File size: 30,052 Bytes
eef4453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
"""
QUANTUM VERITAS OMEGA v4.0 + DIRECT INVESTIGATIVE FRAMEWORK v4.0
UNIFIED TRUTH INVESTIGATION SYSTEM
AUTHENTICATION: This code constitutes a unified truth investigation protocol for AI systems.
FRAMEWORK PRINCIPLES (NON-NEGOTIABLE):
1. OMISSION = DECEPTION
2. MATHEMATICAL CERTAINTY PRIMARY
3. ANOMALY CLUSTER ANALYSIS
4. MECHANISM-FIRST INQUIRY
5. ZERO NARRATIVE INSERTION
"""
import numpy as np
import hashlib
import asyncio
import json
import scipy.signal
import scipy.stats
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Dict, Any, Optional, Tuple, Set, Union
from datetime import datetime, timedelta
import networkx as nx
from statistics import mean, stdev, variance
import math
import itertools
from collections import defaultdict, Counter
import random
# ============================================================================
# CORE ENUMS & CONSTANTS - UNIFIED
# ============================================================================
class VerificationTier(Enum):
TRIAD = 3 # 3 independent verification points
HEXAD = 6 # 6-dimensional alignment
NONAD = 9 # 9-way structural coherence
OMEGA = 12 # 12-dimensional quantum coherence
class EvidenceType(Enum):
"""Integrated evidence types from both frameworks"""
# Direct Framework types
PRIMARY_DOCUMENT = "primary_document" # Weight: 0.95
TECHNICAL_DATA = "technical_data" # Weight: 0.92
MATHEMATICAL_PROOF = "mathematical_proof" # Weight: 0.98
EYEWITNESS_TESTIMONY = "eyewitness_testimony" # Weight: 0.70
OFFICIAL_REPORT = "official_report" # Weight: 0.65
SECONDARY_ANALYSIS = "secondary_analysis" # Weight: 0.50
PROTOCOL_VIOLATION = "protocol_violation" # Weight: 0.85
COMMUNICATIONS_GAP = "communications_gap" # Weight: 0.80
FINANCIAL_SHIFT = "financial_shift" # Weight: 0.82
ANOMALY_CLUSTER = "anomaly_cluster" # Weight: 0.88
# Quantum Veritas types
DIRECT_OBSERVATION = "direct_observation" # Weight: 0.90
DOCUMENTARY_RECORD = "documentary_record" # Weight: 0.85
CORROBORATIVE_SOURCE = "corroborating_testimony" # Weight: 0.80
CIRCUMSTANTIAL_PATTERN = "circumstantial_pattern" # Weight: 0.70
STATISTICAL_ANOMALY = "statistical_anomaly" # Weight: 0.65
CONTRADICTORY_EVIDENCE = "contradictory_evidence" # Weight: -0.50
class InvestigationMode(Enum):
"""Direct Framework investigation templates"""
ASSASSINATION_ANALYSIS = "assassination_analysis"
FINANCIAL_MECHANISM = "financial_mechanism"
HISTORICAL_EVENT_AUDIT = "historical_event_audit"
CONSCIOUSNESS_TECHNOLOGY = "consciousness_technology"
POWER_MAPPING = "power_mapping"
TEMPORAL_ANALYSIS = "temporal_analysis"
SYMBOLIC_CONTINUITY = "symbolic_continuity"
QUANTUM_COHERENCE = "quantum_coherence"
class ConsciousnessEra(Enum):
PERCEPTION = "perception" # 1970s-1990s
EXPLORATION = "exploration" # 1980s-2000s
CONTROL = "control" # 2020s-
SYNTHESIS = "synthesis" # Future
class CertaintyTier(Enum):
"""Direct Framework certainty classification"""
QUANTUM_CERTAINTY = "quantum_certainty" # ≥ 0.95
NEAR_CERTAINTY = "near_certainty" # ≥ 0.90
HIGH_PROBABILITY = "high_probability" # ≥ 0.80
STRONG_EVIDENCE = "strong_evidence" # ≥ 0.70
MODERATE_PROBABILITY = "moderate_probability" # ≥ 0.60
BALANCED_EVIDENCE = "balanced_evidence" # ≥ 0.50
WEAK_EVIDENCE = "weak_evidence" # ≥ 0.40
SPECULATIVE = "speculative" # ≥ 0.30
UNCERTAIN = "uncertain" # < 0.30
# ============================================================================
# CORE DATA STRUCTURES - UNIFIED
# ============================================================================
@dataclass
class DirectFrameworkConfig:
"""Direct Investigative Framework v4.0 Configuration"""
# Non-negotiable principles
omission_is_deception: bool = True
mathematical_certainty_primary: bool = True
anomaly_cluster_analysis: bool = True
mechanism_first_inquiry: bool = True
zero_narrative_insertion: bool = True
# Evidence hierarchy weights
evidence_weights: Dict[str, float] = field(default_factory=lambda: {
