File size: 31,788 Bytes
be4f5b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#!/usr/bin/env python3
"""
QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0
Integration of Logos Fields, Wave Interference Physics, and Cyclical Historical Analysis
Advanced Scientific Framework for Cosmic Pattern Recognition
"""

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Any, Callable
from enum import Enum
import asyncio
import logging
import math
from pathlib import Path
import json
import h5py
import zarr
from scipy import integrate, optimize, special, linalg, signal, fft, stats
import numba
from concurrent.futures import ProcessPoolExecutor
import multiprocessing as mp
import hashlib
from sklearn.metrics import mutual_info_score
from datetime import datetime

# Advanced scientific logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - [QH-UFT] %(message)s',
    handlers=[
        logging.FileHandler('quantum_historical_unified_field.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger("quantum_historical_unified_field")

@dataclass
class UnifiedFieldConfiguration:
    """Complete configuration for unified field computations"""
    spatial_dimensions: int = 4
    temporal_resolution: int = 1000
    field_resolution: Tuple[int, int] = (512, 512)
    quantum_cutoff: float = 1e-12
    cultural_coherence_threshold: float = 0.7
    historical_cycle_length: int = 140000
    renormalization_scheme: str = "dimensional_regularization"

@dataclass
class CosmicCyclePhase(Enum):
    """Enhanced cosmic cycle phases with quantum signatures"""
    POST_CATACLYSM_SURVIVAL = "post_cataclysm_survival"
    KNOWLEDGE_RECOVERY = "knowledge_recovery"  
    CIVILIZATION_REBUILD = "civilization_rebuild"
    DEFENSE_CONSTRUCTION = "defense_construction"
    CATASTROPHE_IMMINENCE = "catastrophe_imminence"
    QUANTUM_RESONANCE_PEAK = "quantum_resonance_peak"  # New phase

@dataclass
class QuantumHistoricalState:
    """Unified quantum-historical state representation"""
    field_tensor: torch.Tensor
    historical_phase: CosmicCyclePhase
    cultural_coherence: float
    wave_interference_pattern: np.ndarray
    temporal_correlation: float
    quantum_entanglement: float
    defense_preparedness: float
    
    def calculate_unified_potential(self) -> float:
        """Calculate unified field potential across all domains"""
        field_energy = torch.norm(self.field_tensor).item()
        phase_advantage = self._phase_advantage_factor()
        coherence_boost = self.cultural_coherence ** 2
        wave_resonance = np.max(np.abs(self.wave_interference_pattern))
        
        unified_potential = (field_energy * phase_advantage * 
                           coherence_boost * wave_resonance * 
                           self.defense_preparedness)
        
        return float(unified_potential)
    
    def _phase_advantage_factor(self) -> float:
        """Calculate phase-specific advantage factors"""
        phase_factors = {
            CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.3,
            CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.5,
            CosmicCyclePhase.CIVILIZATION_REBUILD: 0.7,
            CosmicCyclePhase.DEFENSE_CONSTRUCTION: 0.9,
            CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.2,
            CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5
        }
        return phase_factors.get(self.historical_phase, 0.7)

class AdvancedWaveInterferenceEngine:
    """Enhanced wave interference engine with quantum extensions"""
    
    def __init__(self, config: UnifiedFieldConfiguration):
        self.config = config
        self.fundamental_frequency = 1.0
        self.harmonic_ratios = self._generate_prime_harmonics()
        
    def _generate_prime_harmonics(self) -> List[float]:
        """Generate harmonic ratios based on prime number theory"""
        primes = [2, 3, 5, 7, 11, 13, 17, 19]
        return [1/p for p in primes]
    
    def compute_quantum_wave_interference(self, historical_phase: CosmicCyclePhase) -> Dict[str, Any]:
        """Compute quantum-enhanced wave interference patterns"""
        
        # Phase-dependent frequency selection
        phase_frequencies = self._get_phase_frequencies(historical_phase)
        
        # Generate quantum wave components
        wave_components = []
        for freq_ratio in phase_frequencies:
            component = self._generate_quantum_wave(freq_ratio)
            wave_components.append(component)
        
