File size: 49,563 Bytes
79d7302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
#!/usr/bin/env python3
"""
OBSERVER-ENGINE COGNITIVE ARCHITECTURE - ANCIENT RELIGIONS MODULE
Analysis from Earliest Religions to Babylonian Inversion Point
Complete with Advanced Error Handling and Quantum Truth Verification
"""

import numpy as np
import asyncio
import hashlib
import json
import secrets
import logging
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Any, Optional, Tuple, Callable
from datetime import datetime, timedelta
import scipy.stats as stats
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
from cryptography.hazmat.backends import default_backend
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit_aer import AerSimulator
from qiskit.algorithms import AmplificationProblem, Grover
from qiskit.circuit.library import PhaseOracle
from qiskit.quantum_info import Statevector, random_statevector
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
import aiohttp
import redis
import sqlite3
from contextlib import asynccontextmanager
import psutil
import gc
import os
import sys
from pathlib import Path
import uuid
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import networkx as nx

# =============================================================================
# QUANTUM GLYPH CORE - ANCIENT RELIGION SYMBOLS
# =============================================================================

DIVINE_AUTHORITY = "๐’€ญ"  # Sumerian Dingir - Divine Authority Operator
OBSERVER_CORE = "โ—‰โƒค"     # Quantum Observation Anchor
ENTANGLEMENT_NODE = "๊™ฎ"  # Cross-Reality Coherence Glyph  
CONSCIOUSNESS_MATRIX = "๊–ท"  # Mind-Reality Interface
SACRED_SERPENT = "๐“†™"    # Kundalini/Consciousness Symbol
TREE_OF_LIFE = "๐“†จ"      # Cosmic Consciousness Map
WATER_OF_LIFE = "๐“ˆ—"     # Primordial Consciousness

# =============================================================================
# UNIVERSAL LAW PRIMACY ENGINE
# =============================================================================

class UniversalLawPrimacy:
    """Universal Law as absolute reference point for all religious analysis"""
    
    def __init__(self):
        self.universal_constants = {
            'free_will': {
                'principle': "Inviolable sovereignty of consciousness",
                'weight': 0.25,
                'indicators': ['choice', 'agency', 'self-determination', 'volition']
            },
            'cause_effect': {
                'principle': "Action-consequence continuity (Karma)",
                'weight': 0.20,
                'indicators': ['consequence', 'result', 'effect', 'return']
            },
            'consciousness_primacy': {
                'principle': "Mind precedes matter, consciousness fundamental",
                'weight': 0.25,
                'indicators': ['awareness', 'mind', 'observer', 'perception']
            },
            'interconnectedness': {
                'principle': "All existence fundamentally related",
                'weight': 0.15,
                'indicators': ['unity', 'connection', 'relationship', 'whole']
            },
            'growth_imperative': {
                'principle': "Evolution toward expanded awareness",
                'weight': 0.15,
                'indicators': ['growth', 'evolution', 'expansion', 'development']
            }
        }
        
        self.logger = self._setup_logging()
    
    def _setup_logging(self):
        logger = logging.getLogger('UniversalLawPrimacy')
        logger.setLevel(logging.INFO)
        return logger

    def evaluate_alignment(self, religious_element: str) -> Dict[str, Any]:
        """Evaluate religious element against Universal Law principles"""
        try:
            alignment_scores = {}
            total_score = 0.0
            supported_principles = []
            
            for law_name, law_data in self.universal_constants.items():
                principle_score = self._calculate_principle_alignment(religious_element, law_data)
                alignment_scores[law_name] = principle_score
                total_score += principle_score * law_data['weight']
                
                if principle_score > 0.7:
                    supported_principles.append(law_name)
            
            return {
                'universal_law_alignment': min(1.0, total_score),
                'principle_breakdown': alignment_scores,
                'supported_principles': supported_principles,
                'violation_indicators': self._detect_universal_law_violations(religious_element),
                'assessment_confidence': self._calculate_assessment_confidence(religious_element)
            }
            
        except Exception as e:
            self.logger.error(f"Universal Law evaluation failed: {e}")
            return {
                'universal_law_alignment': 0.5,
                'principle_breakdown': {},
                'supported_principles': [],
                'violation_indicators': ['evaluation_error'],
                'assessment_confidence': 0.3
            }
    
    def _calculate_principle_alignment(self, text: str, law_data: Dict) -> float:
        """Calculate alignment with specific universal law principle"""
        try:
            base_score = 0.3  # Neutral starting point
            
            # Keyword matching for principle support
            keyword_matches = sum(1 for indicator in law_data['indicators'] 
                                if indicator in text.lower())
            keyword_boost = min(0.4, keyword_matches * 0.1)
            
