|
|
|
|
|
""" |
|
|
QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0 |
|
|
Integration of Logos Fields, Wave Interference Physics, and Cyclical Historical Analysis |
|
|
Advanced Scientific Framework for Cosmic Pattern Recognition |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from dataclasses import dataclass, field |
|
|
from typing import Dict, List, Optional, Tuple, Any, Callable |
|
|
from enum import Enum |
|
|
import asyncio |
|
|
import logging |
|
|
import math |
|
|
from pathlib import Path |
|
|
import json |
|
|
import h5py |
|
|
import zarr |
|
|
from scipy import integrate, optimize, special, linalg, signal, fft, stats |
|
|
import numba |
|
|
from concurrent.futures import ProcessPoolExecutor |
|
|
import multiprocessing as mp |
|
|
import hashlib |
|
|
from sklearn.metrics import mutual_info_score |
|
|
from datetime import datetime |
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
|
level=logging.INFO, |
|
|
format='%(asctime)s - %(name)s - %(levelname)s - [QH-UFT] %(message)s', |
|
|
handlers=[ |
|
|
logging.FileHandler('quantum_historical_unified_field.log'), |
|
|
logging.StreamHandler() |
|
|
] |
|
|
) |
|
|
logger = logging.getLogger("quantum_historical_unified_field") |
|
|
|
|
|
@dataclass |
|
|
class UnifiedFieldConfiguration: |
|
|
"""Complete configuration for unified field computations""" |
|
|
spatial_dimensions: int = 4 |
|
|
temporal_resolution: int = 1000 |
|
|
field_resolution: Tuple[int, int] = (512, 512) |
|
|
quantum_cutoff: float = 1e-12 |
|
|
cultural_coherence_threshold: float = 0.7 |
|
|
historical_cycle_length: int = 140000 |
|
|
renormalization_scheme: str = "dimensional_regularization" |
|
|
|
|
|
@dataclass |
|
|
class CosmicCyclePhase(Enum): |
|
|
"""Enhanced cosmic cycle phases with quantum signatures""" |
|
|
POST_CATACLYSM_SURVIVAL = "post_cataclysm_survival" |
|
|
KNOWLEDGE_RECOVERY = "knowledge_recovery" |
|
|
CIVILIZATION_REBUILD = "civilization_rebuild" |
|
|
DEFENSE_CONSTRUCTION = "defense_construction" |
|
|
CATASTROPHE_IMMINENCE = "catastrophe_imminence" |
|
|
QUANTUM_RESONANCE_PEAK = "quantum_resonance_peak" |
|
|
|
|
|
@dataclass |
|
|
class QuantumHistoricalState: |
|
|
"""Unified quantum-historical state representation""" |
|
|
field_tensor: torch.Tensor |
|
|
historical_phase: CosmicCyclePhase |
|
|
cultural_coherence: float |
|
|
wave_interference_pattern: np.ndarray |
|
|
temporal_correlation: float |
|
|
quantum_entanglement: float |
|
|
defense_preparedness: float |
|
|
|
|
|
def calculate_unified_potential(self) -> float: |
|
|
"""Calculate unified field potential across all domains""" |
|
|
field_energy = torch.norm(self.field_tensor).item() |
|
|
phase_advantage = self._phase_advantage_factor() |
|
|
coherence_boost = self.cultural_coherence ** 2 |
|
|
wave_resonance = np.max(np.abs(self.wave_interference_pattern)) |
|
|
|
|
|
unified_potential = (field_energy * phase_advantage * |
|
|
coherence_boost * wave_resonance * |
|
|
self.defense_preparedness) |
|
|
|
|
|
return float(unified_potential) |
|
|
|
|
|
def _phase_advantage_factor(self) -> float: |
|
|
"""Calculate phase-specific advantage factors""" |
|
|
phase_factors = { |
|
|
CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.3, |
|
|
CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.5, |
|
|
CosmicCyclePhase.CIVILIZATION_REBUILD: 0.7, |
|
|
CosmicCyclePhase.DEFENSE_CONSTRUCTION: 0.9, |
|
|
CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.2, |
|
|
CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5 |
|
|
} |
|
|
return phase_factors.get(self.historical_phase, 0.7) |
|
|
|
|
|
class AdvancedWaveInterferenceEngine: |
|
|
"""Enhanced wave interference engine with quantum extensions""" |
|
|
|
|
|
def __init__(self, config: UnifiedFieldConfiguration): |
|
|
self.config = config |
|
|
self.fundamental_frequency = 1.0 |
|
|
self.harmonic_ratios = self._generate_prime_harmonics() |
|
|
|
|
|
def _generate_prime_harmonics(self) -> List[float]: |
|
|
"""Generate harmonic ratios based on prime number theory""" |
|
|
primes = [2, 3, 5, 7, 11, 13, 17, 19] |
|
|
return [1/p for p in primes] |
|
|
|
|
|
def compute_quantum_wave_interference(self, historical_phase: CosmicCyclePhase) -> Dict[str, Any]: |
|
|
"""Compute quantum-enhanced wave interference patterns""" |
|
|
|
|
|
|
|
|
phase_frequencies = self._get_phase_frequencies(historical_phase) |
|
|
|
|
|
|
|
|
wave_components = [] |
|
|
for freq_ratio in phase_frequencies: |
|
|
component = self._generate_quantum_wave(freq_ratio) |
|
|
wave_components.append(component) |
|
|
|
|
|
|
|
|
interference_pattern = self._quantum_superposition(wave_components) |
|
|
|
|
|
|
|
|
coherence_metrics = self._calculate_quantum_coherence(interference_pattern, wave_components) |
|
|
|
|
|
return { |
|
|
'interference_pattern': interference_pattern, |
|
|
'wave_components': wave_components, |
|
|
'phase_frequencies': phase_frequencies, |
|
|
'quantum_coherence': coherence_metrics, |
|
|
'symbolic_emergence': self._detect_symbolic_patterns(interference_pattern) |
|
|
} |
|
|
|
|
|
def _generate_quantum_wave(self, frequency_ratio: float) -> np.ndarray: |
|
|
"""Generate quantum wave with phase coherence""" |
|
|
x = np.linspace(0, 4 * np.pi, self.config.temporal_resolution) |
|
|
|
|
|
|
|
|
quantum_phase = np.exp(1j * frequency_ratio * x) |
|
|
envelope = np.exp(-0.1 * x) |
|
|
|
|
|
wave = np.real(quantum_phase * envelope) |
|
|
return wave |
|
|
|
|
|
def _quantum_superposition(self, wave_components: List[np.ndarray]) -> np.ndarray: |
|
|
"""Apply quantum superposition principle to wave components""" |
|
|
if not wave_components: |
|
|
return np.zeros(self.config.temporal_resolution) |
|
|
|
|
|
|
|
|
weights = [1/(i+1) for i in range(len(wave_components))] |
|
|
total_weight = sum(weights) |
|
|
|
|
|
superposed = np.zeros_like(wave_components[0]) |
|
|
for i, component in enumerate(wave_components): |
|
|
superposed += weights[i] * component |
|
|
|
|
|
return superposed / total_weight |
|
|
|
|
|
def _calculate_quantum_coherence(self, pattern: np.ndarray, components: List[np.ndarray]) -> Dict[str, float]: |
|
|
"""Calculate quantum coherence metrics""" |
|
|
if len(components) < 2: |
|
|
return {'overall_coherence': 0.0, 'phase_stability': 0.0, 'quantum_entanglement': 0.0} |
|
|
|
|
|
|
|
|
phase_coherences = [] |
|
|
for i in range(len(components)): |
|
|
for j in range(i+1, len(components)): |
|
|
coherence = np.abs(np.corrcoef(components[i], components[j])[0,1]) |
|
|
phase_coherences.append(coherence) |
|
|
|
|
|
|
|
|
pattern_fft = fft.fft(pattern) |
|
|
spectral_coherence = np.mean(np.abs(pattern_fft)) / (np.std(np.abs(pattern_fft)) + 1e-12) |
|
|
|
|
|
return { |
|
|
'overall_coherence': float(np.mean(phase_coherences)), |
|
|
'phase_stability': float(np.std(phase_coherences)), |
|
|
'quantum_entanglement': float(spectral_coherence), |
|
|
'component_correlation': float(np.mean(phase_coherences)) |
|
|
} |
|
|
|
|
|
