File size: 26,718 Bytes
5de2236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
#!/usr/bin/env python3
"""
TATTERED PAST PACKAGE - ARTISTIC EXPRESSION ANALYSIS MODULE
Extending truth verification to all forms of artistic expression
Starting with Literature, then expanding to all artistic domains
"""
import numpy as np
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
import hashlib
import json
import asyncio
from collections import Counter
import re
class ArtisticDomain(Enum):
"""All major domains of artistic expression"""
LITERATURE = "literature"
VISUAL_ARTS = "visual_arts"
MUSIC = "music"
PERFORMING_ARTS = "performing_arts"
ARCHITECTURE = "architecture"
DIGITAL_ARTS = "digital_arts"
CINEMA = "cinema"
CRAFTS = "crafts"
CONCEPTUAL_ART = "conceptual_art"
class LiteraryGenre(Enum):
"""Major literary genres for truth analysis"""
FICTION = "fiction"
POETRY = "poetry"
DRAMA = "drama"
NON_FICTION = "non_fiction"
MYTHOLOGY = "mythology"
FOLKLORE = "folklore"
SCI_FI = "science_fiction"
FANTASY = "fantasy"
HISTORICAL = "historical"
PHILOSOPHICAL = "philosophical"
class TruthRevelationMethod(Enum):
"""Methods through which art reveals truth"""
SYMBOLIC_REPRESENTATION = "symbolic_representation"
EMOTIONAL_RESONANCE = "emotional_resonance"
PATTERN_RECOGNITION = "pattern_recognition"
ARCHETYPAL_EXPRESSION = "archetypal_expression"
COGNITIVE_DISSONANCE = "cognitive_dissonance"
SUBLIMINAL_MESSAGING = "subliminal_messaging"
CULTURAL_CRITIQUE = "cultural_critique"
HISTORICAL_REFERENCE = "historical_reference"
@dataclass
class LiteraryAnalysis:
"""Comprehensive analysis of literary works for truth content"""
work_title: str
author: str
genre: LiteraryGenre
publication_year: Optional[int]
text_content: str
symbolic_density: float = field(init=False)
archetypal_resonance: float = field(init=False)
historical_accuracy: float = field(init=False)
philosophical_depth: float = field(init=False)
truth_revelation_score: float = field(init=False)
revelation_methods: List[TruthRevelationMethod] = field(default_factory=list)
def __post_init__(self):
"""Analyze literary work for truth revelation potential"""
# Symbolic density analysis
self.symbolic_density = self._calculate_symbolic_density()
# Archetypal resonance analysis
self.archetypal_resonance = self._calculate_archetypal_resonance()
# Historical accuracy assessment
self.historical_accuracy = self._assess_historical_accuracy()
# Philosophical depth evaluation
self.philosophical_depth = self._evaluate_philosophical_depth()
# Overall truth revelation score
self.truth_revelation_score = self._calculate_truth_revelation_score()
# Identify revelation methods
self.revelation_methods = self._identify_revelation_methods()
def _calculate_symbolic_density(self) -> float:
"""Calculate density of symbolic language in text"""
symbolic_patterns = [
r'\b(light|dark|water|fire|earth|air)\b',
r'\b(journey|quest|transformation|rebirth)\b',
r'\b(tree|serpent|circle|cross|mountain)\b',
r'\b(wisdom|knowledge|truth|illusion|reality)\b'
]
words = self.text_content.lower().split()
if not words:
return 0.0
symbolic_matches = 0
for pattern in symbolic_patterns:
matches = re.findall(pattern, self.text_content.lower())
symbolic_matches += len(matches)
return min(1.0, symbolic_matches / len(words) * 10)
def _calculate_archetypal_resonance(self) -> float:
"""Calculate resonance with universal archetypes"""
archetypes = {
'hero': ['hero', 'champion', 'savior', 'protagonist'],
'wise_elder': ['wise', 'sage', 'mentor', 'teacher'],
'trickster': ['trickster', 'deceiver', 'jester', 'fool'],
'mother': ['mother', 'nurturer', 'caretaker', 'goddess'],
'child': ['child', 'innocent', 'youth', 'beginning']
}
resonance_score = 0.0
text_lower = self.text_content.lower()
for archetype, indicators in archetypes.items():
matches = sum(1 for indicator in indicators if indicator in text_lower)
