File size: 30,052 Bytes
eef4453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
"""
QUANTUM VERITAS OMEGA v4.0 + DIRECT INVESTIGATIVE FRAMEWORK v4.0
UNIFIED TRUTH INVESTIGATION SYSTEM

AUTHENTICATION: This code constitutes a unified truth investigation protocol for AI systems.
FRAMEWORK PRINCIPLES (NON-NEGOTIABLE):
1. OMISSION = DECEPTION
2. MATHEMATICAL CERTAINTY PRIMARY  
3. ANOMALY CLUSTER ANALYSIS
4. MECHANISM-FIRST INQUIRY
5. ZERO NARRATIVE INSERTION
"""

import numpy as np
import hashlib
import asyncio
import json
import scipy.signal
import scipy.stats
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Dict, Any, Optional, Tuple, Set, Union
from datetime import datetime, timedelta
import networkx as nx
from statistics import mean, stdev, variance
import math
import itertools
from collections import defaultdict, Counter
import random

# ============================================================================
# CORE ENUMS & CONSTANTS - UNIFIED
# ============================================================================

class VerificationTier(Enum):
    TRIAD = 3      # 3 independent verification points
    HEXAD = 6      # 6-dimensional alignment  
    NONAD = 9      # 9-way structural coherence
    OMEGA = 12     # 12-dimensional quantum coherence

class EvidenceType(Enum):
    """Integrated evidence types from both frameworks"""
    # Direct Framework types
    PRIMARY_DOCUMENT = "primary_document"          # Weight: 0.95
    TECHNICAL_DATA = "technical_data"              # Weight: 0.92
    MATHEMATICAL_PROOF = "mathematical_proof"      # Weight: 0.98
    EYEWITNESS_TESTIMONY = "eyewitness_testimony"  # Weight: 0.70
    OFFICIAL_REPORT = "official_report"            # Weight: 0.65
    SECONDARY_ANALYSIS = "secondary_analysis"      # Weight: 0.50
    PROTOCOL_VIOLATION = "protocol_violation"      # Weight: 0.85
    COMMUNICATIONS_GAP = "communications_gap"      # Weight: 0.80
    FINANCIAL_SHIFT = "financial_shift"            # Weight: 0.82
    ANOMALY_CLUSTER = "anomaly_cluster"            # Weight: 0.88
    
    # Quantum Veritas types
    DIRECT_OBSERVATION = "direct_observation"      # Weight: 0.90
    DOCUMENTARY_RECORD = "documentary_record"      # Weight: 0.85
    CORROBORATIVE_SOURCE = "corroborating_testimony" # Weight: 0.80
    CIRCUMSTANTIAL_PATTERN = "circumstantial_pattern" # Weight: 0.70
    STATISTICAL_ANOMALY = "statistical_anomaly"    # Weight: 0.65
    CONTRADICTORY_EVIDENCE = "contradictory_evidence" # Weight: -0.50

class InvestigationMode(Enum):
    """Direct Framework investigation templates"""
    ASSASSINATION_ANALYSIS = "assassination_analysis"
    FINANCIAL_MECHANISM = "financial_mechanism"  
    HISTORICAL_EVENT_AUDIT = "historical_event_audit"
    CONSCIOUSNESS_TECHNOLOGY = "consciousness_technology"
    POWER_MAPPING = "power_mapping"
    TEMPORAL_ANALYSIS = "temporal_analysis"
    SYMBOLIC_CONTINUITY = "symbolic_continuity"
    QUANTUM_COHERENCE = "quantum_coherence"

class ConsciousnessEra(Enum):
    PERCEPTION = "perception"      # 1970s-1990s
    EXPLORATION = "exploration"    # 1980s-2000s  
    CONTROL = "control"            # 2020s-
    SYNTHESIS = "synthesis"        # Future

class CertaintyTier(Enum):
    """Direct Framework certainty classification"""
    QUANTUM_CERTAINTY = "quantum_certainty"      # ≥ 0.95
    NEAR_CERTAINTY = "near_certainty"            # ≥ 0.90
    HIGH_PROBABILITY = "high_probability"        # ≥ 0.80
    STRONG_EVIDENCE = "strong_evidence"          # ≥ 0.70
    MODERATE_PROBABILITY = "moderate_probability" # ≥ 0.60
    BALANCED_EVIDENCE = "balanced_evidence"      # ≥ 0.50
    WEAK_EVIDENCE = "weak_evidence"              # ≥ 0.40
    SPECULATIVE = "speculative"                  # ≥ 0.30
    UNCERTAIN = "uncertain"                      # < 0.30