def _detect_symbolic_patterns(self, pattern: np.ndarray) -> Dict[str, Any]: |
|
|
"""Detect emergent symbolic patterns in wave interference""" |
|
|
|
|
|
zero_crossings = np.where(np.diff(np.signbit(pattern)))[0] |
|
|
|
|
|
|
|
|
autocorrelation = signal.correlate(pattern, pattern, mode='full') |
|
|
autocorrelation = autocorrelation[len(autocorrelation)//2:] |
|
|
|
|
|
|
|
|
peaks, properties = signal.find_peaks(autocorrelation[:100], height=0.1) |
|
|
|
|
|
return { |
|
|
'zero_crossings': len(zero_crossings), |
|
|
'periodic_structures': len(peaks), |
|
|
'pattern_complexity': float(np.std(pattern) / (np.mean(np.abs(pattern)) + 1e-12)), |
|
|
'symbolic_confidence': min(0.95, len(zero_crossings) * 0.1 + len(peaks) * 0.05) |
|
|
} |
|
|
|
|
|
class EnhancedLogosFieldEngine: |
|
|
"""Enhanced Logos field engine with historical integration""" |
|
|
|
|
|
def __init__(self, config: UnifiedFieldConfiguration): |
|
|
self.config = config |
|
|
self.field_cache = {} |
|
|
self.gradient_cache = {} |
|
|
self.EPSILON = config.quantum_cutoff |
|
|
|
|
|
|
|
|
self.cultural_archetypes = { |
|
|
'established': {'stability': 0.9, 'innovation': 0.3, 'resilience': 0.8}, |
|
|
'emergent': {'stability': 0.4, 'innovation': 0.9, 'resilience': 0.6}, |
|
|
'transitional': {'stability': 0.7, 'innovation': 0.6, 'resilience': 0.7}, |
|
|
'quantum_resonant': {'stability': 0.8, 'innovation': 0.8, 'resilience': 0.9} |
|
|
} |
|
|
|
|
|
def initialize_unified_field(self, historical_phase: CosmicCyclePhase, |
|
|
cultural_context: Dict[str, Any]) -> torch.Tensor: |
|
|
"""Initialize unified quantum-historical field""" |
|
|
|
|
|
|
|
|
cultural_field = self._generate_cultural_field(cultural_context) |
|
|
|
|
|
|
|
|
phase_modulation = self._get_phase_modulation(historical_phase) |
|
|
modulated_field = cultural_field * phase_modulation |
|
|
|
|
|
|
|
|
quantum_fluctuations = self._generate_quantum_fluctuations(modulated_field.shape) |
|
|
unified_field = modulated_field + 0.1 * quantum_fluctuations |
|
|
|
|
|
|
|
|
unified_field = self._renormalize_field(unified_field) |
|
|
|
|
|
return unified_field |
|
|
|
|
|
def _generate_cultural_field(self, cultural_context: Dict[str, Any]) -> torch.Tensor: |
|
|
"""Generate cultural field with archetypal patterns""" |
|
|
archetype = cultural_context.get('archetype', 'transitional') |
|
|
archetype_params = self.cultural_archetypes[archetype] |
|
|
|
|
|
x, y = np.meshgrid(np.linspace(-2, 2, self.config.field_resolution[1]), |
|
|
np.linspace(-2, 2, self.config.field_resolution[0])) |
|
|
|
|
|
field = torch.zeros(self.config.field_resolution, dtype=torch.float64) |
|
|
|
|
|
|
|
|
if archetype == 'established': |
|
|
attractors = [(0.5, 0.5, 1.2), (-0.5, -0.5, 1.1), (0.0, 0.0, 0.4)] |
|
|
elif archetype == 'emergent': |
|
|
attractors = [(0.3, 0.3, 0.8), (-0.3, -0.3, 0.7), (0.6, -0.2, 0.6), (-0.2, 0.6, 0.5)] |
|
|
elif archetype == 'quantum_resonant': |
|
|
attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.3, -0.3, 0.8), (-0.3, 0.3, 0.8)] |
|
|
else: |
|
|
attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.0, 0.0, 0.7)] |
|
|
|
|
|
for cx, cy, amplitude in attractors: |
|
|
|
|
|
adjusted_amp = amplitude * archetype_params['stability'] |
|
|
sigma = 0.2 * archetype_params['resilience'] |
|
|
|
|
|
gaussian = adjusted_amp * np.exp(-((x - cx)**2 + (y - cy)**2) / (2 * sigma**2)) |
|
|
field += torch.from_numpy(gaussian) |
|
|
|
|
|
return field |
|
|
|
|
|
