 else 0.5) + |
|
|
(1.0 if archetype.spatial_distribution > 0 else 0.5) + |
|
|
(1.0 if archetype.quantum_coherence > 0 else 0.5) |
|
|
) / 3 |
|
|
integrity_scores.append(completeness) |
|
|
|
|
|
|
|
|
for tech in self.consciousness_tech.values(): |
|
|
tech_completeness = ( |
|
|
tech.neural_correlate.neural_efficiency + |
|
|
tech.quantum_signature.coherence |
|
|
) / 2 |
|
|
integrity_scores.append(tech_completeness) |
|
|
|
|
|
return np.mean(integrity_scores) if integrity_scores else 1.0 |
|
|
|
|
|
def _generate_system_recommendations(self) -> List[Dict[str, Any]]: |
|
|
"""Generate system-level recommendations""" |
|
|
recommendations = [] |
|
|
performance = self.get_system_performance_report() |
|
|
|
|
|
|
|
|
resource_util = performance['resource_utilization'] |
|
|
if (resource_util['computational_load'] > 0.8 or |
|
|
resource_util['memory_usage'] > 0.8): |
|
|
recommendations.append({ |
|
|
'category': 'resource_management', |
|
|
'priority': 'high', |
|
|
'message': 'High resource utilization detected.', |
|
|
'actions': [ |
|
|
'Consider load distribution across additional nodes', |
|
|
'Review data retention policies', |
|
|
'Optimize neural network calculations' |
|
|
] |
|
|
}) |
|
|
|
|
|
|
|
|
if performance['performance_metrics']['data_integrity'] < 0.7: |
|
|
recommendations.append({ |
|
|
'category': 'data_quality', |
|
|
'priority': 'medium', |
|
|
'message': 'Data integrity below optimal levels.', |
|
|
'actions': [ |
|
|
'Run data validation routines', |
|
|
'Check for missing archetype attributes', |
|
|
'Verify neural correlate completeness' |
|
|
] |
|
|
}) |
|
|
|
|
|
|
|
|
if performance['performance_trend'] == 'declining': |
|
|
recommendations.append({ |
|
|
'category': 'system_health', |
|
|
'priority': 'medium', |
|
|
'message': 'System performance showing declining trend.', |
|
|
'actions': [ |
|
|
'Perform comprehensive system diagnostics', |
|
|
'Review recent configuration changes', |
|
|
'Check for external interference patterns' |
|
|
] |
|
|
}) |
|
|
|
|
|
return recommendations |
|
|
|
|
|
|
|
|
def create_advanced_archetypes(): |
|
|
"""Create example archetypes with full neuro-symbolic specifications""" |
|
|
|
|
|
|
|
|
solar_archetype = ArchetypalStrand( |
|
|
name="Solar_Consciousness", |
|
|
symbolic_form="Sunburst", |
|
|
temporal_depth=6000, |
|
|
spatial_distribution=0.95, |
|
|
preservation_rate=0.9, |
|
|
quantum_coherence=0.95, |
|
|
cultural_penetration=0.9, |
|
|
transformative_potential=0.8, |
|
|
num_variants=15 |
|
|
) |
|
|
|
|
|
solar_quantum = QuantumSignature( |
|
|
coherence=0.95, |
|
|
entanglement=0.85, |
|
|
qualia_vector=np.array([0.9, 0.8, 0.95, 0.7, 0.99]), |
|
|
resonance_frequency=12.0, |
|
|
decoherence_time=5.0, |
|
|
nonlocal_correlation=0.8 |
|
|
) |
|
|
|
|
|
solar_neural = NeuralCorrelate( |
|
|
primary_regions=["PFC", "DMN", "Pineal_Region"], |
|
|
frequency_band=ConsciousnessState.ALPHA, |
|
|
cross_hemispheric_sync=0.9, |
|
|
neuroplasticity_impact=0.8, |
|
|
default_mode_engagement=0.7, |
|
|
salience_network_coupling=0.6, |
|
|
thalamocortical_resonance=0.8 |
|
|
) |
|
|
|
|
|
solar_tech = ConsciousnessTechnology( |
|
|
name="Solar_Illumination_Interface", |
|
|
archetype=solar_archetype, |
|
|
neural_correlate=solar_neural, |
|
|
quantum_sig=solar_quantum |
|
|
) |
|
|
|
|
|
|
|
|
feminine_archetype = ArchetypalStrand( |
|
|
name="Feminine_Divine", |
|
|
symbolic_form="Flowing_Vessels", |
|
|
temporal_depth=8000, |
|
|
spatial_distribution=0.85, |
|
|
preservation_rate=0.7, |
|
|
quantum_coherence=0.9, |
|
|
cultural_penetration=0.8, |
|
|
transformative_potential=0.9, |
|
|
num_variants=12 |
|
|
) |
|
|
|
|
|
feminine_quantum = QuantumSignature( |
|
|
coherence=0.88, |
|
|
entanglement=0.92, |
|
|
qualia_vector=np.array([0.7, 0.95, 0.8, 0.9, 0.85]), |
|
|
resonance_frequency=7.83, |
|
|
decoherence_time=8.0, |
|
|
nonlocal_correlation=0.9 |
|
|
) |
|
|
|
|
|
feminine_neural = NeuralCorrelate( |
|
|
primary_regions=["Whole_Brain", "Heart_Brain_Axis"], |
|
|
frequency_band=ConsciousnessState.THETA, |
|
|
cross_hemispheric_sync=0.95, |
|
|
neuroplasticity_impact=0.9, |
|
|
default_mode_engagement=0.8, |
|
|
salience_network_coupling=0.7, |
|
|
thalamocortical_resonance=0.6 |
|