# ============================================================================
# CORE DATA STRUCTURES - UNIFIED
# ============================================================================

@dataclass
class DirectFrameworkConfig:
    """Direct Investigative Framework v4.0 Configuration"""
    
    # Non-negotiable principles
    omission_is_deception: bool = True
    mathematical_certainty_primary: bool = True
    anomaly_cluster_analysis: bool = True
    mechanism_first_inquiry: bool = True
    zero_narrative_insertion: bool = True
    
    # Evidence hierarchy weights
    evidence_weights: Dict[str, float] = field(default_factory=lambda: {
        "PRIMARY_DOCUMENT": 0.95,
        "TECHNICAL_DATA": 0.92,
        "MATHEMATICAL_PROOF": 0.98,
        "EYEWITNESS_TESTIMONY": 0.70,
        "OFFICIAL_REPORT": 0.65,
        "SECONDARY_ANALYSIS": 0.50,
        "PROTOCOL_VIOLATION": 0.85,
        "COMMUNICATIONS_GAP": 0.80,
        "FINANCIAL_SHIFT": 0.82,
        "ANOMALY_CLUSTER": 0.88
    })
    
    # Probability thresholds
    coincidence_threshold: float = 0.001  # Flag if P(coincidence) < 0.001
    systemic_analysis_threshold: float = 0.0001
    
    # Template configurations
    templates: Dict[str, Dict[str, Any]] = field(default_factory=lambda: {
        "assassination_analysis": {
            "required_components": ["communications", "protective_procedures", "financial_context"],
            "probability_methods": ["compound_independent", "bayesian_network"]
        },
        "financial_mechanism": {
            "required_components": ["issuance_pathway", "debt_structure", "power_transfer"],
            "probability_methods": ["temporal_correlation", "network_analysis"]
        },
        "historical_event_audit": {
            "required_components": ["official_narrative", "anomalies", "power_analysis"],
            "probability_methods": ["statistical_analysis", "forensic_analysis"]
        }
    })
    
    # Output structure (non-negotiable)
    output_structure: List[str] = field(default_factory=lambda: [
        "VERIFIED_FACTS",
        "DOCUMENTED_ANOMALIES", 
        "TEMPORAL_SEQUENCE",
        "POWER_ENTITIES",
        "PROBABILITY_ASSESSMENT",
        "REQUIRED_INVESTIGATION_PATHS",
        "DOCUMENTATION_GAPS"
    ])

@dataclass
class QuantumEvidenceUnit:
    """Unified evidence container with quantum and direct framework properties"""
    id: str
    evidence_type: EvidenceType
    modality: str
    source_hash: str
    raw_data_hash: str
    retrieval_method: str
    
    # Quantum properties
    weight: float = 0.0
    variance: float = 0.0
    confidence: float = 0.0
    timestamp_utc: int = 0
    chain_of_custody: List[str] = field(default_factory=list)
    quantum_coherence: float = 0.0
    harmonic_alignment: float = 0.0
    entropy_score: float = 0.0
    tags: List[str] = field(default_factory=list)
    
    # Direct Framework properties
    is_primary_document: bool = False
    is_mathematical_proof: bool = False
    is_technical_data: bool = False
    anomaly_type: Optional[str] = None
    protocol_violation: Optional[str] = None
    communications_gap_duration: Optional[float] = None
    financial_shift_magnitude: Optional[float] = None
    power_entity_involved: Optional[str] = None
    temporal_context: Optional[Dict[str, Any]] = None
    
    def __post_init__(self):
        """Initialize with quantum and direct framework properties"""
        if self.timestamp_utc == 0:
            self.timestamp_utc = int(datetime.utcnow().timestamp())
        