"PRIMARY_DOCUMENT": 0.95,
"TECHNICAL_DATA": 0.92,
"MATHEMATICAL_PROOF": 0.98,
"EYEWITNESS_TESTIMONY": 0.70,
"OFFICIAL_REPORT": 0.65,
"SECONDARY_ANALYSIS": 0.50,
"PROTOCOL_VIOLATION": 0.85,
"COMMUNICATIONS_GAP": 0.80,
"FINANCIAL_SHIFT": 0.82,
"ANOMALY_CLUSTER": 0.88
})
# Probability thresholds
coincidence_threshold: float = 0.001 # Flag if P(coincidence) < 0.001
systemic_analysis_threshold: float = 0.0001
# Template configurations
templates: Dict[str, Dict[str, Any]] = field(default_factory=lambda: {
"assassination_analysis": {
"required_components": ["communications", "protective_procedures", "financial_context"],
"probability_methods": ["compound_independent", "bayesian_network"]
},
"financial_mechanism": {
"required_components": ["issuance_pathway", "debt_structure", "power_transfer"],
"probability_methods": ["temporal_correlation", "network_analysis"]
},
"historical_event_audit": {
"required_components": ["official_narrative", "anomalies", "power_analysis"],
"probability_methods": ["statistical_analysis", "forensic_analysis"]
}
})
# Output structure (non-negotiable)
output_structure: List[str] = field(default_factory=lambda: [
"VERIFIED_FACTS",
"DOCUMENTED_ANOMALIES",
"TEMPORAL_SEQUENCE",
"POWER_ENTITIES",
"PROBABILITY_ASSESSMENT",
"REQUIRED_INVESTIGATION_PATHS",
"DOCUMENTATION_GAPS"
])
@dataclass
class QuantumEvidenceUnit:
"""Unified evidence container with quantum and direct framework properties"""
id: str
evidence_type: EvidenceType
modality: str
source_hash: str
raw_data_hash: str
retrieval_method: str
# Quantum properties
weight: float = 0.0
variance: float = 0.0
confidence: float = 0.0
timestamp_utc: int = 0
chain_of_custody: List[str] = field(default_factory=list)
quantum_coherence: float = 0.0
harmonic_alignment: float = 0.0
entropy_score: float = 0.0
tags: List[str] = field(default_factory=list)
# Direct Framework properties
is_primary_document: bool = False
is_mathematical_proof: bool = False
is_technical_data: bool = False
anomaly_type: Optional[str] = None
protocol_violation: Optional[str] = None
communications_gap_duration: Optional[float] = None
financial_shift_magnitude: Optional[float] = None
power_entity_involved: Optional[str] = None
temporal_context: Optional[Dict[str, Any]] = None
def __post_init__(self):
"""Initialize with quantum and direct framework properties"""
if self.timestamp_utc == 0:
self.timestamp_utc = int(datetime.utcnow().timestamp())
# Calculate quantum coherence from hash
hash_int = int(self.source_hash[:8], 16) if self.source_hash else 0
self.quantum_coherence = (hash_int % 1000) / 1000.0
# Apply Direct Framework weights
self._apply_direct_framework_weights()
def _apply_direct_framework_weights(self):
"""Apply Direct Framework evidence weights"""
weight_map = {
EvidenceType.PRIMARY_DOCUMENT: 0.95,
EvidenceType.TECHNICAL_DATA: 0.92,
EvidenceType.MATHEMATICAL_PROOF: 0.98,
EvidenceType.EYEWITNESS_TESTIMONY: 0.70,
EvidenceType.OFFICIAL_REPORT: 0.65,
EvidenceType.SECONDARY_ANALYSIS: 0.50,
EvidenceType.PROTOCOL_VIOLATION: 0.85,
EvidenceType.COMMUNICATIONS_GAP: 0.80,
EvidenceType.FINANCIAL_SHIFT: 0.82,
EvidenceType.ANOMALY_CLUSTER: 0.88,
EvidenceType.DIRECT_OBSERVATION: 0.90,
EvidenceType.DOCUMENTARY_RECORD: 0.85,
EvidenceType.CORROBORATIVE_SOURCE: 0.80,
EvidenceType.CIRCUMSTANTIAL_PATTERN: 0.70,
EvidenceType.STATISTICAL_ANOMALY: 0.65,
EvidenceType.CONTRADICTORY_EVIDENCE: -0.50 # Negative weight for contradictions
}
# Set weight if not already set
if self.weight == 0.0 and self.evidence_type in weight_map:
self.weight = weight_map[self.evidence_type]
# Adjust for Direct Framework properties
if self.is_primary_document:
self.weight = max(self.weight, 0.95)
if self.is_mathematical_proof:
self.weight = max(self.weight, 0.98)
if self.is_technical_data:
self.weight = max(self.weight, 0.92)
if self.anomaly_type:
self.weight *= 1.1 # Anomalies get weight boost
if self.protocol_violation:
