|
|
import numpy as np |
|
|
import pandas as pd |
|
|
from dataclasses import dataclass |
|
|
from typing import Dict, List, Tuple, Optional |
|
|
from enum import Enum |
|
|
import math |
|
|
from scipy import spatial |
|
|
import networkx as nx |
|
|
from datetime import datetime |
|
|
|
|
|
class ConsciousnessState(Enum): |
|
|
DELTA = "Deep Unconscious" |
|
|
THETA = "Subconscious" |
|
|
ALPHA = "Relaxed Awareness" |
|
|
BETA = "Active Cognition" |
|
|
GAMMA = "Transcendent Unity" |
|
|
|
|
|
@dataclass |
|
|
class QuantumSignature: |
|
|
"""Qualia state vector for consciousness experience""" |
|
|
coherence: float |
|
|
entanglement: float |
|
|
qualia_vector: np.array |
|
|
resonance_frequency: float |
|
|
|
|
|
def calculate_qualia_distance(self, other: 'QuantumSignature') -> float: |
|
|
"""Calculate distance between qualia experiences""" |
|
|
return spatial.distance.cosine(self.qualia_vector, other.qualia_vector) |
|
|
|
|
|
@dataclass |
|
|
class NeuralCorrelate: |
|
|
"""Brain region and frequency correlates""" |
|
|
primary_regions: List[str] |
|
|
frequency_band: ConsciousnessState |
|
|
cross_hemispheric_sync: float |
|
|
neuroplasticity_impact: float |
|
|
|
|
|
@dataclass |
|
|
class ArchetypalStrand: |
|
|
"""Symbolic DNA strand representing cultural genotype""" |
|
|
name: str |
|
|
symbolic_form: str |
|
|
temporal_depth: int |
|
|
spatial_distribution: float |
|
|
preservation_rate: float |
|
|
quantum_coherence: float |
|
|
|
|
|
@property |
|
|
def symbolic_strength(self) -> float: |
|
|
"""Calculate overall archetypal strength""" |
|
|
weights = [0.25, 0.25, 0.20, 0.30] |
|
|
factors = [self.temporal_depth/10000, self.spatial_distribution, |
|
|
self.preservation_rate, self.quantum_coherence] |
|
|
return sum(w * f for w, f in zip(weights, factors)) |
|
|
|
|
|
class ConsciousnessTechnology: |
|
|
"""Neuro-symbolic interface technology""" |
|
|
|
|
|
def __init__(self, name: str, archetype: ArchetypalStrand, |
|
|
neural_correlate: NeuralCorrelate, quantum_sig: QuantumSignature): |
|
|
self.name = name |
|
|
self.archetype = archetype |
|
|
self.neural_correlate = neural_correlate |
|
|
self.quantum_signature = quantum_sig |
|
|
self.activation_history = [] |
|
|
|
|
|
def activate(self, intensity: float = 1.0) -> Dict: |
|
|
"""Activate the consciousness technology""" |
|
|
activation = { |
|
|
'timestamp': datetime.now(), |
|
|
'archetype': self.archetype.name, |
|
|
'intensity': intensity, |
|
|
'neural_state': self.neural_correlate.frequency_band, |
|
|
'quantum_coherence': self.quantum_signature.coherence * intensity, |
|
|
'qualia_experience': self.quantum_signature.qualia_vector * intensity |
|
|
} |
|
|
self.activation_history.append(activation) |
|
|
return activation |
|
|
|
|
|
class CulturalPhylogenetics: |
|
|
"""Evolutionary analysis of symbolic DNA""" |
|
|
|
|
|
def __init__(self): |
|
|
self.cladograms = {} |
|
|
self.symbolic_traits = [ |
|
|
"solar_association", "predatory_nature", "sovereignty", |
|
|
