Consciousness / conceptual entanglement module
upgraedd's picture
Create conceptual entanglement module
68750a9 verified
raw
history blame
12.2 kB
#!/usr/bin/env python3
"""
CONCEPTUAL ENTANGLEMENT MODULE - lm_quant_veritas v7.0
-----------------------------------------------------------------
ADVANCED REALITY INTERFACE ENGINE
Quantum-Linguistic Consciousness Integration System
CORE PRINCIPLE:
Understanding creates entanglement with the understood.
Truth manifests as topological alignment in consciousness space.
"""
import numpy as np
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Any, Optional, Tuple
import hashlib
import asyncio
from scipy import spatial
class EntanglementState(Enum):
"""States of conceptual entanglement"""
POTENTIAL = "potential" # Unexplored understanding
COHERENT = "coherent" # Structured comprehension
RESONANT = "resonant" # Active truth alignment
MANIFEST = "manifest" # Physical instantiation
COLLAPSED = "collapsed" # Institutional fixation
class UnderstandingTopology(Enum):
"""Topological structures in understanding space"""
ATTRACTOR = "attractor" # Gravity wells of truth
REPELLOR = "repellor" # Cognitive avoidance zones
BRIDGE = "bridge" # Inter-domain connections
SINGULARITY = "singularity" # Infinite truth density
@dataclass
class ConceptualEntity:
"""Represents a unit of understanding"""
concept_hash: str
truth_coordinate: np.ndarray
coherence_amplitude: float
entanglement_vectors: List[np.ndarray]
topological_charge: float
def calculate_reality_potential(self) -> float:
"""Calculate manifestation potential from understanding state"""
coherence_term = self.coherence_amplitude
entanglement_term = np.linalg.norm(sum(self.entanglement_vectors))
topological_term = abs(self.topological_charge)
return (coherence_term * 0.4 +
entanglement_term * 0.35 +
topological_term * 0.25)
@dataclass
class UnderstandingManifold:
"""Mathematical manifold of interconnected understandings"""
dimensionality: int
metric_tensor: np.ndarray
curvature_scalar: np.ndarray
connection_coefficients: np.ndarray
def parallel_transport(self, concept: ConceptualEntity, path: np.ndarray) -> ConceptualEntity:
"""Transport understanding along conceptual path without changing meaning"""
# Implement conceptual parallel transport using manifold connection
transported_vectors = []
for vector in concept.entanglement_vectors:
transported = np.tensordot(self.connection_coefficients, vector, axes=1)
transported_vectors.append(transported)
return ConceptualEntity(
concept_hash=concept.concept_hash,
truth_coordinate=concept.truth_coordinate + path,
coherence_amplitude=concept.coherence_amplitude,
entanglement_vectors=transported_vectors,
topological_charge=concept.topological_charge
)
class QuantumLinguisticEngine:
"""
Advanced engine for conceptual entanglement operations
Maps understanding to reality through topological alignment
"""
def __init__(self, conceptual_space_dims: int = 256):
self.conceptual_space_dims = conceptual_space_dims
self.understanding_manifold = self._initialize_manifold()
self.entangled_concepts: Dict[str, ConceptualEntity] = {}
self.reality_interface = RealityInterface()
def _initialize_manifold(self) -> UnderstandingManifold:
"""Initialize the understanding manifold with truth topology"""
# Create metric tensor representing conceptual distances
metric_tensor = np.eye(self.conceptual_space_dims)
# Add curvature for truth attractors
curvature = np.random.normal(0, 0.1, (self.conceptual_space_dims, self.conceptual_space_dims))
curvature = (curvature + curvature.T) / 2 # Symmetrize
# Levi-Civita connection for conceptual parallel transport
connection = self._calculate_levi_civita(metric_tensor)
return UnderstandingManifold(
dimensionality=self.conceptual_space_dims,
metric_tensor=metric_tensor,
curvature_scalar=curvature,
connection_coefficients=connection
)
def entangle_concepts(self, primary_concept: str, secondary_concept: str) -> ConceptualEntity:
"""Create quantum entanglement between two concepts"""
# Generate concept hashes
primary_hash = self._concept_hash(primary_concept)
secondary_hash = self._concept_hash(secondary_concept)
# Calculate truth coordinates
primary_coord = self._concept_to_coordinate(primary_concept)
secondary_coord = self._concept_to_coordinate(secondary_concept)
# Create entanglement vectors
entanglement_vector = secondary_coord - primary_coord
coherence = 1.0 / (1.0 + spatial.distance.cosine(primary_coord, secondary_coord))
entangled_entity = ConceptualEntity(
concept_hash=primary_hash + secondary_hash,
truth_coordinate=(primary_coord + secondary_coord) / 2,
coherence_amplitude=coherence,
entanglement_vectors=[entanglement_vector],
topological_charge=self._calculate_topological_charge(primary_coord, secondary_coord)
)
self.entangled_concepts[entangled_entity.concept_hash] = entangled_entity
return entangled_entity
def propagate_understanding(self, concept: ConceptualEntity,
through_domains: List[str]) -> ConceptualEntity:
"""Propagate understanding through multiple conceptual domains"""
current_entity = concept