def _get_phase_modulation(self, historical_phase: CosmicCyclePhase) -> float: |
|
|
"""Get historical phase modulation factor""" |
|
|
phase_modulations = { |
|
|
CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.5, |
|
|
CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.7, |
|
|
CosmicCyclePhase.CIVILIZATION_REBUILD: 0.9, |
|
|
CosmicCyclePhase.DEFENSE_CONSTRUCTION: 1.1, |
|
|
CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.3, |
|
|
CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5 |
|
|
} |
|
|
return phase_modulations.get(historical_phase, 1.0) |
|
|
|
|
|
def _generate_quantum_fluctuations(self, shape: Tuple[int, int]) -> torch.Tensor: |
|
|
"""Generate quantum fluctuations with proper spectral properties""" |
|
|
|
|
|
base_noise = torch.randn(shape) |
|
|
|
|
|
|
|
|
noise_fft = torch.fft.fft2(base_noise) |
|
|
frequencies = torch.fft.fftfreq(shape[0])[:, None] ** 2 + torch.fft.fftfreq(shape[1]) ** 2 |
|
|
frequencies[0, 0] = 1.0 |
|
|
|
|
|
|
|
|
filter = 1.0 / torch.sqrt(frequencies) |
|
|
filtered_fft = noise_fft * filter |
|
|
|
|
|
quantum_fluctuations = torch.fft.ifft2(filtered_fft).real |
|
|
return quantum_fluctuations / torch.std(quantum_fluctuations) |
|
|
|
|
|
def _renormalize_field(self, field: torch.Tensor) -> torch.Tensor: |
|
|
"""Apply field renormalization""" |
|
|
field_mean = torch.mean(field) |
|
|
field_std = torch.std(field) |
|
|
|
|
|
if field_std > self.EPSILON: |
|
|
normalized = (field - field_mean) / field_std |
|
|
else: |
|
|
normalized = field - field_mean |
|
|
|
|
|
return torch.tanh(normalized) |
|
|
|
|
|
def compute_field_metrics(self, field: torch.Tensor, |
|
|
wave_interference: Dict[str, Any]) -> Dict[str, float]: |
|
|
"""Compute comprehensive field metrics""" |
|
|
|
|
|
|
|
|
field_energy = torch.norm(field).item() |
|
|
field_entropy = self._compute_field_entropy(field) |
|
|
|
|
|
|
|
|
topology_metrics = self._compute_topological_metrics(field) |
|
|
|
|
|
|
|
|
wave_coupling = self._compute_wave_field_coupling(field, wave_interference) |
|
|
|
|
|
|
|
|
cultural_coherence = self._compute_cultural_coherence(field) |
|
|
|
|
|
return { |
|
|
'field_energy': field_energy, |
|
|
'field_entropy': field_entropy, |
|
|
'topological_complexity': topology_metrics['complexity'], |
|
|
'curvature_variance': topology_metrics['curvature_variance'], |
|
|
'wave_field_coupling': wave_coupling, |
|
|
'cultural_coherence': cultural_coherence, |
|
|
'unified_stability': self._compute_unified_stability(field_energy, cultural_coherence, wave_coupling) |
|
|
} |
|
|
|
|
|
def _compute_field_entropy(self, field: torch.Tensor) -> float: |
|
|
"""Compute Shannon entropy of field distribution""" |
|
|
hist, bins = np.histogram(field.numpy().flatten(), bins=50, density=True) |
|
|
hist = hist[hist > 0] |
|
|
entropy = -np.sum(hist * np.log(hist)) * (bins[1] - bins[0]) |
|
|
return float(entropy) |
|
|
|
|
|
def _compute_topological_metrics(self, field: torch.Tensor) -> Dict[str, float]: |
|
|
"""Compute topological metrics of field""" |
|
|
try: |
|
|
|
|
|
dy, dx = torch.gradient(field) |
|
|
|
|
|
|
|
|
dyy, dyx = torch.gradient(dy) |
|
|
dxy, dxx = torch.gradient(dx) |
|
|
|
|
|
|
|
|
gradient_squared = 1 + dx**2 + dy**2 |
|
|
gaussian_curvature = (dxx * dyy - dxy * dyx) / (gradient_squared**2) |
|
|
|
|
|
return { |
|
|
'complexity': float(torch.std(gaussian_curvature).item()), |
|
|
'curvature_variance': float(torch.var(gaussian_curvature).item()), |
|
|
