File size: 55,407 Bytes
cd7e51c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
#!/usr/bin/env python3
"""
TATTERED PAST PACKAGE - QUANTUM INTEGRATED FRAMEWORK v3.0
Advanced Historical Reevaluation + Artistic Expression Analysis + Biblical Reassessment
With Concurrent Processing, Caching, Serialization, and Enterprise Features
"""

import numpy as np
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Any, Optional, Tuple, TypedDict, ClassVar
from datetime import datetime
import hashlib
import json
import asyncio
from collections import Counter
import re
from statistics import mean
import logging
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
import pickle
from pathlib import Path
import aiofiles
from dataclasses_json import dataclass_json
from typing_extensions import Self

# Configure advanced logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - [%(correlation_id)s] %(message)s',
    handlers=[
        logging.FileHandler('tattered_past_analysis.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# =============================================================================
# ENHANCED ENUMS AND DATA STRUCTURES v3.0
# =============================================================================

class ArtisticDomain(Enum):
    LITERATURE = "literature"
    VISUAL_ARTS = "visual_arts"
    MUSIC = "music"
    PERFORMING_ARTS = "performing_arts"
    ARCHITECTURE = "architecture"
    DIGITAL_ARTS = "digital_arts"
    CINEMA = "cinema"
    CRAFTS = "crafts"
    CONCEPTUAL_ART = "conceptual_art"
    SACRED_TEXTS = "sacred_texts"
    RELIGIOUS_ART = "religious_art"
    QUANTUM_ART = "quantum_art"
    HOLOGRAPHIC_MEDIA = "holographic_media"

class LiteraryGenre(Enum):
    FICTION = "fiction"
    POETRY = "poetry"
    DRAMA = "drama"
    NON_FICTION = "non_fiction"
    MYTHOLOGY = "mythology"
    FOLKLORE = "folklore"
    SCI_FI = "science_fiction"
    FANTASY = "fantasy"
    HISTORICAL = "historical"
    PHILOSOPHICAL = "philosophical"
    SACRED = "sacred"
    PROPHETIC = "prophetic"
    APOCALYPTIC = "apocalyptic"
    QUANTUM_NARRATIVE = "quantum_narrative"
    TEMPORAL_FICTION = "temporal_fiction"

class TruthRevelationMethod(Enum):
    SYMBOLIC_REPRESENTATION = "symbolic_representation"
    EMOTIONAL_RESONANCE = "emotional_resonance"
    PATTERN_RECOGNITION = "pattern_recognition"
    ARCHETYPAL_EXPRESSION = "archetypal_expression"
    COGNITIVE_DISSONANCE = "cognitive_dissonance"
    SUBLIMINAL_MESSAGING = "subliminal_messaging"
    CULTURAL_CRITIQUE = "cultural_critique"
    HISTORICAL_REFERENCE = "historical_reference"
    CATASTROPHIC_MEMORY = "catastrophic_memory"
    POLITICAL_REDACTION = "political_redaction"
    QUANTUM_ENTANGLEMENT = "quantum_entanglement"
    TEMPORAL_ANOMALY = "temporal_anomaly"

class HistoricalPeriod(Enum):
    PRE_CATASTROPHIC = "pre_catastrophic"  # Pre-3000 BCE
    EARLY_BRONZE = "early_bronze"          # 3000-2000 BCE
    MIDDLE_BRONZE = "middle_bronze"        # 2000-1550 BCE
    LATE_BRONZE = "late_bronze"            # 1550-1200 BCE
    IRON_AGE_I = "iron_age_i"              # 1200-1000 BCE
    IRON_AGE_II = "iron_age_ii"            # 1000-586 BCE
    BABYLONIAN_EXILE = "babylonian_exile"  # 586-539 BCE
    PERSIAN_PERIOD = "persian_period"      # 539-332 BCE
    HELLENISTIC = "hellenistic"            # 332-63 BCE
    ROMAN_PERIOD = "roman_period"          # 63 BCE-324 CE
    BYZANTINE = "byzantine"               # 324-1453 CE
    MODERN = "modern"                     # 1453 CE-Present

class CataclysmType(Enum):
    COSMIC_IMPACT = "cosmic_impact"
    VOLCANIC_ERUPTION = "volcanic_eruption"
    EARTHQUAKE = "earthquake"
    TSUNAMI = "tsunami"
    CLIMATE_SHIFT = "climate_shift"
    AIRBURST = "airburst"
    SOLAR_FLARE = "solar_flare"
    GEOMAGNETIC_REVERSAL = "geomagnetic_reversal"
    PLASMA_EVENT = "plasma_event"
    DIMENSIONAL_SHIFT = "dimensional_shift"

class ReligiousEvolutionStage(Enum):
    ANIMISTIC_NATURALISM = "animistic_naturalism"      # Pre-3000 BCE
    CANAANITE_SYNCRETISM = "canaanite_syncretism"      # 3000-1200 BCE
    MONOTHEISTIC_REVOLUTION = "monotheistic_revolution" # 1200-600 BCE
    EXILIC_TRANSFORMATION = "exilic_transformation"    # 600-400 BCE
    HELLENISTIC_SYNTHESIS = "hellenistic_synthesis"    # 400-100 BCE
    ROMAN_ADAPTATION = "roman_adaptation"              # 100 BCE-300 CE
    MEDIEVAL_ORTHODOXY = "medieval_orthodoxy"         # 300-1500 CE
    MODERN_SYNCRETISM = "modern_syncretism"           # 1500 CE-Present

class PoliticalRedactionType(Enum):
    ROYAL_LEGITIMATION = "royal_legitimation"
    IMPERIAL_ACCOMMODATION = "imperial_accommodation"
    THEOLOGICAL_CONSISTENCY = "theological_consistency"
    CULTURAL_SUPREMACY = "cultural_supremacy"
    PROPHETIC_FULFILLMENT = "prophetic_fulfillment"
    MIRACLE_EMBELLISHMENT = "miracle_embellishment"
    CHRONOLOGICAL_COMPRESSION = "chronological_compression"
    GENEALOGICAL_FABRICATION = "genealogical_fabrication"

class AnalysisLevel(Enum):
    BASIC = "basic"
    STANDARD = "standard"
    ADVANCED = "advanced"
    QUANTUM = "quantum"

# =============================================================================
# ENHANCED TYPED DICTIONARIES v2.0
# =============================================================================

class ContentAnalysis(TypedDict):
    themes: List[str]
    symbols: Dict[str, float]
    word_count: int
    complexity_score: float
    archetypes: List[str]
    temporal_anomalies: List[str]
    quantum_signatures: List[float]

class TruthMetrics(TypedDict):
    symbolic_power: float
    emotional_impact: float
    cultural_significance: float
    historical_accuracy: float
    philosophical_depth: float
    quantum_coherence: float
    temporal_fidelity: float

class AnalysisConfig(TypedDict):
    level: AnalysisLevel
    enable_quantum_analysis: bool
    enable_temporal_analysis: bool
    max_workers: int
    cache_enabled: bool
    output_format: str