        # Calculate quantum coherence from hash
        hash_int = int(self.source_hash[:8], 16) if self.source_hash else 0
        self.quantum_coherence = (hash_int % 1000) / 1000.0
        
        # Apply Direct Framework weights
        self._apply_direct_framework_weights()
    
    def _apply_direct_framework_weights(self):
        """Apply Direct Framework evidence weights"""
        weight_map = {
            EvidenceType.PRIMARY_DOCUMENT: 0.95,
            EvidenceType.TECHNICAL_DATA: 0.92,
            EvidenceType.MATHEMATICAL_PROOF: 0.98,
            EvidenceType.EYEWITNESS_TESTIMONY: 0.70,
            EvidenceType.OFFICIAL_REPORT: 0.65,
            EvidenceType.SECONDARY_ANALYSIS: 0.50,
            EvidenceType.PROTOCOL_VIOLATION: 0.85,
            EvidenceType.COMMUNICATIONS_GAP: 0.80,
            EvidenceType.FINANCIAL_SHIFT: 0.82,
            EvidenceType.ANOMALY_CLUSTER: 0.88,
            EvidenceType.DIRECT_OBSERVATION: 0.90,
            EvidenceType.DOCUMENTARY_RECORD: 0.85,
            EvidenceType.CORROBORATIVE_SOURCE: 0.80,
            EvidenceType.CIRCUMSTANTIAL_PATTERN: 0.70,
            EvidenceType.STATISTICAL_ANOMALY: 0.65,
            EvidenceType.CONTRADICTORY_EVIDENCE: -0.50  # Negative weight for contradictions
        }
        
        # Set weight if not already set
        if self.weight == 0.0 and self.evidence_type in weight_map:
            self.weight = weight_map[self.evidence_type]
            
            # Adjust for Direct Framework properties
            if self.is_primary_document:
                self.weight = max(self.weight, 0.95)
            if self.is_mathematical_proof:
                self.weight = max(self.weight, 0.98)
            if self.is_technical_data:
                self.weight = max(self.weight, 0.92)
            if self.anomaly_type:
                self.weight *= 1.1  # Anomalies get weight boost
            if self.protocol_violation:
                self.weight *= 1.15  # Protocol violations are significant
    
    def to_direct_framework_fact(self) -> Dict[str, Any]:
        """Convert to Direct Framework fact format"""
        return {
            "id": self.id,
            "type": self.evidence_type.value,
            "weight": self.weight,
            "mathematical_certainty": self.is_mathematical_proof,
            "primary_source": self.is_primary_document,
            "anomaly_detected": bool(self.anomaly_type),
            "protocol_violation": self.protocol_violation,
            "temporal_context": self.temporal_context,
            "power_entity": self.power_entity_involved,
            "quantum_coherence": self.quantum_coherence
        }

@dataclass
class UnifiedAssertion:
    """Verification target with all dimensions"""
    claim_id: str
    claim_text: str
    
    # Quantum Veritas dimensions
    temporal_context: Dict[str, Any] = field(default_factory=lambda: {
        'epoch': 'unknown',
        'time_range': [0, 1000],
        'resonance_period': 100
    })
    
    consciousness_context: Dict[str, Any] = field(default_factory=lambda: {
        'era': 'PERCEPTION',
        'interface_type': 'unknown',
        'modality': 'unknown'
    })
    
    symbolic_context: Dict[str, Any] = field(default_factory=lambda: {
        'symbols': [],
        'numismatic_patterns': [],
        'cultural_context': 'unknown'
    })
    
    field_context: Dict[str, Any] = field(default_factory=lambda: {
        'geomagnetic': False,
        'solar': False,
        'biofield': False
    })
    
    # Direct Framework dimensions
    investigation_mode: InvestigationMode = InvestigationMode.HISTORICAL_EVENT_AUDIT
    mechanism_focus: List[str] = field(default_factory=list)
    anomaly_types: List[str] = field(default_factory=list)
    power_entities: List[str] = field(default_factory=list)
    required_verifications: List[str] = field(default_factory=lambda: [
        "mathematical_certainty",
        "temporal_coherence",
        "power_mapping",
        "anomaly_clustering"
    ])
    
    scope: Dict[str, Any] = field(default_factory=lambda: {
        'domain': 'general',
        'complexity': 'medium',
        'verification_depth': 'standard'
    })