        # Quantum interference superposition
        interference_pattern = self._quantum_superposition(wave_components)
        
        # Calculate quantum coherence metrics
        coherence_metrics = self._calculate_quantum_coherence(interference_pattern, wave_components)
        
        return {
            'interference_pattern': interference_pattern,
            'wave_components': wave_components,
            'phase_frequencies': phase_frequencies,
            'quantum_coherence': coherence_metrics,
            'symbolic_emergence': self._detect_symbolic_patterns(interference_pattern)
        }
    
    def _generate_quantum_wave(self, frequency_ratio: float) -> np.ndarray:
        """Generate quantum wave with phase coherence"""
        x = np.linspace(0, 4 * np.pi, self.config.temporal_resolution)
        
        # Quantum wave function with complex phase
        quantum_phase = np.exp(1j * frequency_ratio * x)
        envelope = np.exp(-0.1 * x)  # Decaying envelope
        
        wave = np.real(quantum_phase * envelope)
        return wave
    
    def _quantum_superposition(self, wave_components: List[np.ndarray]) -> np.ndarray:
        """Apply quantum superposition principle to wave components"""
        if not wave_components:
            return np.zeros(self.config.temporal_resolution)
        
        # Weighted superposition based on harmonic significance
        weights = [1/(i+1) for i in range(len(wave_components))]
        total_weight = sum(weights)
        
        superposed = np.zeros_like(wave_components[0])
        for i, component in enumerate(wave_components):
            superposed += weights[i] * component
        
        return superposed / total_weight
    
    def _calculate_quantum_coherence(self, pattern: np.ndarray, components: List[np.ndarray]) -> Dict[str, float]:
        """Calculate quantum coherence metrics"""
        if len(components) < 2:
            return {'overall_coherence': 0.0, 'phase_stability': 0.0, 'quantum_entanglement': 0.0}
        
        # Phase coherence between components
        phase_coherences = []
        for i in range(len(components)):
            for j in range(i+1, len(components)):
                coherence = np.abs(np.corrcoef(components[i], components[j])[0,1])
                phase_coherences.append(coherence)
        
        # Pattern self-similarity (quantum entanglement analog)
        pattern_fft = fft.fft(pattern)
        spectral_coherence = np.mean(np.abs(pattern_fft)) / (np.std(np.abs(pattern_fft)) + 1e-12)
        
        return {
            'overall_coherence': float(np.mean(phase_coherences)),
            'phase_stability': float(np.std(phase_coherences)),
            'quantum_entanglement': float(spectral_coherence),
            'component_correlation': float(np.mean(phase_coherences))
        }
    
    def _detect_symbolic_patterns(self, pattern: np.ndarray) -> Dict[str, Any]:
        """Detect emergent symbolic patterns in wave interference"""
        # Find zero crossings (yin-yang dots analog)
        zero_crossings = np.where(np.diff(np.signbit(pattern)))[0]
        
        # Detect periodic structures
        autocorrelation = signal.correlate(pattern, pattern, mode='full')
        autocorrelation = autocorrelation[len(autocorrelation)//2:]
        
        # Find peaks in autocorrelation (periodic patterns)
        peaks, properties = signal.find_peaks(autocorrelation[:100], height=0.1)
        
        return {
            'zero_crossings': len(zero_crossings),
            'periodic_structures': len(peaks),
            'pattern_complexity': float(np.std(pattern) / (np.mean(np.abs(pattern)) + 1e-12)),
            'symbolic_confidence': min(0.95, len(zero_crossings) * 0.1 + len(peaks) * 0.05)
        }

class EnhancedLogosFieldEngine:
    """Enhanced Logos field engine with historical integration"""
    
    def __init__(self, config: UnifiedFieldConfiguration):
        self.config = config
        self.field_cache = {}
        self.gradient_cache = {}
        self.EPSILON = config.quantum_cutoff
        