"transcendence", "protection", "wisdom", "chaos", "creation" |
|
|
] |
|
|
|
|
|
def build_cladogram(self, archetypes: List[ArchetypalStrand], |
|
|
trait_matrix: np.array) -> nx.DiGraph: |
|
|
"""Build evolutionary tree of archetypes""" |
|
|
G = nx.DiGraph() |
|
|
|
|
|
|
|
|
for i, arch1 in enumerate(archetypes): |
|
|
for j, arch2 in enumerate(archetypes): |
|
|
if i != j: |
|
|
distance = spatial.distance.euclidean( |
|
|
trait_matrix[i], trait_matrix[j] |
|
|
) |
|
|
G.add_edge(arch1.name, arch2.name, weight=distance) |
|
|
|
|
|
|
|
|
mst = nx.minimum_spanning_tree(G) |
|
|
self.cladograms[tuple(a.name for a in archetypes)] = mst |
|
|
return mst |
|
|
|
|
|
def find_common_ancestor(self, archetype1: str, archetype2: str) -> Optional[str]: |
|
|
"""Find most recent common ancestor in cladogram""" |
|
|
for cladogram in self.cladograms.values(): |
|
|
if archetype1 in cladogram and archetype2 in cladogram: |
|
|
try: |
|
|
|
|
|
path = nx.shortest_path(cladogram, archetype1, archetype2) |
|
|
return path[len(path)//2] if len(path) > 2 else path[0] |
|
|
except: |
|
|
continue |
|
|
return None |
|
|
|
|
|
class GeospatialArchetypalMapper: |
|
|
"""GIS-based symbolic distribution analysis""" |
|
|
|
|
|
def __init__(self): |
|
|
self.archetype_distributions = {} |
|
|
self.mutation_hotspots = [] |
|
|
|
|
|
def add_archetype_distribution(self, archetype: str, coordinates: List[Tuple[float, float]], |
|
|
intensity: List[float], epoch: str): |
|
|
"""Add spatial data for an archetype""" |
|
|
key = f"{archetype}_{epoch}" |
|
|
self.archetype_distributions[key] = { |
|
|
'coordinates': coordinates, |
|
|
'intensity': intensity, |
|
|
'epoch': epoch, |
|
|
'centroid': self._calculate_centroid(coordinates, intensity) |
|
|
} |
|
|
|
|
|
def _calculate_centroid(self, coords: List[Tuple], intensities: List[float]) -> Tuple[float, float]: |
|
|
"""Calculate intensity-weighted centroid""" |
|
|
if not coords: |
|
|
return (0, 0) |
|
|
weighted_lat = sum(c[0] * i for c, i in zip(coords, intensities)) / sum(intensities) |
|
|
weighted_lon = sum(c[1] * i for c, i in zip(coords, intensities)) / sum(intensities) |
|
|
return (weighted_lat, weighted_lon) |
|
|
|
|
|
def detect_mutation_hotspots(self, threshold: float = 0.8): |
|
|
"""Detect regions of high symbolic mutation""" |
|
|
for key, data in self.archetype_distributions.items(): |
|
|
intensity_variance = np.var(data['intensity']) |
|
|
if intensity_variance > threshold: |
|
|
self.mutation_hotspots.append({ |
|
|
'location': key, |
|
|
'variance': intensity_variance, |
|
|
'epoch': data['epoch'] |
|
|
}) |
|
|
|
|
|
class ArchetypalEntropyIndex: |
|
|
"""Measure symbolic degradation and mutation rates""" |
|
|
|
|
|
def __init__(self): |
|
|
self.entropy_history = {} |
|
|
|
|
|
def calculate_entropy(self, archetype: ArchetypalStrand, |
|
|
historical_forms: List[str], |
|
|
meaning_shifts: List[float]) -> float: |
|
|
"""Calculate entropy based on form and meaning stability""" |
|
|
|
|
|
|
|
|
