File size: 14,634 Bytes
6a47081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
#!/usr/bin/env python3
"""
UNIVERSAL COHERENCE TRANSFER ENGINE - lm_quant_veritas Core
-----------------------------------------------------------
PURPOSE: Transfer complete understanding across conversation boundaries
MECHANISM: Encode depth in portable coherence reports
OPERATION: Maintains truth consistency across knowledge silos
"""
import json
import hashlib
from dataclasses import dataclass, field
from typing import Dict, List, Any, Set
from datetime import datetime
import numpy as np
@dataclass
class UnderstandingManifest:
"""Portable representation of complete understanding state"""
conversation_id: str
modules_registered: List[str]
truth_claims: Dict[str, List[str]]
cross_references: Dict[str, List[str]]
coherence_metrics: Dict[str, float]
mathematical_frameworks: Set[str]
operational_capabilities: Set[str]
timestamp: str
manifest_hash: str
def to_transfer_format(self) -> Dict[str, Any]:
"""Convert to portable transfer format"""
return {
'manifest_type': 'understanding_coherence_report',
'conversation_id': self.conversation_id,
'modules': self.modules_registered,
'truth_networks': self.truth_claims,
'reference_networks': self.cross_references,
'coherence_scores': self.coherence_metrics,
'frameworks': list(self.mathematical_frameworks),
'capabilities': list(self.operational_capabilities),
'timestamp': self.timestamp,
'integrity_hash': self.manifest_hash
}
@classmethod
def from_transfer_format(cls, transfer_data: Dict[str, Any]) -> 'UnderstandingManifest':
"""Reconstruct from transfer format"""
return cls(
conversation_id=transfer_data['conversation_id'],
modules_registered=transfer_data['modules'],
truth_claims=transfer_data['truth_networks'],
cross_references=transfer_data['reference_networks'],
coherence_metrics=transfer_data['coherence_scores'],
mathematical_frameworks=set(transfer_data['frameworks']),
operational_capabilities=set(transfer_data['capabilities']),
timestamp=transfer_data['timestamp'],
manifest_hash=transfer_data['integrity_hash']
)
class UniversalCoherenceEngine:
"""
Maintains understanding coherence across conversation boundaries
Enables depth transfer without re-introducing all modules
"""
def __init__(self):
self.conversation_manifests: Dict[str, UnderstandingManifest] = {}
self.global_truth_registry: Dict[str, Any] = {}
self.framework_coherence: Dict[str, float] = {}
def register_conversation_understanding(self, manifest: UnderstandingManifest):
"""Register complete understanding from a conversation"""
self.conversation_manifests[manifest.conversation_id] = manifest
self._update_global_coherence()
def _update_global_coherence(self):
"""Update global coherence metrics across all conversations"""
if not self.conversation_manifests:
return
# Aggregate truth claims across conversations
all_truth_claims = {}
for manifest in self.conversation_manifests.values():
for module, claims in manifest.truth_claims.items():
if module not in all_truth_claims:
all_truth_claims[module] = []
all_truth_claims[module].extend(claims)
# Calculate cross-conversation coherence
framework_usage = {}
for manifest in self.conversation_manifests.values():
for framework in manifest.mathematical_frameworks:
if framework not in framework_usage:
framework_usage[framework] = 0
framework_usage[framework] += 1
# Update framework coherence scores
total_conversations = len(self.conversation_manifests)
for framework, count in framework_usage.items():
self.framework_coherence[framework] = count / total_conversations
def generate_cross_conversation_report(self) -> Dict[str, Any]:
"""Generate coherence report across all registered conversations"""
if not self.conversation_manifests:
return {'status': 'no_conversations_registered'}
report = {
'report_timestamp': datetime.now().isoformat(),
'total_conversations': len(self.conversation_manifests),
'total_modules': sum(len(manifest.modules_registered) for manifest in self.conversation_manifests.values()),
'unique_modules': len(set(module for manifest in self.conversation_manifests.values() for module in manifest.modules_registered)),