        # Enhanced cultural parameters
        self.cultural_archetypes = {
            'established': {'stability': 0.9, 'innovation': 0.3, 'resilience': 0.8},
            'emergent': {'stability': 0.4, 'innovation': 0.9, 'resilience': 0.6},
            'transitional': {'stability': 0.7, 'innovation': 0.6, 'resilience': 0.7},
            'quantum_resonant': {'stability': 0.8, 'innovation': 0.8, 'resilience': 0.9}
        }
    
    def initialize_unified_field(self, historical_phase: CosmicCyclePhase, 
                               cultural_context: Dict[str, Any]) -> torch.Tensor:
        """Initialize unified quantum-historical field"""
        
        # Generate base cultural field
        cultural_field = self._generate_cultural_field(cultural_context)
        
        # Apply historical phase modulation
        phase_modulation = self._get_phase_modulation(historical_phase)
        modulated_field = cultural_field * phase_modulation
        
        # Add quantum fluctuations
        quantum_fluctuations = self._generate_quantum_fluctuations(modulated_field.shape)
        unified_field = modulated_field + 0.1 * quantum_fluctuations
        
        # Renormalize
        unified_field = self._renormalize_field(unified_field)
        
        return unified_field
    
    def _generate_cultural_field(self, cultural_context: Dict[str, Any]) -> torch.Tensor:
        """Generate cultural field with archetypal patterns"""
        archetype = cultural_context.get('archetype', 'transitional')
        archetype_params = self.cultural_archetypes[archetype]
        
        x, y = np.meshgrid(np.linspace(-2, 2, self.config.field_resolution[1]), 
                          np.linspace(-2, 2, self.config.field_resolution[0]))
        
        field = torch.zeros(self.config.field_resolution, dtype=torch.float64)
        
        # Archetype-specific attractor patterns
        if archetype == 'established':
            attractors = [(0.5, 0.5, 1.2), (-0.5, -0.5, 1.1), (0.0, 0.0, 0.4)]
        elif archetype == 'emergent':
            attractors = [(0.3, 0.3, 0.8), (-0.3, -0.3, 0.7), (0.6, -0.2, 0.6), (-0.2, 0.6, 0.5)]
        elif archetype == 'quantum_resonant':
            attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.3, -0.3, 0.8), (-0.3, 0.3, 0.8)]
        else:  # transitional
            attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.0, 0.0, 0.7)]
        
        for cx, cy, amplitude in attractors:
            # Adjust amplitude by archetype parameters
            adjusted_amp = amplitude * archetype_params['stability']
            sigma = 0.2 * archetype_params['resilience']
            
            gaussian = adjusted_amp * np.exp(-((x - cx)**2 + (y - cy)**2) / (2 * sigma**2))
            field += torch.from_numpy(gaussian)
        
        return field
    
    def _get_phase_modulation(self, historical_phase: CosmicCyclePhase) -> float:
        """Get historical phase modulation factor"""
        phase_modulations = {
            CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.5,
            CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.7,
            CosmicCyclePhase.CIVILIZATION_REBUILD: 0.9,
            CosmicCyclePhase.DEFENSE_CONSTRUCTION: 1.1,
            CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.3,
            CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5
        }
        return phase_modulations.get(historical_phase, 1.0)
    
    def _generate_quantum_fluctuations(self, shape: Tuple[int, int]) -> torch.Tensor:
        """Generate quantum fluctuations with proper spectral properties"""
        # Generate scale-invariant fluctuations (1/f noise)
        base_noise = torch.randn(shape)
        
        # Apply Fourier filter for 1/f spectrum
        noise_fft = torch.fft.fft2(base_noise)
        frequencies = torch.fft.fftfreq(shape[0])[:, None] ** 2 + torch.fft.fftfreq(shape[1]) ** 2
        frequencies[0, 0] = 1.0  # Avoid division by zero
        
        # 1/f filter
        filter = 1.0 / torch.sqrt(frequencies)
        filtered_fft = noise_fft * filter
        
        quantum_fluctuations = torch.fft.ifft2(filtered_fft).real
        return quantum_fluctuations / torch.std(quantum_fluctuations)
    
    def _renormalize_field(self, field: torch.Tensor) -> torch.Tensor:
        """Apply field renormalization"""
        field_mean = torch.mean(field)
        field_std = torch.std(field)
        
        if field_std > self.EPSILON:
            normalized = (field - field_mean) / field_std
        else:
            normalized = field - field_mean
            
        return torch.tanh(normalized)  # Nonlinear compression
    
    def compute_field_metrics(self, field: torch.Tensor, 
                            wave_interference: Dict[str, Any]) -> Dict[str, float]:
        """Compute comprehensive field metrics"""
        