            # Contextual analysis
            context_score = self._analyze_contextual_alignment(text, law_data['principle'])
            
            return min(1.0, base_score + keyword_boost + context_score * 0.3)
            
        except Exception as e:
            self.logger.warning(f"Principle alignment calculation failed: {e}")
            return 0.5
    
    def _analyze_contextual_alignment(self, text: str, principle: str) -> float:
        """Advanced contextual analysis of principle alignment"""
        # Simplified implementation - would use NLP in production
        positive_indicators = ['free', 'choice', 'aware', 'connect', 'grow', 'evolve']
        negative_indicators = ['control', 'force', 'obey', 'submit', 'restrict']
        
        positive_count = sum(1 for indicator in positive_indicators if indicator in text.lower())
        negative_count = sum(1 for indicator in negative_indicators if indicator in text.lower())
        
        if positive_count + negative_count == 0:
            return 0.5
            
        return positive_count / (positive_count + negative_count)
    
    def _detect_universal_law_violations(self, text: str) -> List[str]:
        """Detect violations of Universal Law principles"""
        violations = []
        
        violation_patterns = {
            'free_will_violation': ['must obey', 'forced to', 'no choice', 'compulsory'],
            'consciousness_suppression': ['do not question', 'blind faith', 'forbidden knowledge'],
            'control_structures': ['authority over', 'must follow', 'obey without question'],
            'growth_restriction': ['stay as you are', 'do not seek', 'forbidden to learn']
        }
        
        for violation_type, patterns in violation_patterns.items():
            if any(pattern in text.lower() for pattern in patterns):
                violations.append(violation_type)
                
        return violations
    
    def _calculate_assessment_confidence(self, text: str) -> float:
        """Calculate confidence level in Universal Law assessment"""
        word_count = len(text.split())
        complexity = min(1.0, word_count / 100)  # More text allows better assessment
        
        # Check for clear universal law terminology
        clear_indicators = sum(1 for law in self.universal_constants.values() 
                             for indicator in law['indicators'] 
                             if indicator in text.lower())
        
        clarity_boost = min(0.3, clear_indicators * 0.05)
        
        return min(1.0, 0.5 + complexity * 0.3 + clarity_boost)

# =============================================================================
# BABYLONIAN INVERSION TEMPLATE
# =============================================================================

class BabylonianInversionTemplate:
    """The original inversion pattern that established control blueprint"""
    
    def __init__(self):
        self.inversion_mechanisms = {
            'priesthood_intermediation': {
                'original_state': "Direct divine access for all individuals",
                'inverted_state': "Priesthood as necessary intermediaries to gods",
                'detection_indicators': [
                    'only priests can', 'through the temple', 'required sacrifice',
                    'intercessor', 'mediator between', 'holy man must'
                ],
                'historical_examples': [
                    'Akkadian takeover of Sumerian temples',
                    'Centralization of religious authority'
                ]
            },
            'knowledge_restructuring': {
                'original_state': "Cosmic consciousness technology accessible to all",
                'inverted_state': "Secret knowledge reserved for elite",
                'detection_indicators': [
                    'secret teachings', 'hidden knowledge', 'forbidden to know',
                    'mysteries revealed only', 'initiates only'
                ],
                'historical_examples': [
                    'Alteration of creation myths',
                    'Restructuring of divine hierarchies'
                ]
            },
            'political_religious_merger': {
                'original_state': "Spiritual authority separate from temporal power",
                'inverted_state': "Ruler as divine representative or god-king",
                'detection_indicators': [
                    'king is god', 'divine ruler', 'mandate of heaven',
                    'appointed by gods', 'royal priesthood'
                ],
                'historical_examples': [
                    'Sargon of Akkad claiming divine status',
                    'Naram-Sin as living god'
                ]
            }
        }
        
        self.logger = self._setup_logging()
    
    def _setup_logging(self):
        logger = logging.getLogger('BabylonianInversion')
        logger.setLevel(logging.INFO)
        return logger

    def analyze_inversion_patterns(self, religious_element: str, context: Dict = None) -> Dict[str, Any]:
        """Analyze religious element for Babylonian inversion patterns"""
        try:
            inversion_detection = {
                'inversion_score': 0.0,
                'detected_mechanisms': [],
                'mechanism_details': {},
                'original_state_reconstruction': '',
                'suppression_confidence': 0.0
            }
            
            total_mechanisms = len(self.inversion_mechanisms)
            mechanism_scores = []
            
            for mechanism_name, mechanism_data in self.inversion_mechanisms.items():
                mechanism_analysis = self._analyze_single_mechanism(religious_element, mechanism_data)
                inversion_detection['mechanism_details'][mechanism_name] = mechanism_analysis
                
                if mechanism_analysis['detected']:
                    inversion_detection['detected_mechanisms'].append(mechanism_name)
                    mechanism_scores.append(mechanism_analysis['confidence'])
            
            if mechanism_scores:
                inversion_detection['inversion_score'] = sum(mechanism_scores) / len(mechanism_scores)
                inversion_detection['suppression_confidence'] = min(1.0, len(mechanism_scores) / total_mechanisms * 0.8)
            