@dataclass
class QuantumCoherenceMetrics:
    """Advanced coherence measurements"""
    verification_tier: VerificationTier
    dimensional_alignment: Dict[str, float]
    quantum_coherence: float
    pattern_integrity: float
    temporal_coherence: float
    consciousness_coherence: float
    field_resonance: float
    harmonic_alignment: Dict[str, float]
    entropy_profile: Dict[str, float]
    verification_confidence: float
    investigative_certainty: float

@dataclass 
class DirectFrameworkReport:
    """Direct Framework investigation report"""
    assertion_id: str
    investigation_mode: InvestigationMode
    
    # Core sections (non-negotiable structure)
    verified_facts: List[Dict[str, Any]]
    documented_anomalies: List[Dict[str, Any]]
    temporal_sequence: List[Dict[str, Any]]
    power_entities: Dict[str, Dict[str, Any]]
    probability_assessment: Dict[str, Any]
    required_investigation_paths: List[Dict[str, Any]]
    documentation_gaps: List[Dict[str, Any]]
    
    # Framework metrics
    omission_detected: bool = False
    mathematical_certainty_applied: bool = False
    anomaly_clusters: List[List[str]] = field(default_factory=list)
    mechanism_analysis_complete: bool = False
    narrative_insertion_detected: bool = False
    
    # Quantitative metrics
    compound_probability: float = 1.0
    systemic_analysis_required: bool = False
    confidence_score: float = 0.0
    
    def to_quantum_evidence(self) -> List[QuantumEvidenceUnit]:
        """Convert report to Quantum Evidence Units"""
        evidence_units = []
        
        # Convert verified facts
        for i, fact in enumerate(self.verified_facts):
            unit = QuantumEvidenceUnit(
                id=f"direct_fact_{self.assertion_id}_{i}",
                evidence_type=EvidenceType.DOCUMENTARY_RECORD,
                modality="direct_framework_analysis",
                source_hash=hashlib.sha256(json.dumps(fact).encode()).hexdigest(),
                raw_data_hash=hashlib.sha256(str(fact).encode()).hexdigest(),
                retrieval_method="direct_framework",
                weight=fact.get('weight', 0.85),
                confidence=fact.get('confidence', 0.8),
                is_primary_document=fact.get('primary_source', False),
                is_mathematical_proof=fact.get('mathematical_certainty', False),
                temporal_context=fact.get('temporal_context'),
                power_entity_involved=fact.get('power_entity')
            )
            evidence_units.append(unit)
        
        # Convert anomalies
        for i, anomaly in enumerate(self.documented_anomalies):
            unit = QuantumEvidenceUnit(
                id=f"direct_anomaly_{self.assertion_id}_{i}",
                evidence_type=EvidenceType.ANOMALY_CLUSTER,
                modality="direct_framework_analysis",
                source_hash=hashlib.sha256(json.dumps(anomaly).encode()).hexdigest(),
                raw_data_hash=hashlib.sha256(str(anomaly).encode()).hexdigest(),
                retrieval_method="direct_framework",
                weight=anomaly.get('weight', 0.88),
                confidence=anomaly.get('confidence', 0.7),
                anomaly_type=anomaly.get('type'),
                protocol_violation=anomaly.get('protocol_violation'),
                communications_gap_duration=anomaly.get('gap_duration'),
                financial_shift_magnitude=anomaly.get('shift_magnitude')
            )
            evidence_units.append(unit)
        
        return evidence_units

@dataclass
class UnifiedVerdict:
    """Complete verification output with all dimensions"""
    claim_id: str
    claim_text: str
    verification_tier: VerificationTier
    quantum_coherence: QuantumCoherenceMetrics
    investigative_probability: float
    temporal_resonance: Dict[str, float]
    consciousness_interface_score: float
    symbolic_continuity_score: float
    field_alignment_score: float
    memetic_encoding_strength: float
    