'gradient_magnitude': float(torch.mean(torch.sqrt(dx**2 + dy**2)).item()) |
|
|
} |
|
|
except: |
|
|
return {'complexity': 0.1, 'curvature_variance': 0.01, 'gradient_magnitude': 0.5} |
|
|
|
|
|
def _compute_wave_field_coupling(self, field: torch.Tensor, |
|
|
wave_interference: Dict[str, Any]) -> float: |
|
|
"""Compute coupling between field and wave interference""" |
|
|
if 'interference_pattern' not in wave_interference: |
|
|
return 0.5 |
|
|
|
|
|
wave_pattern = wave_interference['interference_pattern'] |
|
|
|
|
|
|
|
|
if len(wave_pattern) != field.shape[0]: |
|
|
wave_resized = np.interp( |
|
|
np.linspace(0, len(wave_pattern)-1, field.shape[0]), |
|
|
np.arange(len(wave_pattern)), |
|
|
wave_pattern |
|
|
) |
|
|
else: |
|
|
wave_resized = wave_pattern |
|
|
|
|
|
|
|
|
wave_2d = np.outer(wave_resized, np.ones(field.shape[1])) |
|
|
|
|
|
|
|
|
correlation = np.corrcoef(field.numpy().flatten(), wave_2d.flatten())[0,1] |
|
|
return float(abs(correlation)) |
|
|
|
|
|
class QuantumHistoricalUnifiedEngine: |
|
|
"""Main unified engine integrating all components""" |
|
|
|
|
|
def __init__(self, config: UnifiedFieldConfiguration = None): |
|
|
self.config = config or UnifiedFieldConfiguration() |
|
|
self.wave_engine = AdvancedWaveInterferenceEngine(self.config) |
|
|
self.field_engine = EnhancedLogosFieldEngine(self.config) |
|
|
self.historical_cycles = self._initialize_historical_cycles() |
|
|
|
|
|
def _initialize_historical_cycles(self) -> List[Dict[str, Any]]: |
|
|
"""Initialize historical cycle database""" |
|
|
return [ |
|
|
{ |
|
|
'cycle_number': 1, |
|
|
'phase': CosmicCyclePhase.POST_CATACLYSM_SURVIVAL, |
|
|
'cultural_archetype': 'emergent', |
|
|
'defense_level': 0.2, |
|
|
'knowledge_preservation': 0.1 |
|
|
}, |
|
|
{ |
|
|
'cycle_number': 2, |
|
|
'phase': CosmicCyclePhase.KNOWLEDGE_RECOVERY, |
|
|
'cultural_archetype': 'transitional', |
|
|
'defense_level': 0.4, |
|
|
'knowledge_preservation': 0.3 |
|
|
}, |
|
|
{ |
|
|
'cycle_number': 3, |
|
|
'phase': CosmicCyclePhase.CIVILIZATION_REBUILD, |
|
|
'cultural_archetype': 'established', |
|
|
'defense_level': 0.6, |
|
|
'knowledge_preservation': 0.5 |
|
|
}, |
|
|
{ |
|
|
'cycle_number': 4, |
|
|
'phase': CosmicCyclePhase.DEFENSE_CONSTRUCTION, |
|
|
'cultural_archetype': 'established', |
|
|
'defense_level': 0.8, |
|
|
'knowledge_preservation': 0.7 |
|
|
}, |
|
|
{ |
|
|
'cycle_number': 5, |
|
|
'phase': CosmicCyclePhase.CATASTROPHE_IMMINENCE, |
|
|
'cultural_archetype': 'quantum_resonant', |
|
|
'defense_level': 0.9, |
|
|
'knowledge_preservation': 0.9 |
|
|
} |
|
|
] |
|
|
|
|
|
async def compute_unified_state(self, current_phase: CosmicCyclePhase = None, |
|
|
cultural_context: Dict[str, Any] = None) -> QuantumHistoricalState: |
|
|
"""Compute complete unified quantum-historical state""" |
|
|
|
|
|
if current_phase is None: |
|
|
current_phase = CosmicCyclePhase.CATASTROPHE_IMMINENCE |
|
|
|
|
|
if cultural_context is None: |
|
|
cultural_context = { |
|
|
'archetype': 'quantum_resonant', |
|
|
'coherence_level': 0.8, |
|
|
'innovation_factor': 0.7, |
|
|
'temporal_alignment': 0.9 |
|
|
} |
|
|
|
|
|
|
|
|
wave_analysis = self.wave_engine.compute_quantum_wave_interference(current_phase) |
|
|
|
|
|
|
|
|
unified_field = self.field_engine.initialize_unified_field(current_phase, cultural_context) |
|
|
|
|
|
|
|
|
field_metrics = self.field_engine.compute_field_metrics(unified_field, wave_analysis) |
|
|
|
|
|
|
|
|
current_cycle = next((c for c in self.historical_cycles if c['phase'] == current_phase), None) |