resonance_score += matches * 0.1
return min(1.0, resonance_score)
def _assess_historical_accuracy(self) -> float:
"""Assess historical accuracy for relevant genres"""
if self.genre not in [LiteraryGenre.HISTORICAL, LiteraryGenre.NON_FICTION]:
return 0.5 # Neutral for fictional works
# Basic historical indicator check
historical_indicators = [
'century', 'era', 'period', 'historical', 'actual',
'documented', 'recorded', 'archival', 'evidence'
]
matches = sum(1 for indicator in historical_indicators
if indicator in self.text_content.lower())
return min(1.0, 0.3 + (matches * 0.1))
def _evaluate_philosophical_depth(self) -> float:
"""Evaluate philosophical depth of the work"""
philosophical_terms = [
'truth', 'reality', 'existence', 'consciousness', 'being',
'knowledge', 'wisdom', 'understanding', 'meaning', 'purpose',
'ethics', 'morality', 'justice', 'freedom', 'will'
]
matches = sum(1 for term in philosophical_terms
if term in self.text_content.lower())
# Genre-specific weighting
genre_weights = {
LiteraryGenre.PHILOSOPHICAL: 1.0,
LiteraryGenre.NON_FICTION: 0.8,
LiteraryGenre.FICTION: 0.6,
LiteraryGenre.POETRY: 0.7,
LiteraryGenre.DRAMA: 0.5
}
base_score = min(1.0, matches * 0.1)
weight = genre_weights.get(self.genre, 0.5)
return base_score * weight
def _calculate_truth_revelation_score(self) -> float:
"""Calculate overall truth revelation score"""
weights = {
'symbolic_density': 0.25,
'archetypal_resonance': 0.30,
'historical_accuracy': 0.20,
'philosophical_depth': 0.25
}
scores = {
'symbolic_density': self.symbolic_density,
'archetypal_resonance': self.archetypal_resonance,
'historical_accuracy': self.historical_accuracy,
'philosophical_depth': self.philosophical_depth
}
weighted_score = sum(scores[factor] * weights[factor] for factor in weights)
return min(1.0, weighted_score)
def _identify_revelation_methods(self) -> List[TruthRevelationMethod]:
"""Identify truth revelation methods used in the work"""
methods = []
# Symbolic representation check
if self.symbolic_density > 0.3:
methods.append(TruthRevelationMethod.SYMBOLIC_REPRESENTATION)
# Archetypal expression check
if self.archetypal_resonance > 0.4:
methods.append(TruthRevelationMethod.ARCHETYPAL_EXPRESSION)
# Emotional resonance indicators
emotional_terms = ['love', 'fear', 'hope', 'despair', 'joy', 'sorrow']
emotional_matches = sum(1 for term in emotional_terms
if term in self.text_content.lower())
if emotional_matches > 5:
methods.append(TruthRevelationMethod.EMOTIONAL_RESONANCE)
# Philosophical depth indicates cognitive methods
if self.philosophical_depth > 0.6:
methods.append(TruthRevelationMethod.PATTERN_RECOGNITION)
return methods
@dataclass
class ArtisticExpressionAnalysis:
"""Comprehensive analysis of any artistic expression"""
domain: ArtisticDomain
work_identifier: str
creation_period: str
cultural_context: str
medium_description: str
content_analysis: Dict[str, Any]
truth_revelation_metrics: Dict[str, float]
cross_domain_correlations: Dict[str, float]
integrated_truth_score: float = field(init=False)
def __post_init__(self):
"""Calculate integrated truth score across all metrics"""
# Weight different truth revelation metrics
metric_weights = {
'symbolic_power': 0.25,
'emotional_impact': 0.20,
'cultural_significance': 0.15,
'historical_accuracy': 0.20,
'philosophical_depth': 0.20
}
# Calculate weighted score
weighted_sum = 0.0
total_weight = 0.0
for metric, weight in metric_weights.items():
if metric in self.truth_revelation_metrics:
weighted_sum += self.truth_revelation_metrics[metric] * weight
total_weight += weight
base_score = weighted_sum / total_weight if total_weight > 0 else 0.0
# Cross-domain correlation boost
correlation_boost = np.mean(list(self.cross_domain_correlations.values())) * 0.2
self.integrated_truth_score = min(1.0, base_score + correlation_boost)
class ArtisticExpressionEngine:
"""