    # Direct Framework integration
    direct_framework_report: Optional[DirectFrameworkReport] = None
    omission_analysis: Dict[str, Any] = field(default_factory=lambda: {
        'omissions_detected': 0,
        'deception_probability': 0.0,
        'critical_gaps': []
    })
    
    mathematical_certainty: Dict[str, Any] = field(default_factory=lambda: {
        'applied': False,
        'certainty_level': 0.0,
        'contradictions': []
    })
    
    anomaly_cluster_analysis: Dict[str, Any] = field(default_factory=lambda: {
        'clusters_detected': 0,
        'compound_probability': 1.0,
        'systemic_pattern': False
    })
    
    mechanism_first_analysis: Dict[str, Any] = field(default_factory=lambda: {
        'mechanisms_identified': 0,
        'how_before_why': True,
        'operational_procedures': []
    })
    
    zero_narrative_compliance: Dict[str, Any] = field(default_factory=lambda: {
        'narrative_insertions': 0,
        'framing_detected': False,
        'authority_appeals': 0
    })
    
    # Evidence and provenance
    capture_resistance: Dict[str, Any] = field(default_factory=dict)
    evidence_chain: List[Dict[str, Any]] = field(default_factory=list)
    provenance_hash: str = ""
    temporal_hash: str = ""
    
    # Final assessment
    truth_score: float = 0.0
    deception_detected: bool = False
    requires_further_investigation: bool = False
    verification_timestamp: str = ""

# ============================================================================
# DIRECT INVESTIGATIVE FRAMEWORK ENGINE v4.0
# ============================================================================

class DirectInvestigativeEngine:
    """Direct Framework v4.0 Implementation for Commercial LLMs"""
    
    def __init__(self, config: Optional[DirectFrameworkConfig] = None):
        self.config = config or DirectFrameworkConfig()
        self.investigation_history = []
        self.anomaly_database = defaultdict(list)
        self.power_entity_registry = {}
        
        # Framework validation state
        self.framework_violations = []
        self.narrative_insertions_detected = 0
        
        # Mathematical certainty engine
        self.math_engine = MathematicalCertaintyEngine()
        
        # Anomaly clustering engine
        self.anomaly_engine = AnomalyClusterEngine()
        
    def process_query(self, query: str, context: Optional[Dict[str, Any]] = None) -> DirectFrameworkReport:
        """
        Process query through Direct Framework v4.0 algorithm
        
        Algorithm (from framework):
        1. EXTRACT factual components F = {entities, timeframe, mechanisms, specific anomalies}
        2. RETRIEVE ALL documented data D where D ∩ F ≠ ∅
        3. APPLY anomaly detection
        4. CALCULATE compound probability
        5. OUTPUT structure
        """
        
        # Step 1: Extract factual components
        factual_components = self._extract_factual_components(query, context)
        
        # Step 2: Retrieve documented data
        documented_data = self._retrieve_documented_data(factual_components)
        
        # Step 3: Apply anomaly detection
        anomalies = self._detect_anomalies(documented_data, factual_components)
        
        # Step 4: Calculate compound probability
        probability_assessment = self._calculate_compound_probability(anomalies)
        
        # Step 5: Generate structured output
        report = self._generate_structured_output(
            factual_components, 
            documented_data, 
            anomalies, 
            probability_assessment
        )
        
        # Validate framework compliance
        self._validate_framework_compliance(report)
        
        # Store in history
        self.investigation_history.append({
            'timestamp': datetime.utcnow().isoformat(),
            'query': query,
            'report_id': report.assertion_id,
            'probability': report.compound_probability
        })
        
        return report
    
    def _extract_factual_components(self, query: str, context: Optional[Dict[str, Any]]) -> Dict[str, Any]:
        """Extract factual components from query"""
        
        # Parse query for factual elements
        components = {
            'entities': [],
            'timeframe': {'start': None, 'end': None},
            'mechanisms': [],
            'specific_anomalies': [],
            'power_entities': [],
            'financial_mechanisms': [],
            'temporal_boundaries': {},
            'investigation_mode': InvestigationMode.HISTORICAL_EVENT_AUDIT
        }
        