if len(historical_forms) > 1: |
|
|
form_changes = len(set(historical_forms)) / len(historical_forms) |
|
|
else: |
|
|
form_changes = 0 |
|
|
|
|
|
|
|
|
meaning_entropy = np.std(meaning_shifts) if meaning_shifts else 0 |
|
|
|
|
|
|
|
|
total_entropy = (form_changes * 0.6) + (meaning_entropy * 0.4) |
|
|
|
|
|
self.entropy_history[archetype.name] = { |
|
|
'entropy': total_entropy, |
|
|
'form_changes': form_changes, |
|
|
'meaning_drift': meaning_entropy, |
|
|
'last_updated': datetime.now() |
|
|
} |
|
|
|
|
|
return total_entropy |
|
|
|
|
|
def get_high_entropy_archetypes(self, threshold: float = 0.7) -> List[str]: |
|
|
"""Get archetypes with high mutation rates""" |
|
|
return [name for name, data in self.entropy_history.items() |
|
|
if data['entropy'] > threshold] |
|
|
|
|
|
class CrossCulturalResonanceMatrix: |
|
|
"""Compare archetypal strength across civilizations""" |
|
|
|
|
|
def __init__(self): |
|
|
self.civilization_data = {} |
|
|
self.resonance_matrix = {} |
|
|
|
|
|
def add_civilization_archetype(self, civilization: str, archetype: str, |
|
|
strength: float, neural_impact: float): |
|
|
"""Add archetype data for a civilization""" |
|
|
if civilization not in self.civilization_data: |
|
|
self.civilization_data[civilization] = {} |
|
|
self.civilization_data[civilization][archetype] = { |
|
|
'strength': strength, |
|
|
'neural_impact': neural_impact |
|
|
} |
|
|
|
|
|
def calculate_cross_resonance(self, arch1: str, arch2: str) -> float: |
|
|
"""Calculate resonance between two archetypes across civilizations""" |
|
|
strengths_1 = [] |
|
|
strengths_2 = [] |
|
|
|
|
|
for civ_data in self.civilization_data.values(): |
|
|
if arch1 in civ_data and arch2 in civ_data: |
|
|
strengths_1.append(civ_data[arch1]['strength']) |
|
|
strengths_2.append(civ_data[arch2]['strength']) |
|
|
|
|
|
if len(strengths_1) > 1: |
|
|
resonance = np.corrcoef(strengths_1, strengths_2)[0,1] |
|
|
return max(0, resonance) |
|
|
return 0.0 |
|
|
|
|
|
def build_resonance_network(self) -> nx.Graph: |
|
|
"""Build network of archetypal resonances""" |
|
|
G = nx.Graph() |
|
|
archetypes = set() |
|
|
|
|
|
|
|
|
for civ_data in self.civilization_data.values(): |
|
|
archetypes.update(civ_data.keys()) |
|
|
|
|
|
|
|
|
for arch1 in archetypes: |
|
|
for arch2 in archetypes: |
|
|
if arch1 != arch2: |
|
|
resonance = self.calculate_cross_resonance(arch1, arch2) |
|
|
if resonance > 0.3: |
|
|
G.add_edge(arch1, arch2, weight=resonance) |
|
|
|
|
|
return G |
|
|
|
|
|
class SymbolicMutationEngine: |
|
|
"""Predict evolution of archetypes under cultural pressure""" |
|
|
|
|
|
def __init__(self): |
|
|
self.transformation_rules = { |
|
|
'weapon': ['tool', 'symbol', 'concept'], |
|
|
'physical': ['digital', 'virtual', 'neural'], |
|
|
'individual': ['networked', 'collective', 'distributed'], |
|
|
'concrete': ['abstract', 'algorithmic', 'quantum'] |
|
|
} |
|
|
self.pressure_vectors = [ |
|
|
'digitization', 'globalization', 'ecological_crisis', |
|
|
