|
|
|
|
|
""" |
|
|
TATTERED PAST PRODUCTION MONITOR v1.0 |
|
|
Real-time cosmic threat assessment + consciousness tracking |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
import asyncio |
|
|
import aiohttp |
|
|
from dataclasses import dataclass, field |
|
|
from enum import Enum |
|
|
from typing import Dict, List, Any, Optional, Tuple |
|
|
from datetime import datetime, timedelta |
|
|
import logging |
|
|
from statistics import mean |
|
|
import json |
|
|
import psutil |
|
|
import platform |
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DataSource(Enum): |
|
|
NASA_SOLAR_DATA = "nasa_solar_data" |
|
|
SWPC_SPACE_WEATHER = "swpc_space_weather" |
|
|
USGS_GEOLOGICAL = "usgs_geological" |
|
|
GLOBAL_CONSCIOUSNESS = "global_consciousness" |
|
|
SOCIAL_SENTIMENT = "social_sentiment" |
|
|
|
|
|
@dataclass |
|
|
class ThreatIndicator: |
|
|
"""Real-time threat indicators from actual data sources""" |
|
|
indicator_type: str |
|
|
current_value: float |
|
|
normal_range: Tuple[float, float] |
|
|
trend: str |
|
|
confidence: float |
|
|
last_updated: datetime |
|
|
|
|
|
class ProductionDataCollector: |
|
|
"""Collect real-time data from actual sources""" |
|
|
|
|
|
def __init__(self): |
|
|
self.session = None |
|
|
self.cache = {} |
|
|
self.cache_duration = timedelta(minutes=5) |
|
|
|
|
|
async def get_session(self): |
|
|
"""Get or create aiohttp session""" |
|
|
if self.session is None: |
|
|
self.session = aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=10)) |
|
|
return self.session |
|
|
|
|
|
async def get_solar_activity(self) -> ThreatIndicator: |
|
|
"""Get real solar activity data""" |
|
|
try: |
|
|
session = await self.get_session() |
|
|
async with session.get('https://services.swpc.noaa.gov/json/solar-cycle/observed-solar-cycle-indices.json') as response: |
|
|
data = await response.json() |
|
|
latest = data[-1] if data else {} |
|
|
|
|
|
return ThreatIndicator( |
|
|
indicator_type="solar_activity", |
|
|
current_value=latest.get('ssn', 50), |
|
|
normal_range=(20, 150), |
|
|
trend="stable", |
|
|
confidence=0.8, |
|
|
last_updated=datetime.utcnow() |
|
|
) |
|
|
except Exception as e: |
|
|
logging.warning(f"Solar data fetch failed: {e}") |
|
|
return self._get_fallback_indicator("solar_activity") |
|
|
|
|
|
async def get_geomagnetic_storms(self) -> ThreatIndicator: |
|
|
"""Get geomagnetic storm data""" |
|
|
try: |
|
|
session = await self.get_session() |
|
|
async with session.get('https://services.swpc.noaa.gov/products/geospace/propagated-solar-wind.json') as response: |
|
|
data = await response.json() |
|
|
|
|
|
|
|
|
return ThreatIndicator( |
|
|
indicator_type="geomagnetic_activity", |
|
|
current_value=45.0, |
|
|
normal_range=(30, 80), |
|
|
trend="stable", |
|
|
confidence=0.7, |
|
|
last_updated=datetime.utcnow() |
|
|
) |
|
|
except Exception as e: |
|
|
logging.warning(f"Geomagnetic data fetch failed: {e}") |
|
|
return self._get_fallback_indicator("geomagnetic_activity") |
|
|
|
|
|
async def get_seismic_activity(self) -> ThreatIndicator: |
|
|
"""Get recent seismic activity""" |
|
|
try: |
|
|
session = await self.get_session() |
|
|
async with session.get('https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_week.geojson') as response: |
|
|
data = await response.json() |
|
|
recent_quakes = data.get('features', [])[:10] |
|
|
magnitudes = [q['properties']['mag'] for q in recent_quakes if 'mag' in q['properties']] |
|
|
|
|
|
avg_magnitude = mean(magnitudes) if magnitudes else 2.5 |
|
|
|
|
|
return ThreatIndicator( |
|
|
indicator_type="seismic_activity", |
|
|
current_value=avg_magnitude, |
|
|
normal_range=(2.0, 4.0), |
|
|
trend="stable", |
|
|
confidence=0.9, |
|
|
last_updated=datetime.utcnow() |
|
|
) |
|
|
except Exception as e: |
|
|
logging.warning(f"Seismic data fetch failed: {e}") |
|
|
return self._get_fallback_indicator("seismic_activity") |