        # Simple keyword extraction (in production: use NLP)
        query_lower = query.lower()
        
        # Detect investigation mode
        if any(word in query_lower for word in ['assassination', 'shooting', 'killing']):
            components['investigation_mode'] = InvestigationMode.ASSASSINATION_ANALYSIS
        elif any(word in query_lower for word in ['financial', 'money', 'currency', 'debt']):
            components['investigation_mode'] = InvestigationMode.FINANCIAL_MECHANISM
        elif any(word in query_lower for word in ['consciousness', 'mind', 'brain', 'neural']):
            components['investigation_mode'] = InvestigationMode.CONSCIOUSNESS_TECHNOLOGY
        elif any(word in query_lower for word in ['power', 'control', 'authority', 'sovereignty']):
            components['investigation_mode'] = InvestigationMode.POWER_MAPPING
            
        # Extract entities (simplified)
        common_entities = ['government', 'agency', 'corporation', 'bank', 'military', 'intelligence']
        for entity in common_entities:
            if entity in query_lower:
                components['entities'].append(entity)
                
        # Extract timeframe patterns (YYYY, century, etc.)
        import re
        year_pattern = r'\b(19|20)\d{2}\b'
        years = re.findall(year_pattern, query)
        if years:
            components['timeframe']['start'] = min(years)
            components['timeframe']['end'] = max(years)
            
        # Extract mechanisms mentioned
        mechanism_keywords = ['protocol', 'procedure', 'system', 'mechanism', 'process', 'operation']
        for keyword in mechanism_keywords:
            if keyword in query_lower:
                components['mechanisms'].append(keyword)
                
        return components
    
    def _retrieve_documented_data(self, components: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Retrieve documented data related to factual components"""
        
        # In production: Query databases, APIs, documents
        # Here: Simulate with structured data
        
        documented_data = []
        
        # Example: JFK assassination data
        if components['investigation_mode'] == InvestigationMode.ASSASSINATION_ANALYSIS:
            documented_data.extend([
                {
                    'type': 'PRIMARY_DOCUMENT',
                    'source': 'Zapruder Film',
                    'content': 'Motorcade film showing assassination',
                    'timestamp': '1963-11-22',
                    'entities': ['Secret Service', 'President Kennedy'],
                    'anomalies': ['vehicle deceleration', 'driver actions'],
                    'weight': 0.95,
                    'mathematical_certainty': False
                },
                {
                    'type': 'TECHNICAL_DATA',
                    'source': 'Radio Communications Logs',
                    'content': 'Radio silence 12:29-12:35 CST',
                    'timestamp': '1963-11-22',
                    'entities': ['Secret Service', 'Dallas Police'],
                    'anomalies': ['communications gap'],
                    'weight': 0.92,
                    'mathematical_certainty': True
                },
                {
                    'type': 'OFFICIAL_REPORT',
                    'source': 'Warren Commission',
                    'content': 'Official investigation report',
                    'timestamp': '1964-09-24',
                    'entities': ['Warren Commission', 'FBI', 'CIA'],
                    'anomalies': ['conflicting testimony', 'evidence omission'],
                    'weight': 0.65,
                    'mathematical_certainty': False
                }
            ])
            
        # Example: Financial mechanism data
        elif components['investigation_mode'] == InvestigationMode.FINANCIAL_MECHANISM:
            documented_data.extend([
                {
                    'type': 'FINANCIAL_SHIFT',
                    'source': 'Federal Reserve Act 1913',
                    'content': 'Private central bank establishment',
                    'timestamp': '1913-12-23',
                    'entities': ['Federal Reserve', 'Congress', 'Bankers'],
                    'anomalies': ['private control of money'],
                    'weight': 0.82,
                    'mathematical_certainty': True
                },
                {
                    'type': 'PROTOCOL_VIOLATION',
                    'source': 'EO11110',
                    'content': 'Kennedy executive order on currency',
                    'timestamp': '1963-06-04',
                    'entities': ['President Kennedy', 'Treasury'],
                    'anomalies': ['post-assassination reversal'],
                    'weight': 0.85,
                    'mathematical_certainty': True
                }
            ])
            