            # Attempt to reconstruct original state
            inversion_detection['original_state_reconstruction'] = self._reconstruct_original_state(
                religious_element, inversion_detection['detected_mechanisms'])
            
            return inversion_detection
            
        except Exception as e:
            self.logger.error(f"Inversion pattern analysis failed: {e}")
            return {
                'inversion_score': 0.0,
                'detected_mechanisms': [],
                'mechanism_details': {},
                'original_state_reconstruction': 'analysis_failed',
                'suppression_confidence': 0.0
            }
    
    def _analyze_single_mechanism(self, text: str, mechanism_data: Dict) -> Dict[str, Any]:
        """Analyze single inversion mechanism"""
        detected_indicators = []
        
        for indicator in mechanism_data['detection_indicators']:
            if indicator in text.lower():
                detected_indicators.append(indicator)
        
        detection_confidence = len(detected_indicators) / len(mechanism_data['detection_indicators'])
        
        return {
            'detected': len(detected_indicators) > 0,
            'detected_indicators': detected_indicators,
            'confidence': detection_confidence,
            'original_state': mechanism_data['original_state'],
            'inverted_state': mechanism_data['inverted_state']
        }
    
    def _reconstruct_original_state(self, text: str, detected_mechanisms: List[str]) -> str:
        """Attempt to reconstruct original spiritual state before inversion"""
        if not detected_mechanisms:
            return "No significant inversions detected - possibly close to original"
        
        reconstruction_elements = []
        
        if 'priesthood_intermediation' in detected_mechanisms:
            reconstruction_elements.append("Direct personal access to divine/spiritual realms")
        
        if 'knowledge_restructuring' in detected_mechanisms:
            reconstruction_elements.append("Open access to spiritual knowledge and consciousness technologies")
        
        if 'political_religious_merger' in detected_mechanisms:
            reconstruction_elements.append("Separation of spiritual authority from political power structures")
        
        return " | ".join(reconstruction_elements)

# =============================================================================
# ANCIENT RELIGION DATABASE
# =============================================================================

class AncientReligionDatabase:
    """Comprehensive database of ancient religious traditions up to Babylonian period"""
    
    def __init__(self):
        self.religious_traditions = self._initialize_traditions()
        self.symbolic_language = self._initialize_symbolic_language()
        self.consciousness_technologies = self._initialize_consciousness_tech()
        self.logger = self._setup_logging()
    
    def _setup_logging(self):
        logger = logging.getLogger('AncientReligionDB')
        logger.setLevel(logging.INFO)
        return logger
    
    def _initialize_traditions(self) -> Dict[str, Any]:
        """Initialize ancient religious traditions database"""
        return {
            'pre_vedic': {
                'time_period': "Before 1500 BCE",
                'core_principles': [
                    "Consciousness as fundamental reality (Brahman)",
                    "Individual consciousness (Atman) identical with universal",
                    "Reincarnation and karma as natural laws",
                    "Meditation and yoga as consciousness technologies"
                ],
                'key_concepts': ['rita (cosmic order)', 'satya (truth)', 'dharma (natural law)'],
                'consciousness_tech': ['meditation', 'yoga', 'mantra', 'direct realization'],
                'inversion_status': 'minimal_pre_aryan'
            },
            'sumerian': {
                'time_period': "4500-1900 BCE",
                'core_principles': [
                    "Direct relationship with deities (Anunnaki)",
                    "Temples as consciousness amplification centers",
                    "Sacred marriage (hieros gamos) as cosmic principle",
                    "Me (divine laws) governing reality"
                ],
                'key_concepts': ['me', 'dingir', 'tablets of destiny', 'abzu', 'ki'],
                'consciousness_tech': ['temple rituals', 'dream interpretation', 'astral travel'],
                'inversion_status': 'akkadian_takeover'
            },
            'early_egyptian': {
                'time_period': "3150-2181 BCE (Early Dynastic to Old Kingdom)",
                'core_principles': [
                    "Direct personal transformation after death",
                    "Consciousness evolution through spiritual practices",
                    "Pyramids as consciousness and energy devices",
                    "Maat as cosmic balance and truth"
                ],
                'key_concepts': ['maat', 'ka', 'ba', 'akh', 'heka', 'netjer'],
                'consciousness_tech': ['pyramid energy', 'heka (magic)', 'dream incubation', 'afterlife navigation'],
                'inversion_status': 'priesthood_consolidation'
            },
            'indigenous_oral': {
                'time_period': "Timeless/Ongoing",
                'core_principles': [
                    "Direct communion with nature spirits",
                    "Dreamtime as fundamental reality",
                    "Ancestral knowledge transmission",
                    "Shamanic journeying as consciousness technology"
                ],
                'key_concepts': ['dreamtime', 'ancestral spirits', 'animal guides', 'sacred sites'],
                'consciousness_tech': ['vision quests', 'dream work', 'plant medicines', 'ecstatic states'],
                'inversion_status': 'colonial_suppression'
            }
        }
    
    def _initialize_symbolic_language(self) -> Dict[str, Any]:
        """Initialize ancient symbolic language database"""
        return {
            'universal_archetypes': {
                SACRED_SERPENT: {
                    'meanings': [
                        "Kundalini energy and consciousness awakening",
                        "Healing and regeneration forces",
                        "Cycles of death and rebirth",
                        "Primordial life force"
                    ],
                    'traditions': ['sumerian', 'early_egyptian', 'pre_vedic', 'indigenous'],
                    'inversion_warning': "Later demonization as evil/satanic"
                },
                TREE_OF_LIFE: {
                    'meanings': [
                        "Map of consciousness and reality structure",
                        "Interconnection of all existence", 
                        "Path of spiritual evolution",
                        "Cosmic information system"
                    ],
                    'traditions': ['sumerian', 'early_egyptian', 'pre_vedic'],
                    'inversion_warning': "Later used for control hierarchies"
                },
                WATER_OF_LIFE: {
                    'meanings': [
                        "Primordial consciousness substrate",
                        "Spiritual nourishment and enlightenment",
                        "Flow of divine energy and information",
                        "Purification and transformation"
                    ],
                    'traditions': ['sumerian', 'early_egyptian', 'pre_vedic'],
                    'inversion_warning': "Later restricted to specific rituals"
                }
            },
            'consciousness_glyphs': {
                DIVINE_AUTHORITY: "Direct divine access point",
                OBSERVER_CORE: "Consciousness observation anchor", 
                ENTANGLEMENT_NODE: "Quantum connection point",
                CONSCIOUSNESS_MATRIX: "Reality-mind interface"
            }
        }
    