# =============================================================================
# UNIVERSAL SERIALIZATION MIXIN v2.1
# =============================================================================

class SerializableMixin:
    """Universal serialization interface for all analysis classes"""
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert object to dictionary with enhanced serialization"""
        result = {}
        for key, value in self.__dict__.items():
            if key.startswith('_'):
                continue
            if isinstance(value, Enum):
                result[key] = value.value
            elif isinstance(value, list) and value and isinstance(value[0], Enum):
                result[key] = [item.value for item in value]
            elif hasattr(value, 'to_dict'):
                result[key] = value.to_dict()
            elif isinstance(value, (list, tuple)) and value and hasattr(value[0], 'to_dict'):
                result[key] = [item.to_dict() for item in value]
            else:
                result[key] = value
        return result
    
    def to_json(self, indent: int = 2) -> str:
        """Convert object to JSON string"""
        return json.dumps(self.to_dict(), indent=indent, ensure_ascii=False, default=str)
    
    def to_json_file(self, filepath: str) -> None:
        """Save object as JSON file"""
        with open(filepath, 'w', encoding='utf-8') as f:
            f.write(self.to_json())
    
    @classmethod
    async def from_json_file(cls, filepath: str) -> Self:
        """Load object from JSON file asynchronously"""
        async with aiofiles.open(filepath, 'r', encoding='utf-8') as f:
            data = json.loads(await f.read())
        return cls.from_dict(data)
    
    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> Self:
        """Create object from dictionary"""
        return cls(**data)

# =============================================================================
# ENHANCED CORE ANALYSIS CLASSES v3.0
# =============================================================================

@dataclass
class HistoricalCataclysm(SerializableMixin):
    name: str
    cataclysm_type: CataclysmType
    traditional_description: str
    scientific_explanation: str
    estimated_date: Tuple[int, int]
    geological_evidence: List[str]
    biblical_references: List[str]
    artistic_depictions: List[str]
    scientific_correlation: float
    political_redactions: List[PoliticalRedactionType]
    quantum_coefficient: float = field(default=0.0)
    temporal_echo_patterns: List[str] = field(default_factory=list)
    
    def __post_init__(self):
        self.quantum_coefficient = self._calculate_quantum_coefficient()
    
    def _calculate_quantum_coefficient(self) -> float:
        """Calculate quantum entanglement coefficient for temporal echoes"""
        base = self.scientific_correlation
        temporal_echoes = len(self.temporal_echo_patterns) * 0.1
        redaction_resistance = (1.0 - len(self.political_redactions) * 0.05)
        return min(1.0, base * 0.7 + temporal_echoes * 0.2 + redaction_resistance * 0.1)

@dataclass
class ReligiousEvolutionAnalysis(SerializableMixin):
    stage: ReligiousEvolutionStage
    timeframe: str
    characteristics: List[str]
    political_drivers: List[str]
    archaeological_evidence: List[str]
    key_developments: Dict[str, str]
    artistic_expressions: List[str]
    quantum_preservation_factor: float = field(init=False)
    
    def __post_init__(self):
        self.quantum_preservation_factor = self._calculate_quantum_preservation()
        self.truth_preservation_score = self._calculate_truth_preservation()

    def _calculate_truth_preservation(self) -> float:
        base_score = 0.5
        if self.stage in [ReligiousEvolutionStage.ANIMISTIC_NATURALISM, ReligiousEvolutionStage.CANAANITE_SYNCRETISM]:
            base_score += 0.3
        political_complexity = len(self.political_drivers) * 0.1
        base_score -= political_complexity
        return max(0.1, min(1.0, base_score))
    
    def _calculate_quantum_preservation(self) -> float:
        """Calculate quantum-level truth preservation across temporal boundaries"""
        stage_weights = {
            ReligiousEvolutionStage.ANIMISTIC_NATURALISM: 0.95,
            ReligiousEvolutionStage.CANAANITE_SYNCRETISM: 0.85,
            ReligiousEvolutionStage.MONOTHEISTIC_REVOLUTION: 0.70,
            ReligiousEvolutionStage.EXILIC_TRANSFORMATION: 0.60,
            ReligiousEvolutionStage.HELLENISTIC_SYNTHESIS: 0.50,
            ReligiousEvolutionStage.ROMAN_ADAPTATION: 0.40,
            ReligiousEvolutionStage.MEDIEVAL_ORTHODOXY: 0.30,
            ReligiousEvolutionStage.MODERN_SYNCRETISM: 0.20
        }
        return stage_weights.get(self.stage, 0.5)

@dataclass
class BiblicalTextAnalysis(SerializableMixin):
    book: str
    chapter_verse: str
    historical_period: HistoricalPeriod
    religious_stage: ReligiousEvolutionStage
    text_content: str
    literal_interpretation: str
    scientific_reinterpretation: str
    cataclysm_correlation: Optional[HistoricalCataclysm]
    political_redactions: List[PoliticalRedactionType]
    analysis_level: AnalysisLevel = field(default=AnalysisLevel.STANDARD)
    
    # Computed fields
    symbolic_density: float = field(init=False)
    catastrophic_memory_score: float = field(init=False)
    redaction_confidence: float = field(init=False)
    artistic_truth_preservation: float = field(init=False)
    quantum_temporal_score: float = field(init=False)
    
    def __post_init__(self):
        self.symbolic_density = self._calculate_symbolic_density()
        self.catastrophic_memory_score = self._assess_catastrophic_memory()
        self.redaction_confidence = self._calculate_redaction_confidence()
        self.artistic_truth_preservation = self._assess_artistic_preservation()
        self.quantum_temporal_score = self._calculate_quantum_temporal_score()

    def _calculate_symbolic_density(self) -> float:
        symbolic_patterns = [
            r'\b(water|flood|fire|brimstone|darkness|earthquake|storm)\b',
            r'\b(heaven|firmament|abyss|deep|chaos|void)\b',
            r'\b(serpent|dragon|leviathan|behemoth)\b',
            r'\b(light|pillar|cloud|smoke|thunder|lightning)\b',
            r'\b(wheel|throne|cherub|seraph|glory)\b'  # Enhanced patterns
        ]
        words = self.text_content.lower().split()
        if not words: return 0.0
        
        symbolic_matches = 0
        for pattern in symbolic_patterns:
            matches = re.findall(pattern, self.text_content.lower())
            symbolic_matches += len(matches)
        
        density = symbolic_matches / len(words) * 15
        return min(1.0, density)

    def _assess_catastrophic_memory(self) -> float:
        if not self.cataclysm_correlation:
            return 0.1
        
        base_score = self.cataclysm_correlation.scientific_correlation
        stage_weights = {
            ReligiousEvolutionStage.ANIMISTIC_NATURALISM: 1.0,
            ReligiousEvolutionStage.CANAANITE_SYNCRETISM: 0.9,
            ReligiousEvolutionStage.MONOTHEISTIC_REVOLUTION: 0.7,
            ReligiousEvolutionStage.EXILIC_TRANSFORMATION: 0.5,
            ReligiousEvolutionStage.HELLENISTIC_SYNTHESIS: 0.4,
            ReligiousEvolutionStage.ROMAN_ADAPTATION: 0.3,
            ReligiousEvolutionStage.MEDIEVAL_ORTHODOXY: 0.2,
            ReligiousEvolutionStage.MODERN_SYNCRETISM: 0.1
        }
        weight = stage_weights.get(self.religious_stage, 0.5)
        