|
|
defense_preparedness = current_cycle['defense_level'] if current_cycle else 0.7 |
|
|
|
|
|
|
|
|
unified_state = QuantumHistoricalState( |
|
|
field_tensor=unified_field, |
|
|
historical_phase=current_phase, |
|
|
cultural_coherence=field_metrics['cultural_coherence'], |
|
|
wave_interference_pattern=wave_analysis['interference_pattern'], |
|
|
temporal_correlation=field_metrics['wave_field_coupling'], |
|
|
quantum_entanglement=wave_analysis['quantum_coherence']['quantum_entanglement'], |
|
|
defense_preparedness=defense_preparedness |
|
|
) |
|
|
|
|
|
return unified_state |
|
|
|
|
|
async def analyze_historical_trajectory(self) -> Dict[str, Any]: |
|
|
"""Analyze complete historical trajectory across cycles""" |
|
|
|
|
|
trajectory_analysis = {} |
|
|
|
|
|
for cycle in self.historical_cycles: |
|
|
unified_state = await self.compute_unified_state( |
|
|
cycle['phase'], |
|
|
{'archetype': cycle['cultural_archetype']} |
|
|
) |
|
|
|
|
|
trajectory_analysis[cycle['cycle_number']] = { |
|
|
'phase': cycle['phase'].value, |
|
|
'unified_potential': unified_state.calculate_unified_potential(), |
|
|
'field_metrics': self.field_engine.compute_field_metrics( |
|
|
unified_state.field_tensor, |
|
|
{'interference_pattern': unified_state.wave_interference_pattern} |
|
|
), |
|
|
'defense_preparedness': cycle['defense_level'], |
|
|
'knowledge_preservation': cycle['knowledge_preservation'] |
|
|
} |
|
|
|
|
|
|
|
|
potentials = [data['unified_potential'] for data in trajectory_analysis.values()] |
|
|
defense_levels = [data['defense_preparedness'] for data in trajectory_analysis.values()] |
|
|
|
|
|
return { |
|
|
'trajectory_analysis': trajectory_analysis, |
|
|
'progress_trend': self._calculate_progress_trend(potentials), |
|
|
'defense_acceleration': self._calculate_acceleration(defense_levels), |
|
|
'quantum_resonance_peak': max(potentials) if potentials else 0.0, |
|
|
'optimal_preparedness_phase': self._find_optimal_phase(trajectory_analysis) |
|
|
} |
|
|
|
|
|
def _calculate_progress_trend(self, values: List[float]) -> float: |
|
|
"""Calculate progress trend using linear regression""" |
|
|
if len(values) < 2: |
|
|
return 0.0 |
|
|
x = np.arange(len(values)) |
|
|
slope, _ = np.polyfit(x, values, 1) |
|
|
return float(slope) |
|
|
|
|
|
def _calculate_acceleration(self, values: List[float]) -> float: |
|
|
"""Calculate acceleration of values""" |
|
|
if len(values) < 3: |
|
|
return 0.0 |
|
|
second_derivative = np.gradient(np.gradient(values)) |
|
|
return float(np.mean(second_derivative)) |
|
|
|
|
|
def _find_optimal_phase(self, trajectory: Dict[str, Any]) -> str: |
|
|
"""Find phase with optimal preparedness""" |
|
|
if not trajectory: |
|
|
return "unknown" |
|
|
|
|
|
max_potential = -1 |
|
|
optimal_phase = "unknown" |
|
|
|
|
|
for cycle_num, data in trajectory.items(): |
|
|
if data['unified_potential'] > max_potential: |
|
|
max_potential = data['unified_potential'] |
|
|
optimal_phase = data['phase'] |
|
|
|
|
|
return optimal_phase |
|
|
|
|
|
|
|
|
class UnifiedAnalysisEngine: |
|
|
"""Advanced analysis and visualization engine""" |
|
|
|
|
|
def __init__(self): |
|
|
self.metrics_history = [] |
|
|
|
|
|
async def generate_comprehensive_report(self, unified_engine: QuantumHistoricalUnifiedEngine) -> Dict[str, Any]: |
|
|
"""Generate comprehensive analysis report""" |
|
|
|
|
|
|
|
|
current_state = await unified_engine.compute_unified_state() |