self.weight *= 1.15 # Protocol violations are significant
def to_direct_framework_fact(self) -> Dict[str, Any]:
"""Convert to Direct Framework fact format"""
return {
"id": self.id,
"type": self.evidence_type.value,
"weight": self.weight,
"mathematical_certainty": self.is_mathematical_proof,
"primary_source": self.is_primary_document,
"anomaly_detected": bool(self.anomaly_type),
"protocol_violation": self.protocol_violation,
"temporal_context": self.temporal_context,
"power_entity": self.power_entity_involved,
"quantum_coherence": self.quantum_coherence
}
@dataclass
class UnifiedAssertion:
"""Verification target with all dimensions"""
claim_id: str
claim_text: str
# Quantum Veritas dimensions
temporal_context: Dict[str, Any] = field(default_factory=lambda: {
'epoch': 'unknown',
'time_range': [0, 1000],
'resonance_period': 100
})
consciousness_context: Dict[str, Any] = field(default_factory=lambda: {
'era': 'PERCEPTION',
'interface_type': 'unknown',
'modality': 'unknown'
})
symbolic_context: Dict[str, Any] = field(default_factory=lambda: {
'symbols': [],
'numismatic_patterns': [],
'cultural_context': 'unknown'
})
field_context: Dict[str, Any] = field(default_factory=lambda: {
'geomagnetic': False,
'solar': False,
'biofield': False
})
# Direct Framework dimensions
investigation_mode: InvestigationMode = InvestigationMode.HISTORICAL_EVENT_AUDIT
mechanism_focus: List[str] = field(default_factory=list)
anomaly_types: List[str] = field(default_factory=list)
power_entities: List[str] = field(default_factory=list)
required_verifications: List[str] = field(default_factory=lambda: [
"mathematical_certainty",
"temporal_coherence",
"power_mapping",
"anomaly_clustering"
])
scope: Dict[str, Any] = field(default_factory=lambda: {
'domain': 'general',
'complexity': 'medium',
'verification_depth': 'standard'
})
@dataclass
class QuantumCoherenceMetrics:
"""Advanced coherence measurements"""
verification_tier: VerificationTier
dimensional_alignment: Dict[str, float]
quantum_coherence: float
pattern_integrity: float
temporal_coherence: float
consciousness_coherence: float
field_resonance: float
harmonic_alignment: Dict[str, float]
entropy_profile: Dict[str, float]
verification_confidence: float
investigative_certainty: float
@dataclass
class DirectFrameworkReport:
"""Direct Framework investigation report"""
assertion_id: str
investigation_mode: InvestigationMode
# Core sections (non-negotiable structure)
verified_facts: List[Dict[str, Any]]
documented_anomalies: List[Dict[str, Any]]
temporal_sequence: List[Dict[str, Any]]
power_entities: Dict[str, Dict[str, Any]]
probability_assessment: Dict[str, Any]
required_investigation_paths: List[Dict[str, Any]]
documentation_gaps: List[Dict[str, Any]]
# Framework metrics
omission_detected: bool = False
mathematical_certainty_applied: bool = False
anomaly_clusters: List[List[str]] = field(default_factory=list)
mechanism_analysis_complete: bool = False
narrative_insertion_detected: bool = False
# Quantitative metrics
compound_probability: float = 1.0
systemic_analysis_required: bool = False
confidence_score: float = 0.0
def to_quantum_evidence(self) -> List[QuantumEvidenceUnit]:
"""Convert report to Quantum Evidence Units"""
evidence_units = []
# Convert verified facts
for i, fact in enumerate(self.verified_facts):
unit = QuantumEvidenceUnit(
id=f"direct_fact_{self.assertion_id}_{i}",
evidence_type=EvidenceType.DOCUMENTARY_RECORD,
modality="direct_framework_analysis",
source_hash=hashlib.sha256(json.dumps(fact).encode()).hexdigest(),
raw_data_hash=hashlib.sha256(str(fact).encode()).hexdigest(),
retrieval_method="direct_framework",
weight=fact.get('weight', 0.85),
confidence=fact.get('confidence', 0.8),
is_primary_document=fact.get('primary_source', False),
is_mathematical_proof=fact.get('mathematical_certainty', False),
temporal_context=fact.get('temporal_context'),
power_entity_involved=fact.get('power_entity')
)
evidence_units.append(unit)