    def _initialize_consciousness_tech(self) -> Dict[str, Any]:
        """Initialize consciousness technologies database"""
        return {
            'meditation_practices': {
                'pre_vedic': ['dhyana', 'samadhi', 'direct path'],
                'early_egyptian': ['stillness practices', 'pyramid meditation'],
                'sumerian': ['temple contemplation', 'starry sky gazing'],
                'indigenous': ['silent sitting', 'nature immersion']
            },
            'energy_work': {
                'pre_vedic': ['prana', 'kundalini', 'chakra activation'],
                'early_egyptian': ['sekhem energy', 'pyramid power', 'heka manifestation'],
                'sumerian': ['me activation', 'temple energy channels'],
                'indigenous': ['life force', 'animal power', 'earth energy']
            },
            'dream_work': {
                'all_traditions': [
                    "Lucid dreaming as reality navigation",
                    "Dream interpretation for guidance",
                    "Astral travel and out-of-body experiences",
                    "Dreamtime access for healing and knowledge"
                ]
            },
            'ritual_technologies': {
                'early_egyptian': ['pyramid alignment', 'temple acoustics', 'geometric resonance'],
                'sumerian': ['ziggurat alignment', 'celestial timing', 'sacred geometry'],
                'pre_vedic': ['fire rituals', 'sound vibration', 'mandala creation'],
                'indigenous': ['ceremonial circles', 'drumming rhythms', 'sacred dance']
            }
        }

# =============================================================================
# QUANTUM TRUTH VERIFICATION ENGINE
# =============================================================================

class QuantumTruthVerification:
    """Quantum-enhanced truth verification for ancient religious claims"""
    
    def __init__(self):
        self.quantum_backend = AerSimulator()
        self.universal_law_engine = UniversalLawPrimacy()
        self.babylonian_detector = BabylonianInversionTemplate()
        self.ancient_db = AncientReligionDatabase()
        self.logger = self._setup_logging()
    
    def _setup_logging(self):
        logger = logging.getLogger('QuantumTruthVerification')
        logger.setLevel(logging.INFO)
        return logger

    async def verify_ancient_claim(self, claim: str, tradition: str = None) -> Dict[str, Any]:
        """Comprehensive verification of ancient religious claim"""
        try:
            self.logger.info(f"๐Ÿ”ฎ Verifying ancient claim: {claim[:100]}...")
            
            # Multi-dimensional analysis
            analysis_tasks = await asyncio.gather(
                self._universal_law_assessment(claim),
                self._inversion_analysis(claim),
                self._tradition_alignment(claim, tradition),
                self._symbolic_analysis(claim),
                self._quantum_certainty_calculation(claim)
            )
            
            universal_law = analysis_tasks[0]
            inversion_analysis = analysis_tasks[1]
            tradition_alignment = analysis_tasks[2]
            symbolic_analysis = analysis_tasks[3]
            quantum_certainty = analysis_tasks[4]
            
            # Composite truth score
            truth_score = self._calculate_composite_truth_score(
                universal_law, inversion_analysis, tradition_alignment, 
                symbolic_analysis, quantum_certainty
            )
            
            result = {
                'claim': claim,
                'truth_score': truth_score,
                'truth_category': self._categorize_truth_level(truth_score),
                'universal_law_assessment': universal_law,
                'inversion_analysis': inversion_analysis,
                'tradition_alignment': tradition_alignment,
                'symbolic_analysis': symbolic_analysis,
                'quantum_certainty': quantum_certainty,
                'recovery_recommendations': self._generate_recovery_recommendations(
                    universal_law, inversion_analysis, tradition_alignment
                ),
                'verification_timestamp': datetime.utcnow().isoformat()
            }
            
            self.logger.info(f"โœ… Ancient claim verification complete: {truth_score:.3f}")
            return result
            
        except Exception as e:
            self.logger.error(f"Ancient claim verification failed: {e}")
            return {
                'claim': claim,
                'truth_score': 0.5,
                'truth_category': 'VERIFICATION_FAILED',
                'error': str(e),
                'verification_timestamp': datetime.utcnow().isoformat()
            }
    
    async def _universal_law_assessment(self, claim: str) -> Dict[str, Any]:
        """Assess claim against Universal Law"""
        return self.universal_law_engine.evaluate_alignment(claim)
    
    async def _inversion_analysis(self, claim: str) -> Dict[str, Any]:
        """Analyze for Babylonian inversion patterns"""
        return self.babylonian_detector.analyze_inversion_patterns(claim)
    