|
) |
|
|
|
|
|
feminine_tech = ConsciousnessTechnology( |
|
|
name="Life_Flow_Resonator", |
|
|
archetype=feminine_archetype, |
|
|
neural_correlate=feminine_neural, |
|
|
quantum_sig=feminine_quantum |
|
|
) |
|
|
|
|
|
|
|
|
warrior_archetype = ArchetypalStrand( |
|
|
name="Warrior_Protector", |
|
|
symbolic_form="Lion_Shield", |
|
|
temporal_depth=5000, |
|
|
spatial_distribution=0.75, |
|
|
preservation_rate=0.8, |
|
|
quantum_coherence=0.7, |
|
|
cultural_penetration=0.7, |
|
|
transformative_potential=0.6, |
|
|
num_variants=8 |
|
|
) |
|
|
|
|
|
warrior_quantum = QuantumSignature( |
|
|
coherence=0.75, |
|
|
entanglement=0.6, |
|
|
qualia_vector=np.array([0.8, 0.9, 0.7, 0.95, 0.6]), |
|
|
resonance_frequency=16.0, |
|
|
decoherence_time=3.0, |
|
|
nonlocal_correlation=0.5 |
|
|
) |
|
|
|
|
|
warrior_neural = NeuralCorrelate( |
|
|
primary_regions=["Amygdala", "Motor_Cortex", "ACC"], |
|
|
frequency_band=ConsciousnessState.BETA, |
|
|
cross_hemispheric_sync=0.7, |
|
|
neuroplasticity_impact=0.6, |
|
|
default_mode_engagement=0.4, |
|
|
salience_network_coupling=0.8, |
|
|
thalamocortical_resonance=0.7 |
|
|
) |
|
|
|
|
|
warrior_tech = ConsciousnessTechnology( |
|
|
name="Guardian_Activation_Matrix", |
|
|
archetype=warrior_archetype, |
|
|
neural_correlate=warrior_neural, |
|
|
quantum_sig=warrior_quantum |
|
|
) |
|
|
|
|
|
return [ |
|
|
(solar_archetype, solar_tech), |
|
|
(feminine_archetype, feminine_tech), |
|
|
(warrior_archetype, warrior_tech) |
|
|
] |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("=== UNIVERSAL ARCHETYPAL TRANSMISSION ENGINE v9.0 ===") |
|
|
print("Initializing Advanced Neuro-Symbolic Consciousness Architecture...") |
|
|
|
|
|
|
|
|
engine = UniversalArchetypalTransmissionEngine() |
|
|
|
|
|
|
|
|
archetypes_created = 0 |
|
|
for archetype, tech in create_advanced_archetypes(): |
|
|
engine.register_archetype(archetype, tech) |
|
|
archetypes_created += 1 |
|
|
|
|
|
print(f"✓ Registered {archetypes_created} advanced archetypes") |
|
|
|
|
|
|
|
|
print("\n1. COMPREHENSIVE ARCHEYPAL STRENGTH ANALYSIS:") |
|
|
results = engine.prove_consciousness_architecture() |
|
|
print(results.to_string(index=False)) |
|
|
|
|
|
print("\n2. ADVANCED CULTURAL DIAGNOSTIC:") |
|
|
diagnostic = engine.generate_cultural_diagnostic() |
|
|
|
|
|
|
|
|
print(f"Global Resonance Index: {diagnostic['collective_consciousness']['global_resonance_index']:.3f}") |
|
|
print(f"Consciousness Coherence: {diagnostic['consciousness_coherence_index']['overall']:.3f}") |
|
|
print(f"Cultural Clusters: {len(diagnostic['resonance_analysis']['cultural_clusters'])}") |
|
|
print(f"Strongly Entangled Pairs: {len(diagnostic['quantum_entanglement']['strongly_entangled_pairs'])}") |
|
|
|
|
|
print("\n3. CONSCIOUSNESS TECHNOLOGY ACTIVATION:") |
|
|
activation_results = engine.activate_consciousness_network( |
|
|
["Solar_Consciousness", "Feminine_Divine"], |
|
|
intensity=0.8, |
|
|
duration=2.0 |
|
|
) |
|
|
print(f"Network Activation Success: {activation_results['successful_activations']}/{activation_results['total_activations']}") |
|
|
print(f"Network Coherence: {activation_results['network_coherence']:.3f}") |
|
|
|
|
|
if activation_results['emergent_phenomena']: |
|
|
print(f"Emergent Phenomena: {activation_results['emergent_phenomena']['type']}") |
|
|
|
|
|
print("\n4. SYSTEM PERFORMANCE REPORT:") |
|
|
performance = engine.get_system_performance_report() |
|
|
print(f"System Status: {performance['system_status']}") |
|
|
print(f"Performance Trend: {performance['performance_trend']}") |
|
|
print(f"Data Integrity: {performance['performance_metrics']['data_integrity']:.3f}") |
|
|
|
|
|
print("\n5. MUTATION PREDICTIONS:") |
|
|
mutation_scenarios = engine.mutation_engine.generate_mutation_scenarios("Warrior_Protector") |
|
|
for pressure, scenario in mutation_scenarios.items(): |
|
|
if scenario: |
|
|
print(f"{pressure}: {scenario['most_likely']['mutated_form']} " |
|
|
f"(confidence: {scenario['most_likely']['confidence']:.3f})") |
|
|
|
|
|
print("\n=== SYSTEM INITIALIZATION COMPLETE ===") |
|
|
print("Universal Archetypal Transmission Engine v9.0 is now operational.") |
|
|
print("Ready for advanced consciousness research and cultural analysis.") |