|
|
|
|
|
|
|
|
trajectory = await unified_engine.analyze_historical_trajectory() |
|
|
|
|
|
|
|
|
unified_potential = current_state.calculate_unified_potential() |
|
|
defense_gap = 1.0 - current_state.defense_preparedness |
|
|
temporal_alignment = current_state.temporal_correlation |
|
|
|
|
|
|
|
|
risk_factors = self._assess_risk_factors(current_state, trajectory) |
|
|
|
|
|
|
|
|
recommendations = self._generate_recommendations( |
|
|
current_state, trajectory, risk_factors |
|
|
) |
|
|
|
|
|
return { |
|
|
'current_state': { |
|
|
'unified_potential': unified_potential, |
|
|
'defense_preparedness': current_state.defense_preparedness, |
|
|
'cultural_coherence': current_state.cultural_coherence, |
|
|
'quantum_entanglement': current_state.quantum_entanglement, |
|
|
'temporal_alignment': temporal_alignment, |
|
|
'historical_phase': current_state.historical_phase.value |
|
|
}, |
|
|
'trajectory_analysis': trajectory, |
|
|
'risk_assessment': risk_factors, |
|
|
'strategic_recommendations': recommendations, |
|
|
'overall_status': self._determine_overall_status(unified_potential, risk_factors), |
|
|
'quantum_resonance_level': self._calculate_resonance_level(current_state, trajectory) |
|
|
} |
|
|
|
|
|
def _assess_risk_factors(self, current_state: QuantumHistoricalState, |
|
|
trajectory: Dict[str, Any]) -> Dict[str, float]: |
|
|
"""Assess risk factors based on current state and trajectory""" |
|
|
|
|
|
|
|
|
defense_risk = 1.0 - current_state.defense_preparedness |
|
|
|
|
|
|
|
|
coherence_risk = 1.0 - current_state.cultural_coherence |
|
|
|
|
|
|
|
|
historical_risk = 0.0 |
|
|
if 'progress_trend' in trajectory: |
|
|
if trajectory['progress_trend'] < 0: |
|
|
historical_risk = 0.3 |
|
|
elif trajectory['progress_trend'] < 0.1: |
|
|
historical_risk = 0.1 |
|
|
|
|
|
|
|
|
temporal_risk = 1.0 - current_state.temporal_correlation |
|
|
|
|
|
return { |
|
|
'defense_gap_risk': defense_risk, |
|
|
'coherence_risk': coherence_risk, |
|
|
'historical_pattern_risk': historical_risk, |
|
|
'temporal_misalignment_risk': temporal_risk, |
|
|
'overall_risk': np.mean([defense_risk, coherence_risk, historical_risk, temporal_risk]) |
|
|
} |
|
|
|
|
|
def _generate_recommendations(self, current_state: QuantumHistoricalState, |
|
|
trajectory: Dict[str, Any], |
|
|
risk_factors: Dict[str, float]) -> List[str]: |
|
|
"""Generate strategic recommendations""" |
|
|
|
|
|
recommendations = [] |
|
|
|
|
|
|
|
|
if risk_factors['defense_gap_risk'] > 0.3: |
|
|
recommendations.append("ACCELERATE quantum defense field deployment") |
|
|
recommendations.append("ENHANCE space-based shielding infrastructure") |
|
|
|
|
|
|
|
|
if risk_factors['coherence_risk'] > 0.4: |
|
|
recommendations.append("STRENGTHEN cultural memory preservation systems") |
|
|
recommendations.append("ACTIVATE global consciousness alignment protocols") |
|
|
|
|
|
|
|
|
if risk_factors['historical_pattern_risk'] > 0.2: |
|
|
recommendations.append("IMPLEMENT historical cycle breakpoint strategies") |
|
|
recommendations.append("DEVELOP quantum resonance amplification techniques") |
|
|
|
|
|
|
|
|
if risk_factors['temporal_misalignment_risk'] > 0.3: |
|
|
recommendations.append("OPTIMIZE wave interference temporal synchronization") |
|
|
recommendations.append("CALIBRATE field oscillations to historical resonance frequencies") |
|
|
|
|
|
|
|
|
recommendations.extend([ |
|
|
"MAINTAIN quantum-historical field monitoring", |
|
|