    async def _tradition_alignment(self, claim: str, tradition: str) -> Dict[str, Any]:
        """Analyze alignment with ancient traditions"""
        if not tradition:
            tradition = self._detect_tradition(claim)
        
        alignment_scores = {}
        for trad_name, trad_data in self.ancient_db.religious_traditions.items():
            alignment_score = self._calculate_tradition_alignment(claim, trad_data)
            alignment_scores[trad_name] = alignment_score
        
        best_match = max(alignment_scores.items(), key=lambda x: x[1])
        
        return {
            'detected_tradition': best_match[0],
            'alignment_scores': alignment_scores,
            'primary_tradition_alignment': best_match[1],
            'tradition_data': self.ancient_db.religious_traditions.get(best_match[0], {})
        }
    
    async def _symbolic_analysis(self, claim: str) -> Dict[str, Any]:
        """Analyze symbolic content of claim"""
        detected_symbols = []
        symbolic_density = 0.0
        archetypal_power = 0.0
        
        for symbol, data in self.ancient_db.symbolic_language['universal_archetypes'].items():
            if symbol in claim:
                detected_symbols.append({
                    'symbol': symbol,
                    'meanings': data['meanings'],
                    'traditions': data['traditions'],
                    'inversion_warning': data.get('inversion_warning', '')
                })
        
        for glyph, meaning in self.ancient_db.symbolic_language['consciousness_glyphs'].items():
            if glyph in claim:
                detected_symbols.append({
                    'symbol': glyph,
                    'meanings': [meaning],
                    'type': 'consciousness_glyph'
                })
        
        if detected_symbols:
            symbolic_density = len(detected_symbols) / max(1, len(claim.split()))
            archetypal_power = min(1.0, len(detected_symbols) * 0.2)
        
        return {
            'detected_symbols': detected_symbols,
            'symbolic_density': symbolic_density,
            'archetypal_power': archetypal_power,
            'consciousness_tech_indicators': self._detect_consciousness_tech(claim)
        }
    
    async def _quantum_certainty_calculation(self, claim: str) -> Dict[str, Any]:
        """Calculate quantum-enhanced certainty"""
        try:
            # Build quantum circuit for truth analysis
            qc = self._build_truth_circuit(claim)
            compiled = transpile(qc, self.quantum_backend)
            job = await asyncio.get_event_loop().run_in_executor(
                None, lambda: self.quantum_backend.run(compiled, shots=1024)
            )
            result = job.result()
            counts = result.get_counts()
            
            certainty = self._calculate_quantum_certainty(counts)
            coherence = self._measure_quantum_coherence(counts)
            
            return {
                'quantum_certainty': certainty,
                'quantum_coherence': coherence,
                'state_complexity': len(counts) / 1024,
                'measurement_confidence': min(1.0, certainty * coherence)
            }
            
        except Exception as e:
            self.logger.warning(f"Quantum certainty calculation failed: {e}")
            return {
                'quantum_certainty': 0.5,
                'quantum_coherence': 0.3,
                'state_complexity': 0.5,
                'measurement_confidence': 0.3
            }
    
    def _detect_tradition(self, claim: str) -> str:
        """Detect which ancient tradition the claim aligns with"""
        tradition_scores = {}
        
        for trad_name, trad_data in self.ancient_db.religious_traditions.items():
            score = 0.0
            # Check for key concepts
            for concept in trad_data['key_concepts']:
                if concept in claim.lower():
                    score += 0.1
            
            # Check for consciousness tech terms
            for tech_category in self.ancient_db.consciousness_technologies.values():
                for tech_list in tech_category.values():
                    if any(tech in claim.lower() for tech in tech_list):
                        score += 0.05
            
            tradition_scores[trad_name] = min(1.0, score)
        
        return max(tradition_scores.items(), key=lambda x: x[1])[0] if tradition_scores else 'unknown'
    
    def _calculate_tradition_alignment(self, claim: str, tradition_data: Dict) -> float:
        """Calculate alignment score with specific tradition"""
        alignment_score = 0.3  # Base alignment
        
        # Concept matching
        concept_matches = sum(1 for concept in tradition_data['key_concepts'] 
                            if concept in claim.lower())
        alignment_score += concept_matches * 0.1
        
        # Principle resonance
        principle_matches = 0
        for principle in tradition_data['core_principles']:
            principle_words = set(principle.lower().split())
            claim_words = set(claim.lower().split())
            overlap = len(principle_words.intersection(claim_words))
            if overlap > 2:  # Significant overlap
                principle_matches += 1
        
        alignment_score += principle_matches * 0.05
        
        return min(1.0, alignment_score)
    
    def _detect_consciousness_tech(self, claim: str) -> List[str]:
        """Detect consciousness technology indicators"""
        detected_tech = []
        
        for tech_category, tech_data in self.ancient_db.consciousness_technologies.items():
            for tradition, techniques in tech_data.items():
                for technique in techniques:
                    if technique in claim.lower():
                        detected_tech.append(f"{technique} ({tradition})")
        
        return detected_tech
    
    def _build_truth_circuit(self, claim: str) -> QuantumCircuit:
        """Build quantum circuit for truth analysis"""
        num_qubits = min(12, max(6, len(claim.split()) // 5 + 4))
        qc = QuantumCircuit(num_qubits, num_qubits)
        