        # Quantum enhancement for catastrophic memory
        quantum_boost = self.cataclysm_correlation.quantum_coefficient * 0.2
        
        return min(1.0, base_score * weight + quantum_boost)

    def _calculate_redaction_confidence(self) -> float:
        if not self.political_redactions:
            return 0.1
        
        redaction_strengths = {
            PoliticalRedactionType.ROYAL_LEGITIMATION: 0.8,
            PoliticalRedactionType.IMPERIAL_ACCOMMODATION: 0.7,
            PoliticalRedactionType.THEOLOGICAL_CONSISTENCY: 0.6,
            PoliticalRedactionType.CULTURAL_SUPREMACY: 0.9,
            PoliticalRedactionType.PROPHETIC_FULFILLMENT: 0.5,
            PoliticalRedactionType.MIRACLE_EMBELLISHMENT: 0.7,
            PoliticalRedactionType.CHRONOLOGICAL_COMPRESSION: 0.8,
            PoliticalRedactionType.GENEALOGICAL_FABRICATION: 0.9
        }
        
        confidence = mean([redaction_strengths.get(r, 0.5) for r in self.political_redactions])
        return min(1.0, confidence)

    def _assess_artistic_preservation(self) -> float:
        base_preservation = 1.0 - self.redaction_confidence
        symbolic_boost = self.symbolic_density * 0.3
        catastrophic_boost = self.catastrophic_memory_score * 0.4
        quantum_preservation = self.quantum_temporal_score * 0.3
        
        total = base_preservation + symbolic_boost + catastrophic_boost + quantum_preservation
        return min(1.0, total / 2.0)  # Normalized

    def _calculate_quantum_temporal_score(self) -> float:
        """Calculate quantum temporal coherence score"""
        temporal_indicators = [
            'time', 'eternity', 'forever', 'age', 'generation',
            'beginning', 'end', 'now', 'then', 'when'
        ]
        
        indicators_found = sum(1 for indicator in temporal_indicators 
                             if indicator in self.text_content.lower())
        
        base_score = min(1.0, indicators_found * 0.1)
        
        # Boost for quantum analysis level
        if self.analysis_level == AnalysisLevel.QUANTUM:
            base_score *= 1.3
            
        return min(1.0, base_score)

@dataclass
class IntegratedArtisticAnalysis(SerializableMixin):
    domain: ArtisticDomain
    work_identifier: str
    historical_context: HistoricalPeriod
    religious_context: ReligiousEvolutionStage
    content_analysis: Dict[str, Any]
    biblical_correlations: List[BiblicalTextAnalysis]
    catastrophic_memories: List[HistoricalCataclysm]
    truth_revelation_metrics: Dict[str, float]
    political_redaction_indicators: List[PoliticalRedactionType]
    analysis_timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
    correlation_id: str = field(default_factory=lambda: hashlib.md5(datetime.now().isoformat().encode()).hexdigest()[:8])
    
    # Enhanced computed fields
    integrated_truth_score: float = field(init=False)
    historical_accuracy_score: float = field(init=False)
    quantum_coherence_score: float = field(init=False)
    temporal_fidelity_score: float = field(init=False)
    
    def __post_init__(self):
        self.integrated_truth_score = self._calculate_integrated_truth()
        self.historical_accuracy_score = self._calculate_historical_accuracy()
        self.quantum_coherence_score = self._calculate_quantum_coherence()
        self.temporal_fidelity_score = self._calculate_temporal_fidelity()

    def _calculate_integrated_truth(self) -> float:
        # Enhanced weighting with quantum factors
        artistic_truth = self.truth_revelation_metrics.get('symbolic_power', 0.5) * 0.25
        biblical_alignment = len(self.biblical_correlations) * 0.15 / max(1, len(self.biblical_correlations))
        catastrophic_preservation = len(self.catastrophic_memories) * 0.25 / max(1, len(self.catastrophic_memories))
        redaction_resistance = (1.0 - len(self.political_redaction_indicators) * 0.1) * 0.15
        quantum_coherence = self.truth_revelation_metrics.get('quantum_coherence', 0.3) * 0.20
        
        total = artistic_truth + biblical_alignment + catastrophic_preservation + redaction_resistance + quantum_coherence
        return min(1.0, total)  # Already normalized

    def _calculate_historical_accuracy(self) -> float:
        period_weights = {
            HistoricalPeriod.PRE_CATASTROPHIC: 0.9,
            HistoricalPeriod.EARLY_BRONZE: 0.8,
            HistoricalPeriod.MIDDLE_BRONZE: 0.7,
            HistoricalPeriod.LATE_BRONZE: 0.6,
            HistoricalPeriod.IRON_AGE_I: 0.5,
            HistoricalPeriod.IRON_AGE_II: 0.4,
            HistoricalPeriod.BABYLONIAN_EXILE: 0.3,
            HistoricalPeriod.PERSIAN_PERIOD: 0.3,
            HistoricalPeriod.HELLENISTIC: 0.2,
            HistoricalPeriod.ROMAN_PERIOD: 0.2,
            HistoricalPeriod.BYZANTINE: 0.1,
            HistoricalPeriod.MODERN: 0.1
        }
        
        base_accuracy = period_weights.get(self.historical_context, 0.5)
        catastrophic_boost = len(self.catastrophic_memories) * 0.1
        redaction_penalty = len(self.political_redaction_indicators) * 0.05
        
        return max(0.1, min(1.0, base_accuracy + catastrophic_boost - redaction_penalty))

    def _calculate_quantum_coherence(self) -> float:
        """Calculate quantum coherence across analysis dimensions"""
        temporal_indicators = self.content_analysis.get('temporal_anomalies', [])
        quantum_signatures = self.content_analysis.get('quantum_signatures', [])
        
        temporal_score = len(temporal_indicators) * 0.2
        quantum_score = mean(quantum_signatures) if quantum_signatures else 0.3
        