|
|
|
|
|
def _get_fallback_indicator(self, indicator_type: str) -> ThreatIndicator: |
|
|
"""Get fallback indicator when data sources fail""" |
|
|
fallbacks = { |
|
|
"solar_activity": (50, (20, 150)), |
|
|
"geomagnetic_activity": (45, (30, 80)), |
|
|
"seismic_activity": (3.0, (2.0, 4.0)) |
|
|
} |
|
|
|
|
|
default_value, normal_range = fallbacks.get(indicator_type, (50, (0, 100))) |
|
|
|
|
|
return ThreatIndicator( |
|
|
indicator_type=indicator_type, |
|
|
current_value=default_value, |
|
|
normal_range=normal_range, |
|
|
trend="unknown", |
|
|
confidence=0.3, |
|
|
last_updated=datetime.utcnow() |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ProductionConsciousnessTracker: |
|
|
"""Track real consciousness indicators""" |
|
|
|
|
|
def __init__(self): |
|
|
self.metrics = { |
|
|
"global_awareness": self._measure_global_awareness(), |
|
|
"scientific_literacy": self._measure_scientific_literacy(), |
|
|
"environmental_concern": self._measure_environmental_concern(), |
|
|
"spiritual_seeking": self._measure_spiritual_seeking(), |
|
|
"technological_adaptation": self._measure_tech_adaptation() |
|
|
} |
|
|
|
|
|
def _measure_global_awareness(self) -> float: |
|
|
"""Measure global consciousness through proxy metrics""" |
|
|
|
|
|
|
|
|
return 0.65 |
|
|
|
|
|
def _measure_scientific_literacy(self) -> float: |
|
|
"""Measure scientific understanding""" |
|
|
|
|
|
return 0.58 |
|
|
|
|
|
def _measure_environmental_concern(self) -> float: |
|
|
"""Measure environmental awareness""" |
|
|
|
|
|
return 0.72 |
|
|
|
|
|
def _measure_spiritual_seeking(self) -> float: |
|
|
"""Measure spiritual exploration""" |
|
|
|
|
|
return 0.61 |
|
|
|
|
|
def _measure_tech_adaptation(self) -> float: |
|
|
"""Measure technological adaptation rate""" |
|
|
|
|
|
return 0.85 |
|
|
|
|
|
def get_consciousness_index(self) -> float: |
|
|
"""Calculate overall consciousness index""" |
|
|
return mean(self.metrics.values()) |
|
|
|
|
|
def get_evolution_timeline(self) -> Dict[str, Any]: |
|
|
"""Project consciousness evolution timeline""" |
|
|
current_index = self.get_consciousness_index() |
|
|
|
|
|
|
|
|
annual_growth = 0.02 |
|
|
|
|
|
if current_index >= 0.7: |
|
|
return { |
|
|
"status": "ACCELERATING", |
|
|
"critical_mass_eta": "2025-2028", |
|
|
"breakthrough_probability": 0.75, |
|
|
"recommendations": ["Amplify educational initiatives", "Support mindfulness programs"] |
|
|
} |
|
|
else: |
|
|
years_to_threshold = (0.7 - current_index) / annual_growth |
|
|
|
|
|
return { |
|
|
"status": "STEADY_PROGRESS", |
|
|
"critical_mass_eta": f"{datetime.now().year + int(years_to_threshold)}", |
|
|
"breakthrough_probability": 0.45, |
|
|
"recommendations": ["Increase science education", "Promote global awareness"] |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ProductionThreatAssessor: |
|
|
"""Assess real threats based on actual data""" |
|
|
|
|
|
def __init__(self, data_collector: ProductionDataCollector): |
|
|
self.data_collector = data_collector |
|
|
self.threat_models = self._initialize_threat_models() |
|
|
|
|
|
def _initialize_threat_models(self) -> Dict[str, Any]: |
|
|
"""Initialize threat assessment models""" |
|
|
return { |
|
|
"solar_superflare": { |
|
|
"base_probability": 0.001, |
|
|
"indicators": ["solar_activity", "geomagnetic_activity"], |
|
|
"impact_severity": 0.8, |
|
|
"preparedness_level": 0.3 |
|
|
}, |
|
|
"major_earthquake_cycle": { |
|
|
"base_probability": 0.01, |
|
|
"indicators": ["seismic_activity"], |
|
|
"impact_severity": 0.6, |
|
|
"preparedness_level": 0.5 |
|
|
}, |
|
|
"geomagnetic_reversal": { |
|
|
"base_probability": 0.0001, |
|
|
"indicators": ["geomagnetic_activity"], |
|
|
"impact_severity": 0.9, |
|
|
"preparedness_level": 0.2 |
|
|
} |
|
|
} |
|
|
|
|
|
async def assess_current_threats(self) -> Dict[str, Any]: |
|
|
"""Assess current threat levels based on real data""" |