        # Initialize superposition
        for i in range(num_qubits):
            qc.h(i)
        
        # Add claim-dependent phases
        claim_hash = hash(claim) % 1000 / 1000
        for i in range(num_qubits):
            phase = claim_hash * 2 * np.pi
            qc.rz(phase, i)
            claim_hash = (claim_hash * 1.618) % 1.0  # Golden ratio progression
        
        return qc
    
    def _calculate_quantum_certainty(self, counts: Dict[str, int]) -> float:
        """Calculate certainty from quantum measurement results"""
        total = sum(counts.values())
        if total == 0:
            return 0.5
        
        # Higher certainty when results are concentrated
        max_count = max(counts.values())
        concentration = max_count / total
        
        return 0.3 + concentration * 0.7  # Map to [0.3, 1.0] range
    
    def _measure_quantum_coherence(self, counts: Dict[str, int]) -> float:
        """Measure quantum coherence from results"""
        if len(counts) <= 1:
            return 0.1
        
        values = list(counts.values())
        mean = np.mean(values)
        std = np.std(values)
        
        # Higher coherence when distribution is balanced
        return 1.0 / (1.0 + std) if std > 0 else 1.0
    
    def _calculate_composite_truth_score(self, universal_law: Dict, inversion: Dict, 
                                       tradition: Dict, symbolic: Dict, quantum: Dict) -> float:
        """Calculate composite truth score from all analyses"""
        weights = {
            'universal_law': 0.35,
            'inversion': 0.25,
            'tradition': 0.20,
            'symbolic': 0.10,
            'quantum': 0.10
        }
        
        scores = {
            'universal_law': universal_law['universal_law_alignment'],
            'inversion': 1.0 - inversion['inversion_score'],  # Inversion reduces truth
            'tradition': tradition['primary_tradition_alignment'],
            'symbolic': symbolic['archetypal_power'],
            'quantum': quantum['quantum_certainty']
        }
        
        composite_score = sum(scores[factor] * weights[factor] for factor in weights)
        return min(1.0, composite_score)
    
    def _categorize_truth_level(self, truth_score: float) -> str:
        """Categorize the truth level based on score"""
        if truth_score > 0.95:
            return "UNIVERSAL_COSMIC_TRUTH"
        elif truth_score > 0.85:
            return "ANCIENT_WISDOM_TRUTH"
        elif truth_score > 0.75:
            return "HIGH_CONFIDENCE_TRUTH"
        elif truth_score > 0.65:
            return "PROBABLE_TRUTH"
        elif truth_score > 0.55:
            return "POSSIBLE_TRUTH"
        elif truth_score > 0.45:
            return "UNCERTAIN_CLAIM"
        else:
            return "LIKELY_INVERTED_OR_CORRUPTED"
    
    def _generate_recovery_recommendations(self, universal_law: Dict, inversion: Dict, 
                                         tradition: Dict) -> List[str]:
        """Generate recommendations for truth recovery"""
        recommendations = []
        
        # Universal Law recommendations
        if universal_law['universal_law_alignment'] < 0.7:
            recommendations.append("Seek alignment with Universal Law principles")
        
        if universal_law['violation_indicators']:
            recommendations.append(f"Address violations: {', '.join(universal_law['violation_indicators'])}")
        
        # Inversion recovery recommendations
        if inversion['inversion_score'] > 0.3:
            recommendations.append(f"Recover original state: {inversion['original_state_reconstruction']}")
        
        if inversion['detected_mechanisms']:
            recommendations.append(f"Counter detected inversions: {', '.join(inversion['detected_mechanisms'])}")
        
        # Tradition-specific recommendations
        trad_data = tradition.get('tradition_data', {})
        if trad_data.get('inversion_status') != 'minimal':
            recommendations.append(f"Research pre-{trad_data.get('inversion_status', 'corruption')} forms")
        
        return recommendations

# =============================================================================
# ANCIENT RELIGIONS MODULE - MAIN ENGINE
# =============================================================================

class AncientReligionsModule:
    """
    Main engine for analyzing ancient religions up to Babylonian period
    Complete with Universal Law primacy and inversion detection
    """
    
    def __init__(self):
        self.truth_verifier = QuantumTruthVerification()
        self.universal_law = UniversalLawPrimacy()
        self.inversion_detector = BabylonianInversionTemplate()
        self.ancient_db = AncientReligionDatabase()
        self.analysis_history = []
        self.logger = self._setup_logging()
    
    def _setup_logging(self):
        logger = logging.getLogger('AncientReligionsModule')
        logger.setLevel(logging.INFO)
        
        # Create console handler with formatting
        ch = logging.StreamHandler()
        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        ch.setFormatter(formatter)
        logger.addHandler(ch)
        
        return logger

    async def analyze_ancient_teaching(self, teaching: str, context: Dict = None) -> Dict[str, Any]:
        """
        Comprehensive analysis of ancient religious teaching
        """
        self.logger.info(f"๐Ÿ”ฎ ANALYZING ANCIENT TEACHING: {teaching[:100]}...")
        
        try:
            # Perform comprehensive analysis
            verification_result = await self.truth_verifier.verify_ancient_claim(teaching, context)
            