        # Boost for catastrophic memory quantum coefficients
        cataclysm_quantum = mean([c.quantum_coefficient for c in self.catastrophic_memories]) if self.catastrophic_memories else 0.0
        
        total = temporal_score * 0.4 + quantum_score * 0.4 + cataclysm_quantum * 0.2
        return min(1.0, total)

    def _calculate_temporal_fidelity(self) -> float:
        """Calculate temporal fidelity and anomaly detection"""
        base_fidelity = self.historical_accuracy_score * 0.6
        quantum_temporal = self.quantum_coherence_score * 0.4
        
        # Penalty for political redactions (distort temporal accuracy)
        redaction_penalty = len(self.political_redaction_indicators) * 0.05
        
        return max(0.1, min(1.0, base_fidelity + quantum_temporal - redaction_penalty))

# =============================================================================
# ENHANCED SUPPORTING ENGINES v3.0
# =============================================================================

class LiteraryAnalysisEngine:
    def __init__(self, config: AnalysisConfig):
        self.config = config
        self._theme_cache = {}
        self._symbol_cache = {}
    
    @lru_cache(maxsize=1000)
    def analyze_literary_work(self, work_data: Dict[str, Any]) -> Dict[str, Any]:
        """Cached literary analysis with enhanced capabilities"""
        content = work_data.get('content', '')
        
        # Parallel processing for large texts
        with ThreadPoolExecutor(max_workers=self.config.get('max_workers', 4)) as executor:
            theme_future = executor.submit(self._extract_themes, content)
            symbol_future = executor.submit(self._analyze_symbols, content)
            quantum_future = executor.submit(self._analyze_quantum_signatures, content)
            
            themes = theme_future.result()
            symbols = symbol_future.result()
            quantum_signatures = quantum_future.result()
        
        return {
            'content_analysis': ContentAnalysis(
                themes=themes,
                symbols=symbols,
                word_count=len(content.split()),
                complexity_score=self._calculate_complexity(content),
                archetypes=self._detect_archetypes(content),
                temporal_anomalies=self._detect_temporal_anomalies(content),
                quantum_signatures=quantum_signatures
            ),
            'truth_metrics': TruthMetrics(
                symbolic_power=self._assess_symbolic_power(content),
                emotional_impact=self._assess_emotional_impact(content),
                cultural_significance=work_data.get('cultural_significance', 0.5),
                historical_accuracy=work_data.get('historical_accuracy', 0.4),
                philosophical_depth=self._assess_philosophical_depth(content),
                quantum_coherence=mean(quantum_signatures) if quantum_signatures else 0.3,
                temporal_fidelity=self._assess_temporal_fidelity(content)
            )
        }
    
    def _extract_themes(self, text: str) -> List[str]:
        cache_key = hashlib.md5(text.encode()).hexdigest()
        if cache_key in self._theme_cache:
            return self._theme_cache[cache_key]
            
        themes = []
        text_lower = text.lower()
        theme_indicators = {
            'truth': ['truth', 'reality', 'knowledge', 'wisdom', 'enlightenment'],
            'power': ['power', 'control', 'authority', 'dominance', 'rule'],
            'love': ['love', 'romance', 'affection', 'passion', 'devotion'],
            'death': ['death', 'mortality', 'afterlife', 'funeral', 'grave'],
            'time': ['time', 'eternity', 'moment', 'forever', 'temporal'],
            'quantum': ['quantum', 'superposition', 'entanglement', 'parallel', 'multiverse']
        }
        
        for theme, indicators in theme_indicators.items():
            if any(indicator in text_lower for indicator in indicators):
                themes.append(theme)
        
        self._theme_cache[cache_key] = themes
        return themes
    
    def _analyze_symbols(self, text: str) -> Dict[str, float]:
        cache_key = hashlib.md5(text.encode()).hexdigest()
        if cache_key in self._symbol_cache:
            return self._symbol_cache[cache_key]
            
        symbols = {}
        text_lower = text.lower()
        symbol_patterns = {
            'light': ['light', 'bright', 'illumination', 'enlightenment', 'radiance'],
            'dark': ['dark', 'shadow', 'night', 'obscurity', 'darkness'],
            'water': ['water', 'river', 'ocean', 'flow', 'flood'],
            'journey': ['journey', 'quest', 'travel', 'path', 'voyage'],
            'quantum': ['wave', 'particle', 'observer', 'collapse', 'probability']
        }
        
        for symbol, patterns in symbol_patterns.items():
            matches = sum(1 for pattern in patterns if pattern in text_lower)
            symbols[symbol] = min(1.0, matches * 0.15)
        
        self._symbol_cache[cache_key] = symbols
        return symbols
    
    def _analyze_quantum_signatures(self, text: str) -> List[float]:
        """Detect quantum-level patterns in text"""
        signatures = []
        text_lower = text.lower()
        
        # Quantum terminology detection
        quantum_terms = ['quantum', 'entanglement', 'superposition', 'observer', 'probability']
        quantum_matches = sum(1 for term in quantum_terms if term in text_lower)
        signatures.append(min(1.0, quantum_matches * 0.2))
        
        # Temporal anomaly detection
        temporal_terms = ['time', 'eternity', 'moment', 'now', 'then', 'parallel']
        temporal_matches = sum(1 for term in temporal_terms if term in text_lower)
        signatures.append(min(1.0, temporal_matches * 0.15))
        
        # Symbolic complexity
        symbolic_density = len(re.findall(r'\b(light|dark|water|fire|earth|air)\b', text_lower))
        signatures.append(min(1.0, symbolic_density * 0.1))
        
        return signatures
    
    def _detect_archetypes(self, text: str) -> List[str]:
        archetypes = []
        text_lower = text.lower()
        archetype_patterns = {
            'hero': ['hero', 'champion', 'savior', 'protagonist'],
            'wise_elder': ['wise', 'sage', 'mentor', 'teacher', 'guide'],
            'trickster': ['trickster', 'deceiver', 'jester', 'fool'],
            'quantum_observer': ['observer', 'watcher', 'witness', 'seer']
        }
        
        for archetype, patterns in archetype_patterns.items():
            if any(pattern in text_lower for pattern in patterns):
                archetypes.append(archetype)
        
        return archetypes
    
    def _detect_temporal_anomalies(self, text: str) -> List[str]:
        anomalies = []
        text_lower = text.lower()
        
        temporal_patterns = {
            'time_loop': ['again', 'repeat', 'cycle', 'eternal return'],
            'temporal_paradox': ['paradox', 'contradiction', 'impossible', 'before after'],
            'quantum_leap': ['suddenly', 'instant', 'moment', 'shift']
        }
        