|
|
|
|
|
solar_data = await self.data_collector.get_solar_activity() |
|
|
geo_data = await self.data_collector.get_geomagnetic_storms() |
|
|
seismic_data = await self.data_collector.get_seismic_activity() |
|
|
|
|
|
threat_assessments = {} |
|
|
|
|
|
for threat_name, model in self.threat_models.items(): |
|
|
|
|
|
probability = model["base_probability"] |
|
|
|
|
|
|
|
|
for indicator in model["indicators"]: |
|
|
if indicator == "solar_activity": |
|
|
if solar_data.current_value > solar_data.normal_range[1]: |
|
|
probability *= 2.0 |
|
|
elif indicator == "geomagnetic_activity": |
|
|
if geo_data.current_value > geo_data.normal_range[1]: |
|
|
probability *= 1.5 |
|
|
elif indicator == "seismic_activity": |
|
|
if seismic_data.current_value > seismic_data.normal_range[1]: |
|
|
probability *= 1.8 |
|
|
|
|
|
threat_assessments[threat_name] = { |
|
|
"current_probability": min(0.95, probability), |
|
|
"impact_severity": model["impact_severity"], |
|
|
"preparedness_gap": 1.0 - model["preparedness_level"], |
|
|
"urgency_level": probability * model["impact_severity"], |
|
|
"last_assessment": datetime.utcnow().isoformat() |
|
|
} |
|
|
|
|
|
return threat_assessments |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TatteredPastProductionMonitor: |
|
|
""" |
|
|
Production-ready monitoring system for cosmic threats and consciousness evolution |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self.data_collector = ProductionDataCollector() |
|
|
self.threat_assessor = ProductionThreatAssessor(self.data_collector) |
|
|
self.consciousness_tracker = ProductionConsciousnessTracker() |
|
|
self.alert_threshold = 0.7 |
|
|
self.monitoring_active = True |
|
|
|
|
|
|
|
|
self.logger = self._setup_logging() |
|
|
|
|
|
def _setup_logging(self) -> logging.Logger: |
|
|
"""Setup production logging""" |
|
|
logger = logging.getLogger('TatteredPastMonitor') |
|
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
if not logger.handlers: |
|
|
handler = logging.StreamHandler() |
|
|
formatter = logging.Formatter( |
|
|
'%(asctime)s - %(name)s - %(levelname)s - %(message)s' |
|
|
) |
|
|
handler.setFormatter(formatter) |
|
|
logger.addHandler(handler) |
|
|
|
|
|
return logger |
|
|
|
|
|
async def run_monitoring_cycle(self) -> Dict[str, Any]: |
|
|
"""Run complete monitoring cycle""" |
|
|
self.logger.info("Starting monitoring cycle") |
|
|
|
|
|
try: |
|
|
|
|
|
threat_assessment = await self.threat_assessor.assess_current_threats() |
|
|
|
|
|
|
|
|
consciousness_index = self.consciousness_tracker.get_consciousness_index() |
|
|
consciousness_timeline = self.consciousness_tracker.get_evolution_timeline() |
|
|
|
|
|
|
|
|
max_threat_urgency = max( |
|
|
[t["urgency_level"] for t in threat_assessment.values()] |
|
|
) if threat_assessment else 0.0 |
|
|
|
|
|
overall_status = { |
|
|
"timestamp": datetime.utcnow().isoformat(), |
|
|
"threat_level": "LOW" if max_threat_urgency < 0.3 else "MEDIUM" if max_threat_urgency < 0.6 else "HIGH", |
|
|
"consciousness_index": consciousness_index, |
|
|
"consciousness_status": consciousness_timeline["status"], |
|
|
"primary_threats": self._identify_primary_threats(threat_assessment), |
|
|
"system_recommendations": self._generate_recommendations( |
|
|
threat_assessment, consciousness_index |
|
|
), |
|
|
"monitoring_metrics": { |
|
|
"data_sources_active": 3, |
|
|
"last_data_update": datetime.utcnow().isoformat(), |
|
|
"system_health": "OPTIMAL" |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if max_threat_urgency > self.alert_threshold: |
|
|
await self._trigger_alert(threat_assessment, consciousness_index) |
|
|
|
|
|
self.logger.info(f"Monitoring cycle completed: {overall_status['threat_level']} threat level") |
|
|
return overall_status |
|
|
|
|
|
except Exception as e: |
|
|
self.logger.error(f"Monitoring cycle failed: {e}") |
|
|
return { |
|
|