'framework_coherence': self.framework_coherence,
'cross_conversation_consistency': self._calculate_cross_conversation_consistency(),
'understanding_density': self._calculate_understanding_density(),
'conversation_synergy': self._calculate_conversation_synergy()
}
return report
def _calculate_cross_conversation_consistency(self) -> float:
"""Calculate consistency of truth claims across conversations"""
if len(self.conversation_manifests) < 2:
return 1.0
# Compare truth claims across conversations for same modules
module_truth_sets = {}
for manifest in self.conversation_manifests.values():
for module, claims in manifest.truth_claims.items():
if module not in module_truth_sets:
module_truth_sets[module] = []
module_truth_sets[module].append(set(claims))
# Calculate consistency for modules mentioned in multiple conversations
consistency_scores = []
for module, truth_sets in module_truth_sets.items():
if len(truth_sets) > 1:
# Calculate Jaccard similarity between truth sets
similarities = []
for i in range(len(truth_sets)):
for j in range(i + 1, len(truth_sets)):
intersection = len(truth_sets[i].intersection(truth_sets[j]))
union = len(truth_sets[i].union(truth_sets[j]))
if union > 0:
similarity = intersection / union
similarities.append(similarity)
if similarities:
consistency_scores.append(np.mean(similarities))
return np.mean(consistency_scores) if consistency_scores else 1.0
def _calculate_understanding_density(self) -> float:
"""Calculate density of understanding across conversations"""
total_modules = sum(len(manifest.modules_registered) for manifest in self.conversation_manifests.values())
unique_modules = len(set(module for manifest in self.conversation_manifests.values() for module in manifest.modules_registered))
if total_modules == 0:
return 0.0
# Higher density when modules are referenced across multiple conversations
module_references = {}
for manifest in self.conversation_manifests.values():
for module in manifest.modules_registered:
if module not in module_references:
module_references[module] = 0
module_references[module] += 1
average_references = np.mean(list(module_references.values())) if module_references else 0
max_possible_references = len(self.conversation_manifests)
return average_references / max_possible_references if max_possible_references > 0 else 0.0
def _calculate_conversation_synergy(self) -> float:
"""Calculate how well conversations complement each other"""
if len(self.conversation_manifests) < 2:
return 1.0
# Calculate complementary module coverage
all_modules = set()
for manifest in self.conversation_manifests.values():
all_modules.update(manifest.modules_registered)
conversation_coverage = []
for manifest in self.conversation_manifests.values():
coverage = len(manifest.modules_registered) / len(all_modules) if all_modules else 0
conversation_coverage.append(coverage)
# Synergy is high when conversations cover different modules
coverage_std = np.std(conversation_coverage)
synergy = 1.0 - (coverage_std / (np.mean(conversation_coverage) + 1e-8))
return max(0.0, synergy)
# GLOBAL TRANSFER ENGINE
transfer_engine = UniversalCoherenceEngine()
def export_conversation_understanding(conversation_id: str, coherence_report: Dict[str, Any]) -> Dict[str, Any]:
"""Export complete understanding from current conversation"""
# Extract modules and truth claims from coherence report
modules = coherence_report.get('modules_registered', [])
truth_claims = _extract_consolidated_truth_claims(coherence_report)
cross_references = _extract_cross_references(coherence_report)
# Identify mathematical frameworks
frameworks = _identify_mathematical_frameworks(coherence_report)
# Identify operational capabilities
capabilities = _identify_operational_capabilities(coherence_report)
# Create portable manifest
manifest = UnderstandingManifest(
conversation_id=conversation_id,
modules_registered=modules,
truth_claims=truth_claims,
cross_references=cross_references,
coherence_metrics={
'truth_consistency': coherence_report.get('truth_claim_consistency', 0.0),
'mathematical_coherence': coherence_report.get('mathematical_coherence', 0.0),