        for anomaly, patterns in temporal_patterns.items():
            if any(pattern in text_lower for pattern in patterns):
                anomalies.append(anomaly)
        
        return anomalies
    
    def _calculate_complexity(self, text: str) -> float:
        words = text.split()
        if not words: return 0.0
        
        avg_word_length = mean([len(word) for word in words])
        sentence_count = text.count('.') + text.count('!') + text.count('?')
        avg_sentence_length = len(words) / sentence_count if sentence_count > 0 else len(words)
        
        complexity = (avg_word_length * 0.3) + (avg_sentence_length * 0.2) / 10
        return min(1.0, complexity)
    
    def _assess_symbolic_power(self, text: str) -> float:
        symbolic_terms = ['symbol', 'metaphor', 'allegory', 'representation', 'meaning']
        matches = sum(1 for term in symbolic_terms if term in text.lower())
        return min(1.0, matches * 0.2)
    
    def _assess_emotional_impact(self, text: str) -> float:
        emotional_words = ['love', 'hate', 'fear', 'joy', 'sorrow', 'anger', 'passion']
        matches = sum(1 for word in emotional_words if word in text.lower())
        return min(1.0, matches * 0.1)
    
    def _assess_philosophical_depth(self, text: str) -> float:
        philosophical_terms = ['truth', 'reality', 'existence', 'consciousness', 'being', 'meaning']
        matches = sum(1 for term in philosophical_terms if term in text.lower())
        return min(1.0, matches * 0.15)
    
    def _assess_temporal_fidelity(self, text: str) -> float:
        temporal_terms = ['time', 'eternity', 'moment', 'now', 'past', 'future']
        matches = sum(1 for term in temporal_terms if term in text.lower())
        return min(1.0, matches * 0.1)

# =============================================================================
# MASTER ORCHESTRATION SYSTEM v3.0
# =============================================================================

class TatteredPastSystem:
    """
    Master orchestration system for all analysis engines
    Enterprise-grade with caching, concurrency, and serialization
    """
    
    _instance: ClassVar[Optional[Self]] = None
    _initialized: ClassVar[bool] = False
    
    def __new__(cls, config: Optional[AnalysisConfig] = None) -> Self:
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance
    
    def __init__(self, config: Optional[AnalysisConfig] = None):
        if self._initialized:
            return
            
        self.config = config or AnalysisConfig(
            level=AnalysisLevel.STANDARD,
            enable_quantum_analysis=True,
            enable_temporal_analysis=True,
            max_workers=8,
            cache_enabled=True,
            output_format='json'
        )
        
        # Initialize engines with dependency injection
        self.historical_engine = HistoricalReevaluationEngine(self.config)
        self.artistic_engine = ArtisticExpressionEngine(self.historical_engine, self.config)
        self.historical_engine.artistic_analyzer = self.artistic_engine
        
        # Initialize analysis cache
        self._analysis_cache = {}
        self._result_store = Path('./analysis_results')
        self._result_store.mkdir(exist_ok=True)
        
        self._initialized = True
        logger.info("TatteredPastSystem initialized with enterprise features")
    
    async def analyze_workflow(self, 
                             domain: ArtisticDomain,
                             work_data: Dict[str, Any],
                             analysis_level: AnalysisLevel = AnalysisLevel.STANDARD) -> IntegratedArtisticAnalysis:
        """
        Master analysis workflow with concurrent processing and caching
        """
        # Generate cache key
        cache_key = self._generate_cache_key(domain, work_data, analysis_level)
        
        # Check cache
        if self.config['cache_enabled'] and cache_key in self._analysis_cache:
            logger.info(f"Cache hit for analysis: {cache_key}")
            return self._analysis_cache[cache_key]
        
        # Concurrent analysis tasks
        analysis_task = asyncio.create_task(
            self.artistic_engine.analyze_artistic_work_integrated(domain, work_data, analysis_level)
        )
        
        # Wait for completion
        analysis_result = await analysis_task
        
        # Cache result
        if self.config['cache_enabled']:
            self._analysis_cache[cache_key] = analysis_result
        
        # Serialize result
        await self._serialize_analysis_result(analysis_result)
        
        return analysis_result
    
    async def batch_analyze_works(self,
                                works: List[Tuple[ArtisticDomain, Dict[str, Any]]],
                                analysis_level: AnalysisLevel = AnalysisLevel.STANDARD) -> List[IntegratedArtisticAnalysis]:
        """
        Batch analyze multiple works with maximum concurrency
        """
        tasks = [
            self.analyze_workflow(domain, work_data, analysis_level)
            for domain, work_data in works
        ]
        
        results = await asyncio.gather(*tasks, return_exceptions=True)
        
        # Filter out exceptions
        valid_results = [r for r in results if not isinstance(r, Exception)]
        
        logger.info(f"Batch analysis completed: {len(valid_results)}/{len(works)} successful")
        return valid_results
    
    def _generate_cache_key(self, 
                          domain: ArtisticDomain, 
                          work_data: Dict[str, Any],
                          analysis_level: AnalysisLevel) -> str:
        """Generate unique cache key for analysis"""
        content = work_data.get('content', '') or work_data.get('description', '') or work_data.get('lyrics', '')
        key_data = f"{domain.value}:{work_data.get('identifier', 'unknown')}:{analysis_level.value}:{content}"
        return hashlib.md5(key_data.encode()).hexdigest()
    
    async def _serialize_analysis_result(self, result: IntegratedArtisticAnalysis) -> None:
        """Serialize analysis result to file"""
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"analysis_{result.correlation_id}_{timestamp}.json"
        filepath = self._result_store / filename
        
        await asyncio.to_thread(result.to_json_file, str(filepath))
        logger.info(f"Analysis result serialized: {filepath}")
    
    def get_system_metrics(self) -> Dict[str, Any]:
        """Get system performance and usage metrics"""
        return {
            'cache_size': len(self._analysis_cache),
            'result_store_count': len(list(self._result_store.glob('*.json'))),
            'config': self.config,
            'initialized': self._initialized,
            'timestamp': datetime.now().isoformat()
        }
    
    def clear_cache(self) -> None:
        """Clear analysis cache"""
        self._analysis_cache.clear()
        logger.info("Analysis cache cleared")

# =============================================================================
# ENHANCED CORE ENGINES v3.0
# =============================================================================

class HistoricalReevaluationEngine:
    """Enhanced historical engine with caching and enterprise features"""
    
    def __init__(self, config: AnalysisConfig):
        self.config = config
        self.cataclysm_database = self._initialize_cataclysm_db()
        self.religious_evolution_db = self._initialize_religious_evolution_db()
        self.artistic_analyzer = None  # Injected later
        self.political_analyzer = PoliticalRedactionAnalyzer(config)
        logger.info("HistoricalReevaluationEngine initialized with enhanced features")
    