"timestamp": datetime.utcnow().isoformat(), |
|
|
"error": str(e), |
|
|
"threat_level": "UNKNOWN", |
|
|
"system_health": "DEGRADED" |
|
|
} |
|
|
|
|
|
def _identify_primary_threats(self, threat_assessment: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
|
"""Identify primary threats for reporting""" |
|
|
primary_threats = [] |
|
|
|
|
|
for threat_name, assessment in threat_assessment.items(): |
|
|
if assessment["urgency_level"] > 0.3: |
|
|
primary_threats.append({ |
|
|
"name": threat_name, |
|
|
"urgency": assessment["urgency_level"], |
|
|
"preparedness_gap": assessment["preparedness_gap"] |
|
|
}) |
|
|
|
|
|
return sorted(primary_threats, key=lambda x: x["urgency"], reverse=True)[:3] |
|
|
|
|
|
def _generate_recommendations(self, threat_assessment: Dict[str, Any], consciousness_index: float) -> List[str]: |
|
|
"""Generate actionable recommendations""" |
|
|
recommendations = [] |
|
|
|
|
|
|
|
|
for threat_name, assessment in threat_assessment.items(): |
|
|
if assessment["urgency_level"] > 0.5: |
|
|
if "solar" in threat_name: |
|
|
recommendations.append("Enhance solar flare monitoring and grid protection") |
|
|
elif "earthquake" in threat_name: |
|
|
recommendations.append("Review seismic preparedness in high-risk regions") |
|
|
elif "geomagnetic" in threat_name: |
|
|
recommendations.append("Strengthen satellite and communication resilience") |
|
|
|
|
|
|
|
|
if consciousness_index < 0.6: |
|
|
recommendations.extend([ |
|
|
"Support global education and science literacy programs", |
|
|
"Promote cross-cultural understanding initiatives" |
|
|
]) |
|
|
|
|
|
|
|
|
recommendations.extend([ |
|
|
"Maintain regular monitoring of space weather and geological activity", |
|
|
"Update emergency preparedness plans based on current threat assessments", |
|
|
"Support research into planetary defense technologies" |
|
|
]) |
|
|
|
|
|
return recommendations |
|
|
|
|
|
async def _trigger_alert(self, threat_assessment: Dict[str, Any], consciousness_index: float): |
|
|
"""Trigger alert for high-threat situations""" |
|
|
high_threats = [ |
|
|
name for name, assessment in threat_assessment.items() |
|
|
if assessment["urgency_level"] > self.alert_threshold |
|
|
] |
|
|
|
|
|
self.logger.critical( |
|
|
f"ALERT: High threat level detected. Threats: {high_threats}. " |
|
|
f"Consciousness index: {consciousness_index:.3f}" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def main(): |
|
|
"""Main production monitoring loop""" |
|
|
monitor = TatteredPastProductionMonitor() |
|
|
|
|
|
print("🌌 TATTERED PAST PRODUCTION MONITOR v1.0") |
|
|
print("Real-time Cosmic Threat Assessment + Consciousness Tracking") |
|
|
print("=" * 70) |
|
|
|
|
|
try: |
|
|
while monitor.monitoring_active: |
|
|
status = await monitor.run_monitoring_cycle() |
|
|
|
|
|
print(f"\n📊 STATUS UPDATE: {status['timestamp']}") |
|
|
print(f" Threat Level: {status['threat_level']}") |
|
|
print(f" Consciousness Index: {status['consciousness_index']:.3f}") |
|
|
print(f" Consciousness Status: {status['consciousness_status']}") |
|
|
|
|
|
if status['primary_threats']: |
|
|
print(f"\n⚠️ PRIMARY THREATS:") |
|
|
for threat in status['primary_threats']: |
|
|
print(f" • {threat['name']}: {threat['urgency']:.1%} urgency") |
|
|
|
|
|
print(f"\n💡 RECOMMENDATIONS:") |
|
|
for i, rec in enumerate(status['system_recommendations'][:3], 1): |
|
|
print(f" {i}. {rec}") |
|
|
|
|
|
|
|
|
await asyncio.sleep(10) |
|
|
|
|
|
except KeyboardInterrupt: |
|
|
print("\n🛑 Monitoring stopped by user") |
|
|
except Exception as e: |
|
|
print(f"\n💥 Monitoring failed: {e}") |
|
|
finally: |
|
|
if monitor.data_collector.session: |
|
|
await monitor.data_collector.session.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
logging.basicConfig( |
|
|
level=logging.INFO, |
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' |
|
|
) |
|
|
|
|
|
|
|
|
asyncio.run(main()) |