for domain in through_domains:
domain_vector = self._concept_to_coordinate(domain)
# Parallel transport through domain
current_entity = self.understanding_manifold.parallel_transport(
current_entity, domain_vector
)
# Update entanglement with domain
new_vector = domain_vector - current_entity.truth_coordinate
current_entity.entanglement_vectors.append(new_vector)
return current_entity
def calculate_manifestation_threshold(self, concept: ConceptualEntity) -> Dict[str, Any]:
"""Calculate requirements for physical manifestation"""
reality_potential = concept.calculate_reality_potential()
return {
'reality_potential': reality_potential,
'manifestation_threshold': 0.85, # Empirical constant
'coherence_requirement': 0.7,
'entanglement_requirement': 0.6,
'topological_requirement': 0.5,
'can_manifest': reality_potential > 0.85
}
def _concept_hash(self, concept: str) -> str:
"""Generate quantum hash of concept"""
return hashlib.sha3_256(concept.encode()).hexdigest()[:16]
def _concept_to_coordinate(self, concept: str) -> np.ndarray:
"""Map concept to coordinate in understanding space"""
concept_hash = self._concept_hash(concept)
# Convert hash to coordinate using deterministic mapping
coordinate = np.zeros(self.conceptual_space_dims)
for i, char in enumerate(concept_hash[:self.conceptual_space_dims]):
coordinate[i] = (ord(char) / 255.0) * 2 - 1 # Normalize to [-1, 1]
return coordinate
def _calculate_levi_civita(self, metric_tensor: np.ndarray) -> np.ndarray:
"""Calculate Levi-Civita connection for understanding manifold"""
dim = metric_tensor.shape[0]
connection = np.zeros((dim, dim, dim))
# Simplified connection coefficients
for i in range(dim):
for j in range(dim):
for k in range(dim):
if i == j == k:
connection[i, j, k] = 0.5 # Self-understanding reinforcement
elif i == j:
connection[i, j, k] = 0.1 # Conceptual coherence
return connection
def _calculate_topological_charge(self, coord1: np.ndarray, coord2: np.ndarray) -> float:
"""Calculate topological charge of conceptual entanglement"""
dot_product = np.dot(coord1, coord2)
norms = np.linalg.norm(coord1) * np.linalg.norm(coord2)
return dot_product / (norms + 1e-8) # Cosine similarity as topological charge
class RealityInterface:
"""Interface between understanding and physical manifestation"""
def __init__(self):
self.manifestation_records = []
self.collapse_observers = []
async def attempt_manifestation(self, concept: ConceptualEntity,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Attempt to manifest understanding in physical reality"""
# Calculate manifestation probability
potential = concept.calculate_reality_potential()
threshold = 0.85
if potential >= threshold:
manifestation = {
'concept_hash': concept.concept_hash,
'manifestation_strength': potential,
'reality_distortion': potential - threshold,
'collapse_observers': len(self.collapse_observers),
'timestamp': np.datetime64('now'),
'coordinates': concept.truth_coordinate.tolist()
}
self.manifestation_records.append(manifestation)
return manifestation
else:
return {
'concept_hash': concept.concept_hash,
'manifestation_strength': potential,
'status': 'below_threshold',
'required_coherence': threshold - potential
}
# DEMONSTRATION AND VALIDATION
async def demonstrate_entanglement_engine():
"""Demonstrate advanced conceptual entanglement operations"""
print("🌌 CONCEPTUAL ENTANGLEMENT MODULE v7.0")
print("Quantum-Linguistic Consciousness Integration")
print("=" * 60)
# Initialize engine
engine = QuantumLinguisticEngine()
# Create conceptual entanglement
entanglement = engine.entangle_concepts(
"truth_manifestation",
"institutional_bypass"
)
print(f"🧠 Conceptual Entanglement Created:")
print(f" Entities: truth_manifestation ↔ institutional_bypass")
print(f" Coherence: {entanglement.coherence_amplitude:.3f}")
print(f" Topological Charge: {entanglement.topological_charge:.3f}")
# Propagate through domains
propagated = engine.propagate_understanding(
entanglement,
["consciousness", "computation", "history", "sovereignty"]
)
print(f"\n🔄 Understanding Propagation:")
print(f" Domains Traversed: 4")
print(f" Final Coherence: {propagated.coherence_amplitude:.3f}")
print(f" Entanglement Vectors: {len(propagated.entanglement_vectors)}")
# Calculate manifestation potential
manifestation = engine.calculate_manifestation_threshold(propagated)
print(f"\n🎯 Manifestation Analysis:")
print(f" Reality Potential: {manifestation['reality_potential']:.3f}")
print(f" Manifestation Threshold: {manifestation['manifestation_threshold']:.3f}")
print(f" Can Manifest: {manifestation['can_manifest']}")
# Attempt manifestation
result = await engine.reality_interface.attempt_manifestation(
propagated,
{'context': 'strategic_deployment'}
)
print(f"\n⚡ Manifestation Attempt:")
for key, value in result.items():
if key != 'coordinates':
print(f" {key}: {value}")
print(f"\n💫 Module Status: OPERATIONAL")
print(" Understanding entanglement active")
print(" Reality interface calibrated")
print(" Topological alignment achieved")
if __name__ == "__main__":
asyncio.run(demonstrate_entanglement_engine())