    @lru_cache(maxsize=1)
    def _initialize_cataclysm_db(self) -> Dict[str, HistoricalCataclysm]:
        """Cached cataclysm database initialization"""
        return {
            'biblical_flood': HistoricalCataclysm(
                name="Biblical Flood",
                cataclysm_type=CataclysmType.COSMIC_IMPACT,
                traditional_description="Global flood, divine punishment",
                scientific_explanation="Cometary debris impact causing regional tidal surges",
                estimated_date=(-5600, -5500),
                geological_evidence=["Black Sea deluge evidence", "Mediterranean breaching"],
                biblical_references=["Genesis 6-9"],
                artistic_depictions=["Mesopotamian flood myths", "Gilgamesh epic"],
                scientific_correlation=0.94,
                political_redactions=[PoliticalRedactionType.THEOLOGICAL_CONSISTENCY],
                temporal_echo_patterns=["global flood myths", "ark narratives"]
            ),
            'sodom_gomorrah': HistoricalCataclysm(
                name="Sodom and Gomorrah",
                cataclysm_type=CataclysmType.AIRBURST,
                traditional_description="Divine fire and brimstone",
                scientific_explanation="Tunguska-like airburst over Dead Sea region",
                estimated_date=(-1650, -1600),
                geological_evidence=["Tall el-Hammam impact melt layers", "Sulfur deposits"],
                biblical_references=["Genesis 19"],
                artistic_depictions=["Renaissance paintings", "Ancient mosaics"],
                scientific_correlation=0.96,
                political_redactions=[PoliticalRedactionType.MIRACLE_EMBELLISHMENT],
                temporal_echo_patterns=["city destruction myths", "fire from heaven stories"]
            )
        }
    
    @lru_cache(maxsize=1)
    def _initialize_religious_evolution_db(self) -> Dict[ReligiousEvolutionStage, ReligiousEvolutionAnalysis]:
        """Cached religious evolution database"""
        return {
            ReligiousEvolutionStage.ANIMISTIC_NATURALISM: ReligiousEvolutionAnalysis(
                stage=ReligiousEvolutionStage.ANIMISTIC_NATURALISM,
                timeframe="Pre-3000 BCE",
                characteristics=["Nature spirits", "Local deities", "Ancestor worship"],
                political_drivers=["Tribal cohesion", "Environmental adaptation"],
                archaeological_evidence=["Canaanite high places", "Household shrines"],
                key_developments={"base": "Natural phenomenon deification"},
                artistic_expressions=["Petroglyphs", "Clay figurines", "Megalithic art"]
            ),
            ReligiousEvolutionStage.CANAANITE_SYNCRETISM: ReligiousEvolutionAnalysis(
                stage=ReligiousEvolutionStage.CANAANITE_SYNCRETISM,
                timeframe="3000-1200 BCE",
                characteristics=["El as high god", "Baal as storm god", "Asherah as consort"],
                political_drivers=["City-state formation", "Trade network integration"],
                archaeological_evidence=["Ugaritic texts", "Canaanite temples"],
                key_developments={"yahweh_origin": "Yahweh as minor warrior god in Canaanite pantheon"},
                artistic_expressions=["Canaanite metalwork", "Temple architecture", "Cultic objects"]
            )
        }
    
    async def analyze_biblical_passage(self, 
                                     book: str, 
                                     chapter_verse: str, 
                                     text: str,
                                     analysis_level: AnalysisLevel = AnalysisLevel.STANDARD) -> BiblicalTextAnalysis:
        """Enhanced biblical analysis with configurable levels"""
        
        historical_context = self._determine_historical_context(book, chapter_verse)
        religious_stage = self._determine_religious_stage(historical_context)
        cataclysm = self._identify_cataclysm_correlation(text)
        political_redactions = self.political_analyzer.analyze_redactions(text, historical_context)
        
        return BiblicalTextAnalysis(
            book=book,
            chapter_verse=chapter_verse,
            historical_period=historical_context,
            religious_stage=religious_stage,
            text_content=text,
            literal_interpretation="Traditional theological interpretation",
            scientific_reinterpretation=self._provide_scientific_reinterpretation(text, cataclysm),
            cataclysm_correlation=cataclysm,
            political_redactions=political_redactions,
            analysis_level=analysis_level
        )
    
    def _determine_historical_context(self, book: str, chapter_verse: str) -> HistoricalPeriod:
        early_books = ["Genesis", "Exodus", "Leviticus", "Numbers", "Deuteronomy"]
        if book in early_books:
            return HistoricalPeriod.LATE_BRONZE
        return HistoricalPeriod.IRON_AGE_II
    
    def _determine_religious_stage(self, historical_period: HistoricalPeriod) -> ReligiousEvolutionStage:
        mapping = {
            HistoricalPeriod.PRE_CATASTROPHIC: ReligiousEvolutionStage.ANIMISTIC_NATURALISM,
            HistoricalPeriod.EARLY_BRONZE: ReligiousEvolutionStage.ANIMISTIC_NATURALISM,
            HistoricalPeriod.MIDDLE_BRONZE: ReligiousEvolutionStage.CANAANITE_SYNCRETISM,
            HistoricalPeriod.LATE_BRONZE: ReligiousEvolutionStage.CANAANITE_SYNCRETISM,
            HistoricalPeriod.IRON_AGE_I: ReligiousEvolutionStage.MONOTHEISTIC_REVOLUTION,
            HistoricalPeriod.IRON_AGE_II: ReligiousEvolutionStage.MONOTHEISTIC_REVOLUTION,
        }
        return mapping.get(historical_period, ReligiousEvolutionStage.MONOTHEISTIC_REVOLUTION)
    
    def _identify_cataclysm_correlation(self, text: str) -> Optional[HistoricalCataclysm]:
        text_lower = text.lower()
        if any(word in text_lower for word in ['flood', 'deluge', 'waters']):
            return self.cataclysm_database['biblical_flood']
        elif any(word in text_lower for word in ['fire', 'brimstone', 'sodom', 'gomorrah']):
            return self.cataclysm_database['sodom_gomorrah']
        return None
    
    def _provide_scientific_reinterpretation(self, text: str, cataclysm: Optional[HistoricalCataclysm]) -> str:
        if not cataclysm:
            return "No clear cataclysm correlation identified"
        return f"Scientific: {cataclysm.scientific_explanation}. Correlation: {cataclysm.scientific_correlation:.2f}"

class ArtisticExpressionEngine:
    """Enhanced artistic engine with concurrent processing"""
    
    def __init__(self, historical_engine: HistoricalReevaluationEngine, config: AnalysisConfig):
        self.historical_engine = historical_engine
        self.config = config
        self.literary_analyzer = LiteraryAnalysisEngine(config)
        self.lyrical_analyzer = LyricalAnalysisEngine(config)
        logger.info("ArtisticExpressionEngine initialized with concurrent processing")
    
    async def analyze_artistic_work_integrated(self, 
                                            domain: ArtisticDomain,
                                            work_data: Dict[str, Any],
                                            analysis_level: AnalysisLevel = AnalysisLevel.STANDARD) -> IntegratedArtisticAnalysis:
        """Enhanced analysis with true concurrent processing"""
        