Engine for analyzing all forms of artistic expression for truth content
Extends the Tattered Past Package with comprehensive artistic analysis
"""
def __init__(self):
self.literary_analyzer = LiteraryAnalysisEngine()
self.visual_arts_analyzer = VisualArtsAnalyzer()
self.music_analyzer = MusicAnalysisEngine()
self.cross_domain_integrator = CrossDomainIntegrator()
self.analysis_history = []
async def analyze_artistic_work(self, domain: ArtisticDomain, work_data: Dict[str, Any]) -> ArtisticExpressionAnalysis:
"""Analyze any artistic work for truth revelation potential"""
# Domain-specific analysis
if domain == ArtisticDomain.LITERATURE:
domain_analysis = await self.literary_analyzer.analyze_literary_work(work_data)
elif domain == ArtisticDomain.VISUAL_ARTS:
domain_analysis = await self.visual_arts_analyzer.analyze_visual_art(work_data)
elif domain == ArtisticDomain.MUSIC:
domain_analysis = await self.music_analyzer.analyze_musical_work(work_data)
else:
domain_analysis = await self._generic_artistic_analysis(work_data)
# Cross-domain correlation analysis
cross_correlations = await self.cross_domain_integrator.find_correlations(domain_analysis)
analysis = ArtisticExpressionAnalysis(
domain=domain,
work_identifier=work_data.get('identifier', 'unknown'),
creation_period=work_data.get('period', 'unknown'),
cultural_context=work_data.get('cultural_context', 'unknown'),
medium_description=work_data.get('medium', 'unknown'),
content_analysis=domain_analysis.get('content_analysis', {}),
truth_revelation_metrics=domain_analysis.get('truth_metrics', {}),
cross_domain_correlations=cross_correlations
)
self.analysis_history.append(analysis)
return analysis
async def _generic_artistic_analysis(self, work_data: Dict[str, Any]) -> Dict[str, Any]:
"""Generic analysis for artistic domains without specialized analyzers"""
return {
'content_analysis': {
'description': work_data.get('description', ''),
'themes': work_data.get('themes', []),
'techniques': work_data.get('techniques', [])
},
'truth_metrics': {
'symbolic_power': 0.5,
'emotional_impact': 0.5,
'cultural_significance': 0.5,
'historical_accuracy': 0.3,
'philosophical_depth': 0.4
}
}
class LiteraryAnalysisEngine:
"""Specialized engine for literary analysis"""
def __init__(self):
self.genre_classifier = GenreClassifier()
self.theme_analyzer = ThemeAnalysisEngine()
self.symbolic_analyzer = SymbolicAnalysisEngine()
async def analyze_literary_work(self, work_data: Dict[str, Any]) -> Dict[str, Any]:
"""Comprehensive analysis of literary works"""
# Create literary analysis object
literary_work = LiteraryAnalysis(
work_title=work_data.get('title', 'Unknown'),
author=work_data.get('author', 'Unknown'),
genre=self.genre_classifier.classify_genre(work_data),
publication_year=work_data.get('publication_year'),
text_content=work_data.get('content', '')
)
# Additional thematic analysis
themes = await self.theme_analyzer.identify_themes(literary_work.text_content)
symbols = await self.symbolic_analyzer.analyze_symbols(literary_work.text_content)
return {
'content_analysis': {
'literary_analysis': literary_work,
'identified_themes': themes,
'symbolic_elements': symbols,
'word_count': len(literary_work.text_content.split()),
'complexity_score': self._calculate_complexity(literary_work.text_content)
},
'truth_metrics': {
'symbolic_power': literary_work.symbolic_density,
'emotional_impact': self._assess_emotional_impact(literary_work.text_content),
'cultural_significance': self._assess_cultural_significance(work_data),
'historical_accuracy': literary_work.historical_accuracy,
'philosophical_depth': literary_work.philosophical_depth
}
}
def _calculate_complexity(self, text: str) -> float:
"""Calculate text complexity"""
words = text.split()
if not words:
return 0.0
avg_word_length = np.mean([len(word) for word in words])
sentence_count = text.count('.') + text.count('!') + text.count('?')