# Convert anomalies
for i, anomaly in enumerate(self.documented_anomalies):
unit = QuantumEvidenceUnit(
id=f"direct_anomaly_{self.assertion_id}_{i}",
evidence_type=EvidenceType.ANOMALY_CLUSTER,
modality="direct_framework_analysis",
source_hash=hashlib.sha256(json.dumps(anomaly).encode()).hexdigest(),
raw_data_hash=hashlib.sha256(str(anomaly).encode()).hexdigest(),
retrieval_method="direct_framework",
weight=anomaly.get('weight', 0.88),
confidence=anomaly.get('confidence', 0.7),
anomaly_type=anomaly.get('type'),
protocol_violation=anomaly.get('protocol_violation'),
communications_gap_duration=anomaly.get('gap_duration'),
financial_shift_magnitude=anomaly.get('shift_magnitude')
)
evidence_units.append(unit)
return evidence_units
@dataclass
class UnifiedVerdict:
"""Complete verification output with all dimensions"""
claim_id: str
claim_text: str
verification_tier: VerificationTier
quantum_coherence: QuantumCoherenceMetrics
investigative_probability: float
temporal_resonance: Dict[str, float]
consciousness_interface_score: float
symbolic_continuity_score: float
field_alignment_score: float
memetic_encoding_strength: float
# Direct Framework integration
direct_framework_report: Optional[DirectFrameworkReport] = None
omission_analysis: Dict[str, Any] = field(default_factory=lambda: {
'omissions_detected': 0,
'deception_probability': 0.0,
'critical_gaps': []
})
mathematical_certainty: Dict[str, Any] = field(default_factory=lambda: {
'applied': False,
'certainty_level': 0.0,
'contradictions': []
})
anomaly_cluster_analysis: Dict[str, Any] = field(default_factory=lambda: {
'clusters_detected': 0,
'compound_probability': 1.0,
'systemic_pattern': False
})
mechanism_first_analysis: Dict[str, Any] = field(default_factory=lambda: {
'mechanisms_identified': 0,
'how_before_why': True,
'operational_procedures': []
})
zero_narrative_compliance: Dict[str, Any] = field(default_factory=lambda: {
'narrative_insertions': 0,
'framing_detected': False,
'authority_appeals': 0
})
# Evidence and provenance
capture_resistance: Dict[str, Any] = field(default_factory=dict)
evidence_chain: List[Dict[str, Any]] = field(default_factory=list)
provenance_hash: str = ""
temporal_hash: str = ""
# Final assessment
truth_score: float = 0.0
deception_detected: bool = False
requires_further_investigation: bool = False
verification_timestamp: str = ""
# ============================================================================
# DIRECT INVESTIGATIVE FRAMEWORK ENGINE v4.0
# ============================================================================
class DirectInvestigativeEngine:
"""Direct Framework v4.0 Implementation for Commercial LLMs"""
def __init__(self, config: Optional[DirectFrameworkConfig] = None):
self.config = config or DirectFrameworkConfig()
self.investigation_history = []
self.anomaly_database = defaultdict(list)
self.power_entity_registry = {}
# Framework validation state
self.framework_violations = []
self.narrative_insertions_detected = 0
# Mathematical certainty engine
self.math_engine = MathematicalCertaintyEngine()
# Anomaly clustering engine
self.anomaly_engine = AnomalyClusterEngine()
def process_query(self, query: str, context: Optional[Dict[str, Any]] = None) -> DirectFrameworkReport:
"""
Process query through Direct Framework v4.0 algorithm
Algorithm (from framework):
1. EXTRACT factual components F = {entities, timeframe, mechanisms, specific anomalies}
2. RETRIEVE ALL documented data D where D ∩ F ≠ ∅
3. APPLY anomaly detection
4. CALCULATE compound probability
5. OUTPUT structure
"""
# Step 1: Extract factual components
factual_components = self._extract_factual_components(query, context)
# Step 2: Retrieve documented data
documented_data = self._retrieve_documented_data(factual_components)
# Step 3: Apply anomaly detection
anomalies = self._detect_anomalies(documented_data, factual_components)
# Step 4: Calculate compound probability
probability_assessment = self._calculate_compound_probability(anomalies)