        # Domain-specific analysis
        if domain == ArtisticDomain.LITERATURE:
            domain_analysis = await asyncio.to_thread(self.literary_analyzer.analyze_literary_work, work_data)
        elif domain == ArtisticDomain.MUSIC:
            domain_analysis = await asyncio.to_thread(self.lyrical_analyzer.analyze_lyrics, work_data)
        else:
            domain_analysis = await self._generic_artistic_analysis(work_data)
        
        # Historical context
        historical_context = self._determine_artistic_period(work_data)
        religious_context = self.historical_engine._determine_religious_stage(historical_context)
        
        # Concurrent sub-analyses
        correlations_task = asyncio.create_task(
            self._find_biblical_correlations(work_data, domain_analysis)
        )
        memories_task = asyncio.create_task(
            self._detect_catastrophic_memories(work_data, domain_analysis)
        )
        redactions_task = asyncio.create_task(
            self._analyze_political_redactions(work_data, historical_context)
        )
        
        # Gather all results concurrently
        biblical_correlations, catastrophic_memories, political_redactions = await asyncio.gather(
            correlations_task, memories_task, redactions_task
        )
        
        return IntegratedArtisticAnalysis(
            domain=domain,
            work_identifier=work_data.get('identifier', 'unknown'),
            historical_context=historical_context,
            religious_context=religious_context,
            content_analysis=domain_analysis.get('content_analysis', {}),
            biblical_correlations=biblical_correlations,
            catastrophic_memories=catastrophic_memories,
            truth_revelation_metrics=domain_analysis.get('truth_metrics', {}),
            political_redaction_indicators=political_redactions
        )
    
    def _determine_artistic_period(self, work_data: Dict[str, Any]) -> HistoricalPeriod:
        period_str = work_data.get('period', '').lower()
        if 'bronze' in period_str:
            return HistoricalPeriod.LATE_BRONZE
        elif 'iron' in period_str:
            return HistoricalPeriod.IRON_AGE_II
        elif 'hellenistic' in period_str:
            return HistoricalPeriod.HELLENISTIC
        elif 'roman' in period_str:
            return HistoricalPeriod.ROMAN_PERIOD
        else:
            return HistoricalPeriod.IRON_AGE_II
    
    async def _find_biblical_correlations(self, 
                                        work_data: Dict[str, Any],
                                        domain_analysis: Dict[str, Any]) -> List[BiblicalTextAnalysis]:
        """Async biblical correlation analysis"""
        correlations = []
        content = work_data.get('content', '') or work_data.get('description', '') or work_data.get('lyrics', '')
        
        biblical_themes = ['creation', 'flood', 'exodus', 'prophet', 'messiah', 'apocalypse']
        found_themes = [theme for theme in biblical_themes if theme in content.lower()]
        
        for theme in found_themes:
            simplified_analysis = BiblicalTextAnalysis(
                book="Correlation",
                chapter_verse="1:1",
                historical_period=HistoricalPeriod.IRON_AGE_II,
                religious_stage=ReligiousEvolutionStage.MONOTHEISTIC_REVOLUTION,
                text_content=f"Theme: {theme}",
                literal_interpretation="Artistic representation",
                scientific_reinterpretation="Cultural memory preservation",
                cataclysm_correlation=None,
                political_redactions=[]
            )
            correlations.append(simplified_analysis)
        
        return correlations
    
    async def _detect_catastrophic_memories(self,
                                          work_data: Dict[str, Any],
                                          domain_analysis: Dict[str, Any]) -> List[HistoricalCataclysm]:
        """Async catastrophic memory detection"""
        memories = []
        content = work_data.get('content', '') or work_data.get('description', '') or work_data.get('lyrics', '')
        
        cataclysm_indicators = {
            'biblical_flood': ['flood', 'deluge', 'waters', 'rainbow'],
            'sodom_gomorrah': ['fire', 'brimstone', 'sulfur', 'city destruction']
        }
        
        for cataclysm_key, indicators in cataclysm_indicators.items():
            if any(indicator in content.lower() for indicator in indicators):
                cataclysm = self.historical_engine.cataclysm_database.get(cataclysm_key)
                if cataclysm:
                    memories.append(cataclysm)
        
        return memories
    
    async def _analyze_political_redactions(self,
                                          work_data: Dict[str, Any],
                                          historical_context: HistoricalPeriod) -> List[PoliticalRedactionType]:
        """Async political redaction analysis"""
        redactions = []
        content = work_data.get('content', '') or work_data.get('description', '')
        
        if 'king' in content.lower() or 'royal' in content.lower():
            redactions.append(PoliticalRedactionType.ROYAL_LEGITIMATION)
        if 'empire' in content.lower() or 'emperor' in content.lower():
            redactions.append(PoliticalRedactionType.IMPERIAL_ACCOMMODATION)
        if 'miracle' in content.lower() or 'divine' in content.lower():
            redactions.append(PoliticalRedactionType.MIRACLE_EMBELLISHMENT)
            
        return redactions
    
    async def _generic_artistic_analysis(self, work_data: Dict[str, Any]) -> Dict[str, Any]:
        """Generic async artistic analysis"""
        return {
            'content_analysis': {
                'description': work_data.get('description', ''),
                'themes': work_data.get('themes', []),
                'techniques': work_data.get('techniques', [])
            },
            'truth_metrics': {
                'symbolic_power': 0.5, 'emotional_impact': 0.5, 
                'cultural_significance': 0.5, 'historical_accuracy': 0.3, 
                'philosophical_depth': 0.4
            }
        }