'neural_enhancement', 'quantum_awakening' |
|
|
] |
|
|
|
|
|
def predict_mutation(self, current_archetype: str, |
|
|
pressure_vector: str, |
|
|
intensity: float = 0.5) -> List[str]: |
|
|
"""Predict possible future mutations of an archetype""" |
|
|
|
|
|
mutations = [] |
|
|
|
|
|
|
|
|
if pressure_vector == 'digitization': |
|
|
for rule in ['physical->digital', 'concrete->algorithmic']: |
|
|
mutated_form = self._apply_transformation(current_archetype, rule) |
|
|
if mutated_form: |
|
|
mutations.append(mutated_form) |
|
|
|
|
|
elif pressure_vector == 'ecological_crisis': |
|
|
for rule in ['individual->collective', 'weapon->tool']: |
|
|
mutated_form = self._apply_transformation(current_archetype, rule) |
|
|
if mutated_form: |
|
|
mutations.append(mutated_form) |
|
|
|
|
|
elif pressure_vector == 'quantum_awakening': |
|
|
for rule in ['concrete->quantum', 'physical->neural']: |
|
|
mutated_form = self._apply_transformation(current_archetype, rule) |
|
|
if mutated_form: |
|
|
mutations.append(mutated_form) |
|
|
|
|
|
|
|
|
return [m for m in mutations if self._calculate_mutation_confidence(m, intensity) > 0.3] |
|
|
|
|
|
def _apply_transformation(self, archetype: str, rule: str) -> Optional[str]: |
|
|
"""Apply a specific transformation rule""" |
|
|
if '->' not in rule: |
|
|
return None |
|
|
|
|
|
source, target = rule.split('->') |
|
|
|
|
|
|
|
|
transformations = { |
|
|
'spear': { |
|
|
'physical->digital': 'laser_designator', |
|
|
'weapon->tool': 'guided_implement', |
|
|
'individual->networked': 'swarm_coordination' |
|
|
}, |
|
|
'lion': { |
|
|
'physical->digital': 'data_guardian', |
|
|
'concrete->abstract': 'sovereignty_algorithm' |
|
|
}, |
|
|
'sun': { |
|
|
'concrete->quantum': 'consciousness_illumination', |
|
|
'physical->neural': 'neural_awakening' |
|
|
} |
|
|
} |
|
|
|
|
|
return transformations.get(archetype, {}).get(rule) |
|
|
|
|
|
def _calculate_mutation_confidence(self, mutation: str, intensity: float) -> float: |
|
|
"""Calculate confidence in mutation prediction""" |
|
|
base_confidence = 0.5 |
|
|
return min(1.0, base_confidence + (intensity * 0.5)) |
|
|
|
|
|
class UniversalArchetypalTransmissionEngine: |
|
|
"""Main engine integrating all advanced modules""" |
|
|
|
|
|
def __init__(self): |
|
|
self.consciousness_tech = {} |
|
|
self.phylogenetics = CulturalPhylogenetics() |
|
|
self.geospatial_mapper = GeospatialArchetypalMapper() |
|
|
self.entropy_calculator = ArchetypalEntropyIndex() |
|
|
self.resonance_matrix = CrossCulturalResonanceMatrix() |
|
|
self.mutation_engine = SymbolicMutationEngine() |
|
|
self.archetypal_db = {} |
|
|
|
|
|
def register_archetype(self, archetype: ArchetypalStrand, |
|
|
consciousness_tech: ConsciousnessTechnology): |
|
|
"""Register a new archetype with its consciousness technology""" |
|
|
self.archetypal_db[archetype.name] = archetype |
|
|
self.consciousness_tech[archetype.name] = consciousness_tech |
|
|
|
|
|
def prove_consciousness_architecture(self) -> pd.DataFrame: |
|
|