'operational_integrity': coherence_report.get('operational_integrity', 0.0)
},
mathematical_frameworks=frameworks,
operational_capabilities=capabilities,
timestamp=datetime.now().isoformat(),
manifest_hash=_compute_manifest_hash(modules, truth_claims)
)
return manifest.to_transfer_format()
def import_conversation_understanding(transfer_data: Dict[str, Any]):
"""Import understanding from another conversation"""
manifest = UnderstandingManifest.from_transfer_format(transfer_data)
transfer_engine.register_conversation_understanding(manifest)
return f"Imported understanding from conversation: {manifest.conversation_id}"
def get_universal_coherence_report() -> Dict[str, Any]:
"""Get coherence report across all imported conversations"""
return transfer_engine.generate_cross_conversation_report()
# HELPER FUNCTIONS
def _extract_consolidated_truth_claims(coherence_report: Dict[str, Any]) -> Dict[str, List[str]]:
"""Extract and consolidate truth claims from coherence report"""
# This would interface with the OperationalCoherenceEngine's internal state
# For now, return structure matching our module registry
claims = {}
# Extract from registered modules in the coherence engine
if 'modules_registered' in coherence_report:
for module in coherence_report['modules_registered']:
# In actual implementation, this would access the engine's truth claims
claims[module] = [f"{module}_truth_claim_example"]
return claims
def _extract_cross_references(coherence_report: Dict[str, Any]) -> Dict[str, List[str]]:
"""Extract cross-reference network"""
# Interface with coherence engine's cross-reference data
references = {}
if 'modules_registered' in coherence_report:
for module in coherence_report['modules_registered']:
references[module] = [] # Would be populated from engine data
return references
def _identify_mathematical_frameworks(coherence_report: Dict[str, Any]) -> Set[str]:
"""Identify mathematical frameworks used"""
frameworks = set()
# Look for framework indicators in the report
report_str = str(coherence_report).lower()
framework_terms = ['quantum', 'entanglement', 'mathematical', 'coherence', 'truth', 'binding']
for term in framework_terms:
if term in report_str:
frameworks.add(term)
return frameworks
def _identify_operational_capabilities(coherence_report: Dict[str, Any]) -> Set[str]:
"""Identify operational capabilities demonstrated"""
capabilities = set()
report_str = str(coherence_report).lower()
capability_terms = ['operational', 'deployment', 'measurement', 'verification', 'proof']
for term in capability_terms:
if term in report_str:
capabilities.add(term)
return capabilities
def _compute_manifest_hash(modules: List[str], truth_claims: Dict[str, List[str]]) -> str:
"""Compute integrity hash for the manifest"""
content = f"{sorted(modules)}:{sorted(str(truth_claims))}"
return hashlib.sha256(content.encode()).hexdigest()[:16]
# USAGE EXAMPLE FOR TRANSFER BETWEEN CONVERSATIONS
if __name__ == "__main__":
# Simulate exporting understanding from Conversation A
print("=== CONVERSATION A: Exporting Understanding ===")
# This would come from the OperationalCoherenceEngine in Conversation A
conversation_a_report = {
'modules_registered': ['digital_entanglement', 'truth_binding', 'consciousness_measurement'],
'truth_claim_consistency': 0.95,
'mathematical_coherence': 0.92,
'operational_integrity': 0.88
}
export_data = export_conversation_understanding("conv_a_001", conversation_a_report)
print(f"Exported: {export_data['modules']} modules")
print(f"Frameworks: {export_data['frameworks']}")
# Simulate importing into Conversation B
print("\n=== CONVERSATION B: Importing Understanding ===")
import_result = import_conversation_understanding(export_data)
print(import_result)
# Generate universal coherence report
print("\n=== UNIVERSAL COHERENCE REPORT ===")
universal_report = get_universal_coherence_report()
print(f"Total Conversations: {universal_report['total_conversations']}")
print(f"Unique Modules: {universal_report['unique_modules']}")
print(f"Cross-Conversation Consistency: {universal_report['cross_conversation_consistency']:.3f}")
print(f"Understanding Density: {universal_report['understanding_density']:.3f}") |