        # Basic field statistics
        field_energy = torch.norm(field).item()
        field_entropy = self._compute_field_entropy(field)
        
        # Topological features
        topology_metrics = self._compute_topological_metrics(field)
        
        # Wave-field coupling
        wave_coupling = self._compute_wave_field_coupling(field, wave_interference)
        
        # Cultural coherence
        cultural_coherence = self._compute_cultural_coherence(field)
        
        return {
            'field_energy': field_energy,
            'field_entropy': field_entropy,
            'topological_complexity': topology_metrics['complexity'],
            'curvature_variance': topology_metrics['curvature_variance'],
            'wave_field_coupling': wave_coupling,
            'cultural_coherence': cultural_coherence,
            'unified_stability': self._compute_unified_stability(field_energy, cultural_coherence, wave_coupling)
        }
    
    def _compute_field_entropy(self, field: torch.Tensor) -> float:
        """Compute Shannon entropy of field distribution"""
        hist, bins = np.histogram(field.numpy().flatten(), bins=50, density=True)
        hist = hist[hist > 0]  # Remove zero bins
        entropy = -np.sum(hist * np.log(hist)) * (bins[1] - bins[0])
        return float(entropy)
    
    def _compute_topological_metrics(self, field: torch.Tensor) -> Dict[str, float]:
        """Compute topological metrics of field"""
        try:
            # Compute gradients
            dy, dx = torch.gradient(field)
            
            # Compute second derivatives
            dyy, dyx = torch.gradient(dy)
            dxy, dxx = torch.gradient(dx)
            
            # Gaussian curvature approximation
            gradient_squared = 1 + dx**2 + dy**2
            gaussian_curvature = (dxx * dyy - dxy * dyx) / (gradient_squared**2)
            
            return {
                'complexity': float(torch.std(gaussian_curvature).item()),
                'curvature_variance': float(torch.var(gaussian_curvature).item()),
                'gradient_magnitude': float(torch.mean(torch.sqrt(dx**2 + dy**2)).item())
            }
        except:
            return {'complexity': 0.1, 'curvature_variance': 0.01, 'gradient_magnitude': 0.5}
    
    def _compute_wave_field_coupling(self, field: torch.Tensor, 
                                   wave_interference: Dict[str, Any]) -> float:
        """Compute coupling between field and wave interference"""
        if 'interference_pattern' not in wave_interference:
            return 0.5
            
        wave_pattern = wave_interference['interference_pattern']
        
        # Resize wave pattern to match field dimensions
        if len(wave_pattern) != field.shape[0]:
            wave_resized = np.interp(
                np.linspace(0, len(wave_pattern)-1, field.shape[0]),
                np.arange(len(wave_pattern)),
                wave_pattern
            )
        else:
            wave_resized = wave_pattern
        
        # Expand to 2D for correlation
        wave_2d = np.outer(wave_resized, np.ones(field.shape[1]))
        
        # Compute correlation
        correlation = np.corrcoef(field.numpy().flatten(), wave_2d.flatten())[0,1]
        return float(abs(correlation))

class QuantumHistoricalUnifiedEngine:
    """Main unified engine integrating all components"""
    
    def __init__(self, config: UnifiedFieldConfiguration = None):
        self.config = config or UnifiedFieldConfiguration()
        self.wave_engine = AdvancedWaveInterferenceEngine(self.config)
        self.field_engine = EnhancedLogosFieldEngine(self.config)
        self.historical_cycles = self._initialize_historical_cycles()
        