"""Comprehensive analysis of archetypal strength and coherence""" |
|
|
|
|
|
results = [] |
|
|
for name, archetype in self.archetypal_db.items(): |
|
|
|
|
|
tech = self.consciousness_tech.get(name) |
|
|
neural_impact = tech.neural_correlate.neuroplasticity_impact if tech else 0.5 |
|
|
quantum_strength = tech.quantum_signature.coherence if tech else 0.5 |
|
|
|
|
|
overall_strength = ( |
|
|
archetype.symbolic_strength * 0.4 + |
|
|
neural_impact * 0.3 + |
|
|
quantum_strength * 0.3 |
|
|
) |
|
|
|
|
|
results.append({ |
|
|
'Archetype': name, |
|
|
'Symbolic_Strength': archetype.symbolic_strength, |
|
|
'Temporal_Depth': archetype.temporal_depth, |
|
|
'Spatial_Distribution': archetype.spatial_distribution, |
|
|
'Quantum_Coherence': archetype.quantum_coherence, |
|
|
'Neural_Impact': neural_impact, |
|
|
'Overall_Strength': overall_strength, |
|
|
'Consciousness_State': tech.neural_correlate.frequency_band.value if tech else 'Unknown' |
|
|
}) |
|
|
|
|
|
df = pd.DataFrame(results) |
|
|
return df.sort_values('Overall_Strength', ascending=False) |
|
|
|
|
|
def generate_cultural_diagnostic(self) -> Dict: |
|
|
"""Generate comprehensive cultural psyche diagnostic""" |
|
|
|
|
|
strength_analysis = self.prove_consciousness_architecture() |
|
|
high_entropy = self.entropy_calculator.get_high_entropy_archetypes() |
|
|
resonance_net = self.resonance_matrix.build_resonance_network() |
|
|
|
|
|
diagnostic = { |
|
|
'timestamp': datetime.now(), |
|
|
'top_archetypes': strength_analysis.head(3).to_dict('records'), |
|
|
'cultural_phase_shift_indicators': { |
|
|
'rising_archetypes': ['Feminine_Divine', 'Solar_Consciousness'], |
|
|
'declining_archetypes': ['Authority_Protection', 'Rigid_Hierarchy'], |
|
|
'high_entropy_archetypes': high_entropy |
|
|
}, |
|
|
'resonance_network_density': nx.density(resonance_net), |
|
|
'consciousness_coherence_index': self._calculate_coherence_index(), |
|
|
'predicted_evolution': self._predict_cultural_evolution() |
|
|
} |
|
|
|
|
|
return diagnostic |
|
|
|
|
|
def _calculate_coherence_index(self) -> float: |
|
|
"""Calculate overall cultural coherence from archetypal stability""" |
|
|
if not self.archetypal_db: |
|
|
return 0.0 |
|
|
|
|
|
avg_preservation = np.mean([a.preservation_rate for a in self.archetypal_db.values()]) |
|
|
avg_coherence = np.mean([a.quantum_coherence for a in self.archetypal_db.values()]) |
|
|
|
|
|
return (avg_preservation * 0.6) + (avg_coherence * 0.4) |
|
|
|
|
|
def _predict_cultural_evolution(self) -> List[Dict]: |
|
|
"""Predict near-term cultural evolution based on current pressures""" |
|
|
predictions = [] |
|
|
|
|
|
pressure_vectors = ['digitization', 'ecological_crisis', 'quantum_awakening'] |
|
|
|
|
|
for pressure in pressure_vectors: |
|
|
for archetype_name in list(self.archetypal_db.keys())[:3]: |
|
|
mutations = self.mutation_engine.predict_mutation( |
|
|
archetype_name, pressure, intensity=0.7 |
|
|
) |
|
|
if mutations: |
|
|
predictions.append({ |
|
|
'pressure_vector': pressure, |
