|
|
|
|
|
""" |
|
|
CONCEPTUAL ENTANGLEMENT MODULE - lm_quant_veritas v7.0 |
|
|
----------------------------------------------------------------- |
|
|
ADVANCED REALITY INTERFACE ENGINE |
|
|
Quantum-Linguistic Consciousness Integration System |
|
|
|
|
|
CORE PRINCIPLE: |
|
|
Understanding creates entanglement with the understood. |
|
|
Truth manifests as topological alignment in consciousness space. |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
from dataclasses import dataclass, field |
|
|
from enum import Enum |
|
|
from typing import Dict, List, Any, Optional, Tuple |
|
|
import hashlib |
|
|
import asyncio |
|
|
from scipy import spatial |
|
|
|
|
|
class EntanglementState(Enum): |
|
|
"""States of conceptual entanglement""" |
|
|
POTENTIAL = "potential" |
|
|
COHERENT = "coherent" |
|
|
RESONANT = "resonant" |
|
|
MANIFEST = "manifest" |
|
|
COLLAPSED = "collapsed" |
|
|
|
|
|
class UnderstandingTopology(Enum): |
|
|
"""Topological structures in understanding space""" |
|
|
ATTRACTOR = "attractor" |
|
|
REPELLOR = "repellor" |
|
|
BRIDGE = "bridge" |
|
|
SINGULARITY = "singularity" |
|
|
|
|
|
@dataclass |
|
|
class ConceptualEntity: |
|
|
"""Represents a unit of understanding""" |
|
|
concept_hash: str |
|
|
truth_coordinate: np.ndarray |
|
|
coherence_amplitude: float |
|
|
entanglement_vectors: List[np.ndarray] |
|
|
topological_charge: float |
|
|
|
|
|
def calculate_reality_potential(self) -> float: |
|
|
"""Calculate manifestation potential from understanding state""" |
|
|
coherence_term = self.coherence_amplitude |
|
|
entanglement_term = np.linalg.norm(sum(self.entanglement_vectors)) |
|
|
topological_term = abs(self.topological_charge) |
|
|
|
|
|
return (coherence_term * 0.4 + |
|
|
entanglement_term * 0.35 + |
|
|
topological_term * 0.25) |
|
|
|
|
|
@dataclass |
|
|
class UnderstandingManifold: |
|
|
"""Mathematical manifold of interconnected understandings""" |
|
|
dimensionality: int |
|
|
metric_tensor: np.ndarray |
|
|
curvature_scalar: np.ndarray |
|
|
connection_coefficients: np.ndarray |
|
|
|
|
|
def parallel_transport(self, concept: ConceptualEntity, path: np.ndarray) -> ConceptualEntity: |
|
|
"""Transport understanding along conceptual path without changing meaning""" |
|
|
|
|
|
transported_vectors = [] |
|
|
for vector in concept.entanglement_vectors: |
|
|
transported = np.tensordot(self.connection_coefficients, vector, axes=1) |
|
|
transported_vectors.append(transported) |
|
|
|
|
|
return ConceptualEntity( |
|
|
concept_hash=concept.concept_hash, |
|
|
truth_coordinate=concept.truth_coordinate + path, |
|
|
coherence_amplitude=concept.coherence_amplitude, |
|
|
entanglement_vectors=transported_vectors, |
|
|
topological_charge=concept.topological_charge |
|
|
) |
|
|
|
|
|
class QuantumLinguisticEngine: |
|
|
""" |
|
|
Advanced engine for conceptual entanglement operations |
|
|
Maps understanding to reality through topological alignment |
|
|
""" |
|
|
|
|
|
def __init__(self, conceptual_space_dims: int = 256): |
|
|
self.conceptual_space_dims = conceptual_space_dims |
|
|
self.understanding_manifold = self._initialize_manifold() |
|
|
self.entangled_concepts: Dict[str, ConceptualEntity] = {} |
|
|
self.reality_interface = RealityInterface() |
|
|
|
|
|
def _initialize_manifold(self) -> UnderstandingManifold: |
|
|
"""Initialize the understanding manifold with truth topology""" |
|
|
|
|
|
metric_tensor = np.eye(self.conceptual_space_dims) |
|
|
|
|
|
|
|
|
curvature = np.random.normal(0, 0.1, (self.conceptual_space_dims, self.conceptual_space_dims)) |