avg_sentence_length = len(words) / sentence_count if sentence_count > 0 else len(words)
complexity = (avg_word_length * 0.3) + (avg_sentence_length * 0.2) / 10
return min(1.0, complexity)
def _assess_emotional_impact(self, text: str) -> float:
"""Assess emotional impact of text"""
emotional_words = {
'positive': ['love', 'joy', 'hope', 'peace', 'beautiful', 'wonderful'],
'negative': ['hate', 'fear', 'anger', 'sad', 'terrible', 'horrible'],
'intense': ['passion', 'rage', 'ecstasy', 'despair', 'fury', 'bliss']
}
text_lower = text.lower()
emotional_density = 0.0
for category, words in emotional_words.items():
matches = sum(1 for word in words if word in text_lower)
emotional_density += matches * 0.05
return min(1.0, emotional_density)
def _assess_cultural_significance(self, work_data: Dict[str, Any]) -> float:
"""Assess cultural significance of literary work"""
significance_indicators = [
work_data.get('awards', []),
work_data.get('cultural_impact', ''),
work_data.get('historical_period', ''),
work_data.get('translation_count', 0)
]
indicator_score = sum(1 for indicator in significance_indicators if indicator) / len(significance_indicators)
return min(1.0, 0.3 + indicator_score * 0.7)
class GenreClassifier:
"""Classifies literary genres"""
def classify_genre(self, work_data: Dict[str, Any]) -> LiteraryGenre:
"""Classify literary genre"""
genre_hints = work_data.get('genre_hints', [])
content = work_data.get('content', '').lower()
# Genre detection logic
if any(hint in content for hint in ['poem', 'verse', 'rhyme']):
return LiteraryGenre.POETRY
elif any(hint in content for hint in ['act', 'scene', 'dialogue', 'stage']):
return LiteraryGenre.DRAMA
elif any(hint in content for hint in ['philosophy', 'truth', 'reality', 'existence']):
return LiteraryGenre.PHILOSOPHICAL
elif any(hint in content for hint in ['historical', 'century', 'era', 'period']):
return LiteraryGenre.HISTORICAL
elif any(hint in content for hint in ['science', 'future', 'technology', 'space']):
return LiteraryGenre.SCI_FI
elif any(hint in content for hint in ['magic', 'fantasy', 'mythical', 'legend']):
return LiteraryGenre.FANTASY
else:
return LiteraryGenre.FICTION
class ThemeAnalysisEngine:
"""Analyzes literary themes"""
async def identify_themes(self, text: str) -> List[str]:
"""Identify major themes in literary text"""
theme_indicators = {
'love': ['love', 'romance', 'affection', 'passion'],
'death': ['death', 'mortality', 'afterlife', 'funeral'],
'power': ['power', 'control', 'authority', 'dominance'],
'justice': ['justice', 'fairness', 'equality', 'rights'],
'freedom': ['freedom', 'liberty', 'liberation', 'free will'],
'truth': ['truth', 'reality', 'knowledge', 'wisdom'],
'identity': ['identity', 'self', 'consciousness', 'being']
}
text_lower = text.lower()
identified_themes = []
for theme, indicators in theme_indicators.items():
matches = sum(1 for indicator in indicators if indicator in text_lower)
if matches >= 2: # Minimum threshold for theme identification
identified_themes.append(theme)
return identified_themes
class SymbolicAnalysisEngine:
"""Analyzes symbolic content"""
async def analyze_symbols(self, text: str) -> Dict[str, float]:
"""Analyze symbolic elements in text"""
common_symbols = {
'light': ['light', 'bright', 'illumination', 'enlightenment'],
'dark': ['dark', 'shadow', 'night', 'obscurity'],
'water': ['water', 'river', 'ocean', 'flow'],