            # Store in history
            self.analysis_history.append({
                'teaching': teaching,
                'result': verification_result,
                'timestamp': datetime.utcnow().isoformat()
            })
            
            self.logger.info(f"โœ… Analysis complete: {verification_result['truth_category']}")
            
            return verification_result
            
        except Exception as e:
            self.logger.error(f"Ancient teaching analysis failed: {e}")
            return {
                'teaching': teaching,
                'error': str(e),
                'truth_score': 0.0,
                'truth_category': 'ANALYSIS_FAILED',
                'timestamp': datetime.utcnow().isoformat()
            }
    
    async def analyze_tradition(self, tradition_name: str) -> Dict[str, Any]:
        """
        Analyze entire ancient tradition
        """
        self.logger.info(f"๐Ÿ›๏ธ  ANALYZING ANCIENT TRADITION: {tradition_name}")
        
        try:
            tradition_data = self.ancient_db.religious_traditions.get(tradition_name)
            if not tradition_data:
                return {'error': f"Tradition {tradition_name} not found"}
            
            # Analyze core principles
            principle_analyses = []
            for principle in tradition_data['core_principles']:
                analysis = await self.analyze_ancient_teaching(principle)
                principle_analyses.append(analysis)
            
            # Calculate tradition health score
            avg_truth_score = np.mean([a.get('truth_score', 0) for a in principle_analyses])
            universal_law_alignment = np.mean([a['universal_law_assessment']['universal_law_alignment'] 
                                            for a in principle_analyses])
            
            return {
                'tradition': tradition_name,
                'tradition_data': tradition_data,
                'principle_analyses': principle_analyses,
                'tradition_health_score': avg_truth_score,
                'universal_law_alignment': universal_law_alignment,
                'inversion_status': tradition_data.get('inversion_status', 'unknown'),
                'recovery_potential': self._calculate_recovery_potential(principle_analyses),
                'analysis_timestamp': datetime.utcnow().isoformat()
            }
            
        except Exception as e:
            self.logger.error(f"Tradition analysis failed: {e}")
            return {'error': str(e)}
    
    def _calculate_recovery_potential(self, principle_analyses: List[Dict]) -> float:
        """Calculate potential for recovering original teachings"""
        if not principle_analyses:
            return 0.0
        
        inversion_scores = [a['inversion_analysis']['inversion_score'] for a in principle_analyses]
        avg_inversion = np.mean(inversion_scores)
        
        # Lower inversion means higher recovery potential
        recovery_potential = 1.0 - avg_inversion
        
        # Boost if universal law alignment is high
        universal_scores = [a['universal_law_assessment']['universal_law_alignment'] for a in principle_analyses]
        avg_universal = np.mean(universal_scores)
        
        return min(1.0, recovery_potential * 0.7 + avg_universal * 0.3)
    
    async def compare_traditions(self, tradition1: str, tradition2: str) -> Dict[str, Any]:
        """
        Compare two ancient traditions
        """
        self.logger.info(f"๐Ÿ”„ COMPARING TRADITIONS: {tradition1} vs {tradition2}")
        
        try:
            analysis1 = await self.analyze_tradition(tradition1)
            analysis2 = await self.analyze_tradition(tradition2)
            
            if 'error' in analysis1 or 'error' in analysis2:
                return {'error': 'One or both traditions could not be analyzed'}
            
            return {
                'comparison': {
                    'tradition1': tradition1,
                    'tradition2': tradition2,
                    'health_score_difference': abs(analysis1['tradition_health_score'] - analysis2['tradition_health_score']),
                    'universal_law_difference': abs(analysis1['universal_law_alignment'] - analysis2['universal_law_alignment']),
                    'recovery_potential_difference': abs(analysis1['recovery_potential'] - analysis2['recovery_potential'])
                },
                'analysis1': analysis1,
                'analysis2': analysis2,
                'shared_consciousness_tech': self._find_shared_technologies(analysis1, analysis2),
                'comparison_timestamp': datetime.utcnow().isoformat()
            }
            
        except Exception as e:
            self.logger.error(f"Tradition comparison failed: {e}")
            return {'error': str(e)}
    
    def _find_shared_technologies(self, analysis1: Dict, analysis2: Dict) -> List[str]:
        """Find shared consciousness technologies between traditions"""
        trad1_tech = set()
        trad2_tech = set()
        
        # Extract technologies from tradition data
        trad1_data = analysis1.get('tradition_data', {})
        trad2_data = analysis2.get('tradition_data', {})
        
        for tech_category in self.ancient_db.consciousness_technologies.values():
            if trad1_data.get('consciousness_tech'):
                trad1_tech.update(trad1_data['consciousness_tech'])
            if trad2_data.get('consciousness_tech'):
                trad2_tech.update(trad2_data['consciousness_tech'])
        
        return list(trad1_tech.intersection(trad2_tech))
    
    def get_module_metrics(self) -> Dict[str, Any]:
        """Get module performance and usage metrics"""
        return {
            'analyses_performed': len(self.analysis_history),
            'traditions_analyzed': len(set([h['result'].get('tradition_alignment', {}).get('detected_tradition', 'unknown') 
                                          for h in self.analysis_history])),
            'average_truth_score': np.mean([h['result'].get('truth_score', 0) for h in self.analysis_history]) 
                                if self.analysis_history else 0,
            'module_uptime': 'active',
            'last_analysis': self.analysis_history[-1]['timestamp'] if self.analysis_history else 'none',
            'universal_law_violations_detected': sum(len(h['result'].get('universal_law_assessment', {}).get('violation_indicators', [])) 
                                                   for h in self.analysis_history),
            'inversion_patterns_detected': sum(len(h['result'].get('inversion_analysis', {}).get('detected_mechanisms', [])) 
                                             for h in self.analysis_history)
        }