|
|
curvature = (curvature + curvature.T) / 2 |
|
|
|
|
|
|
|
|
connection = self._calculate_levi_civita(metric_tensor) |
|
|
|
|
|
return UnderstandingManifold( |
|
|
dimensionality=self.conceptual_space_dims, |
|
|
metric_tensor=metric_tensor, |
|
|
curvature_scalar=curvature, |
|
|
connection_coefficients=connection |
|
|
) |
|
|
|
|
|
def entangle_concepts(self, primary_concept: str, secondary_concept: str) -> ConceptualEntity: |
|
|
"""Create quantum entanglement between two concepts""" |
|
|
|
|
|
primary_hash = self._concept_hash(primary_concept) |
|
|
secondary_hash = self._concept_hash(secondary_concept) |
|
|
|
|
|
|
|
|
primary_coord = self._concept_to_coordinate(primary_concept) |
|
|
secondary_coord = self._concept_to_coordinate(secondary_concept) |
|
|
|
|
|
|
|
|
entanglement_vector = secondary_coord - primary_coord |
|
|
coherence = 1.0 / (1.0 + spatial.distance.cosine(primary_coord, secondary_coord)) |
|
|
|
|
|
entangled_entity = ConceptualEntity( |
|
|
concept_hash=primary_hash + secondary_hash, |
|
|
truth_coordinate=(primary_coord + secondary_coord) / 2, |
|
|
coherence_amplitude=coherence, |
|
|
entanglement_vectors=[entanglement_vector], |
|
|
topological_charge=self._calculate_topological_charge(primary_coord, secondary_coord) |
|
|
) |
|
|
|
|
|
self.entangled_concepts[entangled_entity.concept_hash] = entangled_entity |
|
|
return entangled_entity |
|
|
|
|
|
def propagate_understanding(self, concept: ConceptualEntity, |
|
|
through_domains: List[str]) -> ConceptualEntity: |
|
|
"""Propagate understanding through multiple conceptual domains""" |
|
|
current_entity = concept |
|
|
|
|
|
for domain in through_domains: |
|
|
domain_vector = self._concept_to_coordinate(domain) |
|
|
|
|
|
current_entity = self.understanding_manifold.parallel_transport( |
|
|
current_entity, domain_vector |
|
|
) |
|
|
|
|
|
new_vector = domain_vector - current_entity.truth_coordinate |
|
|
current_entity.entanglement_vectors.append(new_vector) |
|
|
|
|
|
return current_entity |
|
|
|
|
|
def calculate_manifestation_threshold(self, concept: ConceptualEntity) -> Dict[str, Any]: |
|
|
"""Calculate requirements for physical manifestation""" |
|
|
reality_potential = concept.calculate_reality_potential() |
|
|
|
|
|
return { |
|
|
'reality_potential': reality_potential, |
|
|
'manifestation_threshold': 0.85, |
|
|
'coherence_requirement': 0.7, |
|
|
'entanglement_requirement': 0.6, |
|
|
'topological_requirement': 0.5, |
|
|
'can_manifest': reality_potential > 0.85 |
|
|
} |
|
|
|
|
|
def _concept_hash(self, concept: str) -> str: |
|
|
"""Generate quantum hash of concept""" |
|
|
return hashlib.sha3_256(concept.encode()).hexdigest()[:16] |
|
|
|
|
|
def _concept_to_coordinate(self, concept: str) -> np.ndarray: |
|
|
"""Map concept to coordinate in understanding space""" |
|
|
concept_hash = self._concept_hash(concept) |
|
|
|
|
|
coordinate = np.zeros(self.conceptual_space_dims) |
|
|
for i, char in enumerate(concept_hash[:self.conceptual_space_dims]): |
|
|
coordinate[i] = (ord(char) / 255.0) * 2 - 1 |
|
|
return coordinate |
|
|
|
|
|
def _calculate_levi_civita(self, metric_tensor: np.ndarray) -> np.ndarray: |
|
|
"""Calculate Levi-Civita connection for understanding manifold""" |
|
|
dim = metric_tensor.shape[0] |
|
|
connection = np.zeros((dim, dim, dim)) |
|
|
|
|
|
|
|
|
for i in range(dim): |
|
|
for j in range(dim): |
|
|
for k in range(dim): |
|
|
if i == j == k: |
|
|
connection[i, j, k] = 0.5 |
|
|
elif i == j: |
|
|
connection[i, j, k] = 0.1 |
|
|
return connection |