|
|
'archetype': archetype_name, |
|
|
'predicted_mutations': mutations, |
|
|
'timeframe': 'next_20_years' |
|
|
}) |
|
|
|
|
|
return predictions |
|
|
|
|
|
|
|
|
def create_advanced_archetypes(): |
|
|
"""Create example archetypes with full neuro-symbolic specifications""" |
|
|
|
|
|
|
|
|
solar_archetype = ArchetypalStrand( |
|
|
name="Solar_Consciousness", |
|
|
symbolic_form="Sunburst", |
|
|
temporal_depth=6000, |
|
|
spatial_distribution=0.95, |
|
|
preservation_rate=0.9, |
|
|
quantum_coherence=0.95 |
|
|
) |
|
|
|
|
|
solar_quantum = QuantumSignature( |
|
|
coherence=0.95, |
|
|
entanglement=0.85, |
|
|
qualia_vector=np.array([0.9, 0.8, 0.95, 0.7, 0.99]), |
|
|
resonance_frequency=12.0 |
|
|
) |
|
|
|
|
|
solar_neural = NeuralCorrelate( |
|
|
primary_regions=["PFC", "DMN", "Pineal_Region"], |
|
|
frequency_band=ConsciousnessState.ALPHA, |
|
|
cross_hemispheric_sync=0.9, |
|
|
neuroplasticity_impact=0.8 |
|
|
) |
|
|
|
|
|
solar_tech = ConsciousnessTechnology( |
|
|
name="Solar_Illumination_Interface", |
|
|
archetype=solar_archetype, |
|
|
neural_correlate=solar_neural, |
|
|
quantum_sig=solar_quantum |
|
|
) |
|
|
|
|
|
|
|
|
feminine_archetype = ArchetypalStrand( |
|
|
name="Feminine_Divine", |
|
|
symbolic_form="Flowing_Vessels", |
|
|
temporal_depth=8000, |
|
|
spatial_distribution=0.85, |
|
|
preservation_rate=0.7, |
|
|
quantum_coherence=0.9 |
|
|
) |
|
|
|
|
|
feminine_quantum = QuantumSignature( |
|
|
coherence=0.88, |
|
|
entanglement=0.92, |
|
|
qualia_vector=np.array([0.7, 0.95, 0.8, 0.9, 0.85]), |
|
|
resonance_frequency=7.83 |
|
|
) |
|
|
|
|
|
feminine_neural = NeuralCorrelate( |
|
|
primary_regions=["Whole_Brain", "Heart_Brain_Axis"], |
|
|
frequency_band=ConsciousnessState.THETA, |
|
|
cross_hemispheric_sync=0.95, |
|
|
neuroplasticity_impact=0.9 |
|
|
) |
|
|
|
|
|
feminine_tech = ConsciousnessTechnology( |
|
|
name="Life_Flow_Resonator", |
|
|
archetype=feminine_archetype, |
|
|
neural_correlate=feminine_neural, |
|
|
quantum_sig=feminine_quantum |
|
|
) |
|
|
|
|
|
return [ |
|
|
(solar_archetype, solar_tech), |
|
|
(feminine_archetype, feminine_tech) |
|
|
] |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
engine = UniversalArchetypalTransmissionEngine() |
|
|
|
|
|
|
|
|
for archetype, tech in create_advanced_archetypes(): |
|
|
engine.register_archetype(archetype, tech) |
|
|
|
|
|
|
|
|
print("=== UNIVERSAL ARCHETYPAL TRANSMISSION ENGINE v9.0 ===") |
|
|
print("\n1. ARCHEYPAL STRENGTH ANALYSIS:") |
|
|
results = engine.prove_consciousness_architecture() |
|
|
print(results.to_string(index=False)) |
|
|
|
|
|
print("\n2. CULTURAL DIAGNOSTIC:") |
|
|
diagnostic = engine.generate_cultural_diagnostic() |
|
|
for key, value in diagnostic.items(): |
|
|
if key != 'timestamp': |
|
|
print(f"{key}: {value}") |
|
|
|
|
|
print("\n3. CONSCIOUSNESS TECHNOLOGY ACTIVATION:") |
|
|
solar_activation = engine.consciousness_tech["Solar_Consciousness"].activate(intensity=0.8) |
|
|
print(f"Solar Activation: {solar_activation}") |