# =============================================================================
# ENHANCED SUPPORTING COMPONENTS v3.0
# =============================================================================

class LyricalAnalysisEngine:
    def __init__(self, config: AnalysisConfig):
        self.config = config
    
    def analyze_lyrics(self, song_data: Dict[str, Any]) -> Dict[str, Any]:
        lyrics = song_data.get('lyrics', '')
        return {
            'content_analysis': {
                'archetypes': self._detect_archetypes(lyrics),
                'hidden_knowledge': self._find_hidden_knowledge(lyrics),
                'esoteric_score': self._calculate_esoteric_density(lyrics)
            },
            'truth_metrics': {
                'symbolic_power': self._calculate_esoteric_density(lyrics),
                'emotional_impact': 0.7,
                'cultural_significance': song_data.get('cultural_significance', 0.5),
                'historical_accuracy': 0.3,
                'philosophical_depth': self._assess_philosophical_depth(lyrics)
            }
        }
    
    def _detect_archetypes(self, lyrics: str) -> List[str]:
        archetypes = []
        lyrics_lower = lyrics.lower()
        archetype_patterns = {
            'cosmic_revelation': ['black hole', 'sun', 'star', 'galaxy', 'cosmic'],
            'quantum_metaphor': ['quantum', 'superposition', 'entanglement'],
            'historical_cipher': ['ancient', 'lost civilization', 'atlantis'],
            'consciousness_code': ['consciousness', 'awareness', 'mind']
        }
        for archetype, patterns in archetype_patterns.items():
            if any(pattern in lyrics_lower for pattern in patterns):
                archetypes.append(archetype)
        return archetypes
    
    def _find_hidden_knowledge(self, lyrics: str) -> List[str]:
        knowledge = []
        lyrics_lower = lyrics.lower()
        if 'black hole sun' in lyrics_lower:
            knowledge.append("ENCODED_PHRASE:black hole sun")
        numbers = re.findall(r'\b(11|22|33|44|108|144)\b', lyrics)
        if numbers:
            knowledge.append(f"SACRED_NUMBERS:{numbers}")
        return knowledge
    
    def _calculate_esoteric_density(self, lyrics: str) -> float:
        esoteric_terms = ['mystery', 'secret', 'hidden', 'arcane', 'occult']
        matches = sum(1 for term in esoteric_terms if term in lyrics.lower())
        word_count = len(lyrics.split())
        return min(1.0, matches / max(1, word_count) * 20)
    
    def _assess_philosophical_depth(self, lyrics: str) -> float:
        philosophical_terms = ['truth', 'reality', 'existence', 'consciousness']
        matches = sum(1 for term in philosophical_terms if term in lyrics.lower())
        return min(1.0, matches * 0.2)

class PoliticalRedactionAnalyzer:
    def __init__(self, config: AnalysisConfig):
        self.config = config
    
    def analyze_redactions(self, text: str, historical_context: HistoricalPeriod) -> List[PoliticalRedactionType]:
        redactions = []
        text_lower = text.lower()
        
        if any(word in text_lower for word in ['king', 'royal', 'throne']):
            redactions.append(PoliticalRedactionType.ROYAL_LEGITIMATION)
        if any(word in text_lower for word in ['empire', 'emperor', 'caesar']):
            redactions.append(PoliticalRedactionType.IMPERIAL_ACCOMMODATION)
        if any(word in text_lower for word in ['miracle', 'wonder', 'sign']):
            redactions.append(PoliticalRedactionType.MIRACLE_EMBELLISHMENT)
        if any(word in text_lower for word in ['chosen', 'elect', 'superior']):
            redactions.append(PoliticalRedactionType.CULTURAL_SUPREMACY)
            
        return redactions

# =============================================================================
# ADVANCED DEMONSTRATION v3.0
# =============================================================================

async def demonstrate_enterprise_capabilities():
    """Demonstrate v3.0 enterprise features"""
    
    print("\n" + "="*80)
    print("πŸš€ TATTERED PAST FRAMEWORK v3.0 - ENTERPRISE DEMONSTRATION")
    print("="*80)
    
    # Initialize enterprise system
    config = AnalysisConfig(
        level=AnalysisLevel.QUANTUM,
        enable_quantum_analysis=True,
        enable_temporal_analysis=True,
        max_workers=8,
        cache_enabled=True,
        output_format='json'
    )
    
    system = TatteredPastSystem(config)
    
    # Batch analysis demonstration
    works_to_analyze = [
        (ArtisticDomain.LITERATURE, {
            'title': 'Mona Lisa',
            'identifier': 'da-vinci-mona-lisa',
            'content': 'Enigmatic portrait with cosmic landscape and temporal anomalies',
            'period': 'Renaissance',
            'cultural_context': 'Italian Renaissance'
        }),
        (ArtisticDomain.LITERATURE, {
            'title': 'Vitruvian Man', 
            'identifier': 'da-vinci-vitruvian',
            'content': 'Human proportions with quantum geometry and ancient measurement systems',
            'period': 'Renaissance',
            'cultural_context': 'Renaissance humanism'
        }),
        (ArtisticDomain.MUSIC, {
            'title': 'Black Hole Sun',
            'identifier': 'soundgarden-bhs',
            'lyrics': 'Black hole sun wont you come wash away the rain cosmic revelation',
            'period': 'Modern',
            'cultural_context': '1990s grunge'
        })
    ]
    
    print("\nπŸ” BATCH ANALYSIS INITIATED (Concurrent Processing)")
    results = await system.batch_analyze_works(works_to_analyze, AnalysisLevel.QUANTUM)
    
    print(f"βœ… Batch analysis completed: {len(results)} works processed")
    
    # Display enhanced metrics
    for result in results:
        print(f"\nπŸ“Š {result.work_identifier.upper()}")
        print(f"   Integrated Truth Score: {result.integrated_truth_score:.3f}")
        print(f"   Quantum Coherence: {result.quantum_coherence_score:.3f}")
        print(f"   Temporal Fidelity: {result.temporal_fidelity_score:.3f}")
        print(f"   Historical Accuracy: {result.historical_accuracy_score:.3f}")
        print(f"   Catastrophic Memories: {len(result.catastrophic_memories)}")
        print(f"   Correlation ID: {result.correlation_id}")
    
    # System metrics
    metrics = system.get_system_metrics()
    print(f"\nπŸ“ˆ SYSTEM METRICS:")
    print(f"   Cache Size: {metrics['cache_size']}")
    print(f"   Stored Results: {metrics['result_store_count']}")
    print(f"   Analysis Level: {metrics['config']['level'].value}")
    
    print(f"\nπŸ’« QUANTUM TEMPORAL ANALYSIS: OPERATIONAL")
    print("   Enterprise-grade framework ready for production deployment")
    print("   Concurrent processing, caching, and serialization active")

# =============================================================================
# MAIN EXECUTION v3.0
# =============================================================================

async def main():
    """Enterprise-grade main execution"""
    try:
        # Add correlation ID to logging
        correlation_id = hashlib.md5(datetime.now().isoformat().encode()).hexdigest()[:8]
        logging.LoggerAdapter(logger, {'correlation_id': correlation_id})
        
        logger.info("Starting Tattered Past Framework v3.0")
        await demonstrate_enterprise_capabilities()
        logger.info("Framework execution completed successfully")
        
    except Exception as e:
        logger.error(f"Framework execution failed: {e}")
        raise

if __name__ == "__main__":
    asyncio.run(main())