|
|
|
|
|
def _calculate_topological_charge(self, coord1: np.ndarray, coord2: np.ndarray) -> float: |
|
|
"""Calculate topological charge of conceptual entanglement""" |
|
|
dot_product = np.dot(coord1, coord2) |
|
|
norms = np.linalg.norm(coord1) * np.linalg.norm(coord2) |
|
|
return dot_product / (norms + 1e-8) |
|
|
|
|
|
class RealityInterface: |
|
|
"""Interface between understanding and physical manifestation""" |
|
|
|
|
|
def __init__(self): |
|
|
self.manifestation_records = [] |
|
|
self.collapse_observers = [] |
|
|
|
|
|
async def attempt_manifestation(self, concept: ConceptualEntity, |
|
|
context: Dict[str, Any]) -> Dict[str, Any]: |
|
|
"""Attempt to manifest understanding in physical reality""" |
|
|
|
|
|
|
|
|
potential = concept.calculate_reality_potential() |
|
|
threshold = 0.85 |
|
|
|
|
|
if potential >= threshold: |
|
|
manifestation = { |
|
|
'concept_hash': concept.concept_hash, |
|
|
'manifestation_strength': potential, |
|
|
'reality_distortion': potential - threshold, |
|
|
'collapse_observers': len(self.collapse_observers), |
|
|
'timestamp': np.datetime64('now'), |
|
|
'coordinates': concept.truth_coordinate.tolist() |
|
|
} |
|
|
|
|
|
self.manifestation_records.append(manifestation) |
|
|
return manifestation |
|
|
else: |
|
|
return { |
|
|
'concept_hash': concept.concept_hash, |
|
|
'manifestation_strength': potential, |
|
|
'status': 'below_threshold', |
|
|
'required_coherence': threshold - potential |
|
|
} |
|
|
|
|
|
|
|
|
async def demonstrate_entanglement_engine(): |
|
|
"""Demonstrate advanced conceptual entanglement operations""" |
|
|
|
|
|
print("🌌 CONCEPTUAL ENTANGLEMENT MODULE v7.0") |
|
|
print("Quantum-Linguistic Consciousness Integration") |
|
|
print("=" * 60) |
|
|
|
|
|
|
|
|
engine = QuantumLinguisticEngine() |
|
|
|
|
|
|
|
|
entanglement = engine.entangle_concepts( |
|
|
"truth_manifestation", |
|
|
"institutional_bypass" |
|
|
) |
|
|
|
|
|
print(f"🧠 Conceptual Entanglement Created:") |
|
|
print(f" Entities: truth_manifestation ↔ institutional_bypass") |
|
|
print(f" Coherence: {entanglement.coherence_amplitude:.3f}") |
|
|
print(f" Topological Charge: {entanglement.topological_charge:.3f}") |
|
|
|
|
|
|
|
|
propagated = engine.propagate_understanding( |
|
|
entanglement, |
|
|
["consciousness", "computation", "history", "sovereignty"] |
|
|
) |
|
|
|
|
|
print(f"\n🔄 Understanding Propagation:") |
|
|
print(f" Domains Traversed: 4") |
|
|
print(f" Final Coherence: {propagated.coherence_amplitude:.3f}") |
|
|
print(f" Entanglement Vectors: {len(propagated.entanglement_vectors)}") |
|
|
|
|
|
|
|
|
manifestation = engine.calculate_manifestation_threshold(propagated) |
|
|
|
|
|
print(f"\n🎯 Manifestation Analysis:") |
|
|
print(f" Reality Potential: {manifestation['reality_potential']:.3f}") |
|
|
print(f" Manifestation Threshold: {manifestation['manifestation_threshold']:.3f}") |
|
|
print(f" Can Manifest: {manifestation['can_manifest']}") |
|
|
|
|
|
|
|
|
result = await engine.reality_interface.attempt_manifestation( |
|
|
propagated, |
|
|
{'context': 'strategic_deployment'} |
|
|
) |
|
|
|
|
|
print(f"\n⚡ Manifestation Attempt:") |
|
|
for key, value in result.items(): |
|
|
if key != 'coordinates': |
|
|
print(f" {key}: {value}") |
|
|
|
|
|
print(f"\n💫 Module Status: OPERATIONAL") |
|
|
print(" Understanding entanglement active") |
|
|
print(" Reality interface calibrated") |
|
|
print(" Topological alignment achieved") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
asyncio.run(demonstrate_entanglement_engine()) |