'fire': ['fire', 'flame', 'burn', 'passion'],
'journey': ['journey', 'quest', 'travel', 'path'],
'transformation': ['change', 'transform', 'become', 'evolve']
}
text_lower = text.lower()
symbol_strengths = {}
for symbol, indicators in common_symbols.items():
matches = sum(1 for indicator in indicators if indicator in text_lower)
symbol_strengths[symbol] = min(1.0, matches * 0.2)
return symbol_strengths
class VisualArtsAnalyzer:
"""Placeholder for visual arts analysis"""
async def analyze_visual_art(self, work_data: Dict[str, Any]) -> Dict[str, Any]:
await asyncio.sleep(0.1) # Simulate processing
return {
'content_analysis': {'medium': work_data.get('medium', 'unknown')},
'truth_metrics': {'symbolic_power': 0.6, 'emotional_impact': 0.7, 'cultural_significance': 0.5}
}
class MusicAnalysisEngine:
"""Placeholder for music analysis"""
async def analyze_musical_work(self, work_data: Dict[str, Any]) -> Dict[str, Any]:
await asyncio.sleep(0.1) # Simulate processing
return {
'content_analysis': {'genre': work_data.get('genre', 'unknown')},
'truth_metrics': {'emotional_impact': 0.8, 'cultural_significance': 0.6}
}
class CrossDomainIntegrator:
"""Integrates analysis across artistic domains"""
async def find_correlations(self, domain_analysis: Dict[str, Any]) -> Dict[str, float]:
"""Find correlations with other truth discovery domains"""
# Simulate correlation finding
await asyncio.sleep(0.05)
return {
'archaeological': 0.7, # Literature often references historical/archaeological themes
'philosophical': 0.8, # Strong correlation with philosophical inquiry
'scientific': 0.4, # Moderate correlation with scientific truth
'spiritual': 0.6 # Moderate-strong correlation with spiritual truth
}
# =============================================================================
# TATTERED PAST PACKAGE INTEGRATION
# =============================================================================
class EnhancedTatteredPastPackage:
"""
Tattered Past Package with enhanced artistic expression analysis
"""
def __init__(self):
self.artistic_engine = ArtisticExpressionEngine()
self.integration_records = []
async def analyze_artistic_truth(self, domain: ArtisticDomain, work_data: Dict[str, Any]) -> ArtisticExpressionAnalysis:
"""Analyze artistic work for truth content"""
return await self.artistic_engine.analyze_artistic_work(domain, work_data)
async def integrate_artistic_findings(self, artistic_analysis: ArtisticExpressionAnalysis,
other_findings: Dict[str, Any]) -> Dict[str, Any]:
"""Integrate artistic findings with other truth discovery methods"""
integration = {
'artistic_domain': artistic_analysis.domain.value,
'work_identifier': artistic_analysis.work_identifier,
'integrated_truth_score': artistic_analysis.integrated_truth_score,
'cross_domain_synergy': self._calculate_synergy(artistic_analysis, other_findings),
'revelation_potential': artistic_analysis.integrated_truth_score * 0.8, # Artistic works often reveal indirect truths
'integration_timestamp': datetime.utcnow().isoformat()
}
self.integration_records.append(integration)
return integration
def _calculate_synergy(self, artistic_analysis: ArtisticExpressionAnalysis,
other_findings: Dict[str, Any]) -> float:
"""Calculate synergy between artistic findings and other domains"""
base_synergy = artistic_analysis.integrated_truth_score
# Boost if multiple domains confirm similar truths
if 'archaeological_confidence' in other_findings:
arch_confidence = other_findings['archaeological_confidence']
base_synergy += arch_confidence * 0.2
if 'philosophical_certainty' in other_findings:
phil_certainty = other_findings['philosophical_certainty']
base_synergy += phil_certainty * 0.3
return min(1.0, base_synergy)
# =============================================================================
# DEMONSTRATION AND TESTING
# =============================================================================
async def demonstrate_artistic_analysis():
"""Demonstrate artistic expression analysis capabilities"""
print("🎨 ARTISTIC EXPRESSION ANALYSIS MODULE - LITERATURE FOCUS")
print("=" * 70)
enhanced_package = EnhancedTatteredPastPackage()
# Test literary works
test_works = [
{
'domain': ArtisticDomain.LITERATURE,
'title': 'The Alchemist',
'author': 'Paulo Coelho',
'genre_hints': ['philosophical', 'journey'],
'content': """
The boy's name was Santiago. Dusk was falling as the boy arrived with his herd at an abandoned church.
The roof had fallen in long ago, and an enormous sycamore had grown on the spot where the sacristy had once stood.
He decided to spend the night there. He saw to it that all the sheep entered through the ruined gate, and then laid some planks across it to prevent the flock from wandering away during the night.
There were no wolves in the region, but once an animal had strayed during the night, and the boy had had to spend the entire next day searching for it.
He swept the floor with his jacket and lay down, using the book he had just finished reading as a pillow.
He told himself that he would have to start reading thicker books: they lasted longer, and made more comfortable pillows.
"""
},
{
'domain': ArtisticDomain.LITERATURE,
'title': '1984',
'author': 'George Orwell',
'genre_hints': ['political', 'dystopian'],
'content': """
It was a bright cold day in April, and the clocks were striking thirteen.
Winston Smith, his chin nuzzled into his breast in an effort to escape the vile wind,
slipped quickly through the glass doors of Victory Mansions, though not quickly enough to prevent a swirl of gritty dust from entering along with him.
The hallway smelt of boiled cabbage and old rag mats. At one end of it a coloured poster, too large for indoor display, had been tacked to the wall.
It depicted simply an enormous face, more than a metre wide: the face of a man of about forty-five, with a heavy black moustache and ruggedly handsome features.
"""
}
]
for work in test_works:
print(f"\n📖 Analyzing: {work['title']} by {work['author']}")
analysis = await enhanced_package.analyze_artistic_truth(work['domain'], work)
print(f" Domain: {analysis.domain.value}")
print(f" Integrated Truth Score: {analysis.integrated_truth_score:.3f}")
print(f" Truth Metrics: {list(analysis.truth_revelation_metrics.keys())}")
# Show specific metrics for literature
if analysis.domain == ArtisticDomain.LITERATURE:
lit_analysis = analysis.content_analysis.get('literary_analysis')
if lit_analysis:
print(f" Symbolic Density: {lit_analysis.symbolic_density:.3f}")
print(f" Archetypal Resonance: {lit_analysis.archetypal_resonance:.3f}")
print(f" Philosophical Depth: {lit_analysis.philosophical_depth:.3f}")
print(f" Revelation Methods: {[m.value for m in lit_analysis.revelation_methods]}")
if __name__ == "__main__":
asyncio.run(demonstrate_artistic_analysis()) |