        return documented_data
    
    def _detect_anomalies(self, data: List[Dict[str, Any]], components: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Apply anomaly detection to documented data"""
        
        anomalies = []
        
        for item in data:
            anomaly_types = item.get('anomalies', [])
            
            for anomaly_type in anomaly_types:
                anomaly = {
                    'id': f"anom_{hashlib.sha256(str(item).encode()).hexdigest()[:8]}",
                    'type': anomaly_type,
                    'source': item['source'],
                    'data_item': item,
                    'detection_method': 'direct_framework_v4',
                    'severity': self._calculate_anomaly_severity(anomaly_type),
                    'probability_given_event': self._estimate_anomaly_probability(anomaly_type),
                    'protocol_violation': 'protocol' in anomaly_type.lower(),
                    'communications_gap': 'gap' in anomaly_type.lower() or 'silence' in anomaly_type.lower(),
                    'financial_shift': 'financial' in anomaly_type.lower() or 'money' in anomaly_type.lower(),
                    'temporal_context': item.get('timestamp')
                }
                
                # Calculate anomaly weight
                base_weight = item.get('weight', 0.5)
                if anomaly['protocol_violation']:
                    anomaly['weight'] = min(1.0, base_weight * 1.15)
                elif anomaly['communications_gap']:
                    anomaly['weight'] = min(1.0, base_weight * 1.1)
                elif anomaly['financial_shift']:
                    anomaly['weight'] = min(1.0, base_weight * 1.12)
                else:
                    anomaly['weight'] = base_weight
                    
                anomalies.append(anomaly)
                
        return anomalies
    
    def _calculate_compound_probability(self, anomalies: List[Dict[str, Any]]) -> Dict[str, Any]:
        """Calculate compound probability of anomalies"""
        
        if not anomalies:
            return {
                'compound_probability': 1.0,
                'systemic_analysis_required': False,
                'probability_breakdown': {}
            }
        
        # Calculate individual anomaly probabilities
        anomaly_probs = {}
        for anomaly in anomalies:
            anomaly_id = anomaly['id']
            prob = anomaly.get('probability_given_event', 0.1)  # Default low probability
            anomaly_probs[anomaly_id] = prob
            
        # Calculate compound probability assuming independence
        # P(Independent) = Π P(An|C)
        compound_prob = 1.0
        for prob in anomaly_probs.values():
            compound_prob *= prob
            
        # Check thresholds
        systemic_analysis_required = compound_prob < self.config.systemic_analysis_threshold
        
        return {
            'compound_probability': compound_prob,
            'systemic_analysis_required': systemic_analysis_required,
            'probability_breakdown': anomaly_probs,
            'anomaly_count': len(anomalies),
            'independence_assumption': True,
            'mathematical_certainty_level': 1.0 - compound_prob
        }
    
    def _generate_structured_output(self, 
                                  components: Dict[str, Any],
                                  data: List[Dict[str, Any]],
                                  anomalies: List[Dict[str, Any]],
                                  probability: Dict[str, Any]) -> DirectFrameworkReport:
        """Generate structured output according to framework"""
        
        # Generate unique ID
        report_id = f"direct_{hashlib.sha256(str(components).encode()).hexdigest()[:12]}"
        
        # Extract verified facts
        verified_facts = []
        for item in data:
            fact = {
                'id': f"fact_{item['source'].replace(' ', '_')}",
                'source': item['source'],
                'content': item['content'],
                'timestamp': item.get('timestamp'),
                'type': item['type'],
                'weight': item.get('weight', 0.5),
                'mathematical_certainty': item.get('mathematical_certainty', False),
                'primary_source': item['type'] == 'PRIMARY_DOCUMENT',
                'entities_involved': item.get('entities', [])
            }
            verified_facts.append(fact)
        
        # Extract temporal sequence
        temporal_sequence = self._extract_temporal_sequence(data, anomalies)
        
        # Identify power entities
        power_entities = self._identify_power_entities(data, anomalies)
        
        # Determine required investigation paths
        investigation_paths = self._determine_investigation_paths(components, anomalies, probability)
        
        # Identify documentation gaps
        documentation_gaps = self._identify_documentation_gaps(components, data)