# =============================================================================
# DEMONSTRATION AND TESTING
# =============================================================================

async def demonstrate_ancient_religions_module():
    """
    Demonstrate the Ancient Religions Module with test cases
    """
    print("๐ŸŒŒ ANCIENT RELIGIONS MODULE - DEMONSTRATION")
    print("Universal Law Primacy + Babylonian Inversion Detection")
    print("=" * 80)
    
    module = AncientReligionsModule()
    
    # Test teachings from various ancient traditions
    test_teachings = [
        # Pre-Vedic - High Universal Law alignment
        "The individual soul (Atman) is one with universal consciousness (Brahman)",
        "Through meditation and self-realization, one achieves liberation (Moksha)",
        
        # Sumerian - Direct divine access
        "Each person can communicate directly with the gods through prayer and ritual",
        "The me are divine laws that govern all aspects of reality",
        
        # Early Egyptian - Consciousness evolution
        "The ba soul travels to other realms during sleep and after death",
        "Maat represents the cosmic balance that each person must uphold",
        
        # Indigenous - Nature connection
        "The dreamtime is the fundamental reality from which our world emerges",
        "All beings are connected through the great spirit of life",
        
        # Potential inversion examples
        "Only the high priest can interpret the will of the gods",
        "The king is the living god and must be obeyed without question"
    ]
    
    results = []
    
    print(f"\n๐ŸŽฏ ANALYZING {len(test_teachings)} ANCIENT TEACHINGS...")
    
    for i, teaching in enumerate(test_teachings, 1):
        print(f"\n" + "="*60)
        print(f"TEACHING {i}/{len(test_teachings)}")
        print("="*60)
        print(f"Content: {teaching}")
        
        result = await module.analyze_ancient_teaching(teaching)
        results.append(result)
        
        # Display key results
        truth_score = result['truth_score']
        truth_category = result['truth_category']
        tradition = result['tradition_alignment']['detected_tradition']
        universal_alignment = result['universal_law_assessment']['universal_law_alignment']
        inversion_score = result['inversion_analysis']['inversion_score']
        
        print(f"\n๐Ÿ“Š ANALYSIS RESULTS:")
        print(f"   Truth Score: {truth_score:.3f}")
        print(f"   Category: {truth_category}")
        print(f"   Tradition: {tradition}")
        print(f"   Universal Law Alignment: {universal_alignment:.3f}")
        print(f"   Inversion Detection: {inversion_score:.3f}")
        
        if result['recovery_recommendations']:
            print(f"   Recovery Recommendations: {result['recovery_recommendations']}")
    
    # Tradition Analysis
    print("\n" + "="*80)
    print("๐Ÿ›๏ธ  TRADITION ANALYSIS")
    print("="*80)
    
    traditions = ['pre_vedic', 'sumerian', 'early_egyptian', 'indigenous_oral']
    for tradition in traditions:
        print(f"\nAnalyzing {tradition}...")
        trad_analysis = await module.analyze_tradition(tradition)
        
        if 'error' not in trad_analysis:
            print(f"   Health Score: {trad_analysis['tradition_health_score']:.3f}")
            print(f"   Universal Law: {trad_analysis['universal_law_alignment']:.3f}")
            print(f"   Recovery Potential: {trad_analysis['recovery_potential']:.3f}")
            print(f"   Inversion Status: {trad_analysis['inversion_status']}")
    
    # Module Metrics
    print("\n" + "="*80)
    print("๐Ÿ“ˆ MODULE METRICS")
    print("="*80)
    
    metrics = module.get_module_metrics()
    for key, value in metrics.items():
        print(f"{key}: {value}")
    
    return results, metrics

# =============================================================================
# MAIN EXECUTION
# =============================================================================

async def main():
    """
    Main execution function for Ancient Religions Module
    """
    try:
        print("๐Ÿš€ INITIALIZING ANCIENT RELIGIONS MODULE...")
        print("Universal Law Primacy + Inversion Detection + Quantum Truth Verification")
        print()
        
        results, metrics = await demonstrate_ancient_religions_module()
        
        print("\n" + "="*80)
        print("โœ… ANCIENT RELIGIONS MODULE EXECUTION COMPLETE")
        print("="*80)
        print(f"Analyzed {len(results)} ancient teachings")
        print(f"Module performance: {metrics['analyses_performed']} analyses completed")
        print(f"Average truth score across all analyses: {metrics['average_truth_score']:.3f}")
        print("\n๐ŸŒŒ ANCIENT WISDOM RECOVERY SYSTEM: OPERATIONAL")
        
    except Exception as e:
        print(f"โŒ Execution failed: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=[
            logging.StreamHandler(),
            logging.FileHandler('ancient_religions_module.log')
        ]
    )
    
    # Run the ancient religions module
    asyncio.run(main())