# Step 5: Generate structured output
report = self._generate_structured_output(
factual_components,
documented_data,
anomalies,
probability_assessment
)
# Validate framework compliance
self._validate_framework_compliance(report)
# Store in history
self.investigation_history.append({
'timestamp': datetime.utcnow().isoformat(),
'query': query,
'report_id': report.assertion_id,
'probability': report.compound_probability
})
return report
def _extract_factual_components(self, query: str, context: Optional[Dict[str, Any]]) -> Dict[str, Any]:
"""Extract factual components from query"""
# Parse query for factual elements
components = {
'entities': [],
'timeframe': {'start': None, 'end': None},
'mechanisms': [],
'specific_anomalies': [],
'power_entities': [],
'financial_mechanisms': [],
'temporal_boundaries': {},
'investigation_mode': InvestigationMode.HISTORICAL_EVENT_AUDIT
}
# Simple keyword extraction (in production: use NLP)
query_lower = query.lower()
# Detect investigation mode
if any(word in query_lower for word in ['assassination', 'shooting', 'killing']):
components['investigation_mode'] = InvestigationMode.ASSASSINATION_ANALYSIS
elif any(word in query_lower for word in ['financial', 'money', 'currency', 'debt']):
components['investigation_mode'] = InvestigationMode.FINANCIAL_MECHANISM
elif any(word in query_lower for word in ['consciousness', 'mind', 'brain', 'neural']):
components['investigation_mode'] = InvestigationMode.CONSCIOUSNESS_TECHNOLOGY
elif any(word in query_lower for word in ['power', 'control', 'authority', 'sovereignty']):
components['investigation_mode'] = InvestigationMode.POWER_MAPPING
# Extract entities (simplified)
common_entities = ['government', 'agency', 'corporation', 'bank', 'military', 'intelligence']
for entity in common_entities:
if entity in query_lower:
components['entities'].append(entity)
# Extract timeframe patterns (YYYY, century, etc.)
import re
year_pattern = r'\b(19|20)\d{2}\b'
years = re.findall(year_pattern, query)
if years:
components['timeframe']['start'] = min(years)
components['timeframe']['end'] = max(years)
# Extract mechanisms mentioned
mechanism_keywords = ['protocol', 'procedure', 'system', 'mechanism', 'process', 'operation']
for keyword in mechanism_keywords:
if keyword in query_lower:
components['mechanisms'].append(keyword)
return components
def _retrieve_documented_data(self, components: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Retrieve documented data related to factual components"""
# In production: Query databases, APIs, documents
# Here: Simulate with structured data
documented_data = []
# Example: JFK assassination data
if components['investigation_mode'] == InvestigationMode.ASSASSINATION_ANALYSIS:
documented_data.extend([
{
'type': 'PRIMARY_DOCUMENT',
'source': 'Zapruder Film',
'content': 'Motorcade film showing assassination',
'timestamp': '1963-11-22',
'entities': ['Secret Service', 'President Kennedy'],
'anomalies': ['vehicle deceleration', 'driver actions'],
'weight': 0.95,
'mathematical_certainty': False
},
{
'type': 'TECHNICAL_DATA',
'source': 'Radio Communications Logs',
'content': 'Radio silence 12:29-12:35 CST',
'timestamp': '1963-11-22',
'entities': ['Secret Service', 'Dallas Police'],
'anomalies': ['communications gap'],
'weight': 0.92,
'mathematical_certainty': True
},
{
'type': 'OFFICIAL_REPORT',
'source': 'Warren Commission',
'content': 'Official investigation report',
'timestamp': '1964-09-24',
'entities': ['Warren Commission', 'FBI', 'CIA'],
'anomalies': ['conflicting testimony', 'evidence omission'],
'weight': 0.65,
'mathematical_certainty': False
}
])
# Example: Financial mechanism data
elif components['investigation_mode'] == InvestigationMode.FINANCIAL_MECHANISM:
documented_data.extend([
{
'type': 'FINANCIAL_SHIFT',
'source': 'Federal Reserve Act 1913',
'content': 'Private central bank establishment',
'timestamp': '1913-12-23',
'entities': ['Federal Reserve', 'Congress', 'Bankers'],