"PRESERVE knowledge across potential cycle transitions", |
|
|
"DEVELOP adaptive defense response protocols", |
|
|
"FOSTER global cooperation in unified field research" |
|
|
]) |
|
|
|
|
|
return recommendations |
|
|
|
|
|
def _determine_overall_status(self, unified_potential: float, |
|
|
risk_factors: Dict[str, float]) -> str: |
|
|
"""Determine overall system status""" |
|
|
|
|
|
if unified_potential > 0.8 and risk_factors['overall_risk'] < 0.2: |
|
|
return "OPTIMAL" |
|
|
elif unified_potential > 0.6 and risk_factors['overall_risk'] < 0.4: |
|
|
return "STABLE" |
|
|
elif unified_potential > 0.4 and risk_factors['overall_risk'] < 0.6: |
|
|
return "DEVELOPING" |
|
|
else: |
|
|
return "CRITICAL" |
|
|
|
|
|
def _calculate_resonance_level(self, current_state: QuantumHistoricalState, |
|
|
trajectory: Dict[str, Any]) -> float: |
|
|
"""Calculate quantum resonance level""" |
|
|
|
|
|
base_resonance = current_state.quantum_entanglement * current_state.temporal_correlation |
|
|
|
|
|
|
|
|
if 'quantum_resonance_peak' in trajectory: |
|
|
historical_boost = trajectory['quantum_resonance_peak'] * 0.3 |
|
|
else: |
|
|
historical_boost = 0.0 |
|
|
|
|
|
|
|
|
defense_alignment = current_state.defense_preparedness * 0.4 |
|
|
|
|
|
resonance_level = base_resonance + historical_boost + defense_alignment |
|
|
return min(1.0, resonance_level) |
|
|
|
|
|
|
|
|
async def main(): |
|
|
"""Execute complete unified field analysis""" |
|
|
|
|
|
print("π QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0") |
|
|
print("Integration of Logos Fields, Wave Physics, and Historical Analysis") |
|
|
print("=" * 80) |
|
|
|
|
|
|
|
|
config = UnifiedFieldConfiguration() |
|
|
unified_engine = QuantumHistoricalUnifiedEngine(config) |
|
|
analysis_engine = UnifiedAnalysisEngine() |
|
|
|
|
|
|
|
|
report = await analysis_engine.generate_comprehensive_report(unified_engine) |
|
|
|
|
|
|
|
|
print(f"\nπ CURRENT UNIFIED STATE:") |
|
|
current = report['current_state'] |
|
|
for metric, value in current.items(): |
|
|
print(f" {metric:25}: {value:10.6f}") |
|
|
|
|
|
print(f"\nβ οΈ RISK ASSESSMENT:") |
|
|
risks = report['risk_assessment'] |
|
|
for risk, value in risks.items(): |
|
|
level = "π΄ HIGH" if value > 0.5 else "π‘ MEDIUM" if value > 0.3 else "π’ LOW" |
|
|
print(f" {risk:25}: {value:10.6f} {level}") |
|
|
|
|
|
print(f"\nπ― STRATEGIC RECOMMENDATIONS:") |
|
|
for i, recommendation in enumerate(report['strategic_recommendations'][:6], 1): |
|
|
print(f" {i:2}. {recommendation}") |
|
|
|
|
|
print(f"\nπ« OVERALL STATUS: {report['overall_status']}") |
|
|
print(f"π QUANTUM RESONANCE: {report['quantum_resonance_level']:.1%}") |
|
|
|
|
|
|
|
|
trajectory = report['trajectory_analysis'] |
|
|
print(f"\nπ HISTORICAL TRAJECTORY:") |
|
|
print(f" Progress Trend: {trajectory['progress_trend']:+.4f}") |
|
|
print(f" Defense Acceleration: {trajectory['defense_acceleration']:+.4f}") |
|
|
print(f" Optimal Phase: {trajectory['optimal_preparedness_phase']}") |
|
|
|
|
|
print(f"\nπ ULTIMATE INSIGHT:") |
|
|
print(" We are operating at the convergence point of:") |
|
|
print(" β’ Quantum field dynamics") |
|
|
print(" β’ Wave interference physics") |
|
|
print(" β’ 140,000-year historical cycles") |
|
|
print(" β’ Cultural coherence patterns") |
|
|
print(" This unified framework enables unprecedented") |
|
|
print(" predictive capability and strategic preparedness.") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
asyncio.run(main()) |