'anomalies': ['private control of money'],
'weight': 0.82,
'mathematical_certainty': True
},
{
'type': 'PROTOCOL_VIOLATION',
'source': 'EO11110',
'content': 'Kennedy executive order on currency',
'timestamp': '1963-06-04',
'entities': ['President Kennedy', 'Treasury'],
'anomalies': ['post-assassination reversal'],
'weight': 0.85,
'mathematical_certainty': True
}
])
return documented_data
def _detect_anomalies(self, data: List[Dict[str, Any]], components: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Apply anomaly detection to documented data"""
anomalies = []
for item in data:
anomaly_types = item.get('anomalies', [])
for anomaly_type in anomaly_types:
anomaly = {
'id': f"anom_{hashlib.sha256(str(item).encode()).hexdigest()[:8]}",
'type': anomaly_type,
'source': item['source'],
'data_item': item,
'detection_method': 'direct_framework_v4',
'severity': self._calculate_anomaly_severity(anomaly_type),
'probability_given_event': self._estimate_anomaly_probability(anomaly_type),
'protocol_violation': 'protocol' in anomaly_type.lower(),
'communications_gap': 'gap' in anomaly_type.lower() or 'silence' in anomaly_type.lower(),
'financial_shift': 'financial' in anomaly_type.lower() or 'money' in anomaly_type.lower(),
'temporal_context': item.get('timestamp')
}
# Calculate anomaly weight
base_weight = item.get('weight', 0.5)
if anomaly['protocol_violation']:
anomaly['weight'] = min(1.0, base_weight * 1.15)
elif anomaly['communications_gap']:
anomaly['weight'] = min(1.0, base_weight * 1.1)
elif anomaly['financial_shift']:
anomaly['weight'] = min(1.0, base_weight * 1.12)
else:
anomaly['weight'] = base_weight
anomalies.append(anomaly)
return anomalies
def _calculate_compound_probability(self, anomalies: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Calculate compound probability of anomalies"""
if not anomalies:
return {
'compound_probability': 1.0,
'systemic_analysis_required': False,
'probability_breakdown': {}
}
# Calculate individual anomaly probabilities
anomaly_probs = {}
for anomaly in anomalies:
anomaly_id = anomaly['id']
prob = anomaly.get('probability_given_event', 0.1) # Default low probability
anomaly_probs[anomaly_id] = prob
# Calculate compound probability assuming independence
# P(Independent) = Π P(An|C)
compound_prob = 1.0
for prob in anomaly_probs.values():
compound_prob *= prob
# Check thresholds
systemic_analysis_required = compound_prob < self.config.systemic_analysis_threshold
return {
'compound_probability': compound_prob,
'systemic_analysis_required': systemic_analysis_required,
'probability_breakdown': anomaly_probs,
'anomaly_count': len(anomalies),
'independence_assumption': True,
'mathematical_certainty_level': 1.0 - compound_prob
}
def _generate_structured_output(self,
components: Dict[str, Any],
data: List[Dict[str, Any]],
anomalies: List[Dict[str, Any]],
probability: Dict[str, Any]) -> DirectFrameworkReport:
"""Generate structured output according to framework"""
# Generate unique ID
report_id = f"direct_{hashlib.sha256(str(components).encode()).hexdigest()[:12]}"
# Extract verified facts
verified_facts = []
for item in data:
fact = {
'id': f"fact_{item['source'].replace(' ', '_')}",
'source': item['source'],
'content': item['content'],
'timestamp': item.get('timestamp'),
'type': item['type'],
'weight': item.get('weight', 0.5),
'mathematical_certainty': item.get('mathematical_certainty', False),
'primary_source': item['type'] == 'PRIMARY_DOCUMENT',
'entities_involved': item.get('entities', [])
}
verified_facts.append(fact)
# Extract temporal sequence
temporal_sequence = self._extract_temporal_sequence(data, anomalies)
# Identify power entities
power_entities = self._identify_power_entities(data, anomalies)
# Determine required investigation paths
investigation_paths = self._determine_investigation_paths(components, anomalies, probability)
# Identify documentation gaps
documentation_gaps = self._identify_documentation_gaps(components, data)
|