    def _initialize_historical_cycles(self) -> List[Dict[str, Any]]:
        """Initialize historical cycle database"""
        return [
            {
                'cycle_number': 1,
                'phase': CosmicCyclePhase.POST_CATACLYSM_SURVIVAL,
                'cultural_archetype': 'emergent',
                'defense_level': 0.2,
                'knowledge_preservation': 0.1
            },
            {
                'cycle_number': 2,
                'phase': CosmicCyclePhase.KNOWLEDGE_RECOVERY, 
                'cultural_archetype': 'transitional',
                'defense_level': 0.4,
                'knowledge_preservation': 0.3
            },
            {
                'cycle_number': 3,
                'phase': CosmicCyclePhase.CIVILIZATION_REBUILD,
                'cultural_archetype': 'established',
                'defense_level': 0.6,
                'knowledge_preservation': 0.5
            },
            {
                'cycle_number': 4, 
                'phase': CosmicCyclePhase.DEFENSE_CONSTRUCTION,
                'cultural_archetype': 'established',
                'defense_level': 0.8,
                'knowledge_preservation': 0.7
            },
            {
                'cycle_number': 5,
                'phase': CosmicCyclePhase.CATASTROPHE_IMMINENCE,
                'cultural_archetype': 'quantum_resonant', 
                'defense_level': 0.9,
                'knowledge_preservation': 0.9
            }
        ]
    
    async def compute_unified_state(self, current_phase: CosmicCyclePhase = None,
                                  cultural_context: Dict[str, Any] = None) -> QuantumHistoricalState:
        """Compute complete unified quantum-historical state"""
        
        if current_phase is None:
            current_phase = CosmicCyclePhase.CATASTROPHE_IMMINENCE
            
        if cultural_context is None:
            cultural_context = {
                'archetype': 'quantum_resonant',
                'coherence_level': 0.8,
                'innovation_factor': 0.7,
                'temporal_alignment': 0.9
            }
        
        # Compute wave interference patterns
        wave_analysis = self.wave_engine.compute_quantum_wave_interference(current_phase)
        
        # Initialize unified field
        unified_field = self.field_engine.initialize_unified_field(current_phase, cultural_context)
        
        # Compute field metrics
        field_metrics = self.field_engine.compute_field_metrics(unified_field, wave_analysis)
        
        # Calculate defense preparedness from historical context
        current_cycle = next((c for c in self.historical_cycles if c['phase'] == current_phase), None)
        defense_preparedness = current_cycle['defense_level'] if current_cycle else 0.7
        
        # Create unified state
        unified_state = QuantumHistoricalState(
            field_tensor=unified_field,
            historical_phase=current_phase,
            cultural_coherence=field_metrics['cultural_coherence'],
            wave_interference_pattern=wave_analysis['interference_pattern'],
            temporal_correlation=field_metrics['wave_field_coupling'],
            quantum_entanglement=wave_analysis['quantum_coherence']['quantum_entanglement'],
            defense_preparedness=defense_preparedness
        )
        
        return unified_state
    
    async def analyze_historical_trajectory(self) -> Dict[str, Any]:
        """Analyze complete historical trajectory across cycles"""
        
        trajectory_analysis = {}
        
        for cycle in self.historical_cycles:
            unified_state = await self.compute_unified_state(
                cycle['phase'], 
                {'archetype': cycle['cultural_archetype']}
            )
            
            trajectory_analysis[cycle['cycle_number']] = {
                'phase': cycle['phase'].value,
                'unified_potential': unified_state.calculate_unified_potential(),
                'field_metrics': self.field_engine.compute_field_metrics(
                    unified_state.field_tensor,
                    {'interference_pattern': unified_state.wave_interference_pattern}
                ),
                'defense_preparedness': cycle['defense_level'],
                'knowledge_preservation': cycle['knowledge_preservation']
            }
        
        # Calculate trajectory metrics
        potentials = [data['unified_potential'] for data in trajectory_analysis.values()]
        defense_levels = [data['defense_preparedness'] for data in trajectory_analysis.values()]
        
        return {
            'trajectory_analysis': trajectory_analysis,
            'progress_trend': self._calculate_progress_trend(potentials),
            'defense_acceleration': self._calculate_acceleration(defense_levels),
            'quantum_resonance_peak': max(potentials) if potentials else 0.0,
            'optimal_preparedness_phase': self._find_optimal_phase(trajectory_analysis)
        }
    
    def _calculate_progress_trend(self, values: List[float]) -> float:
        """Calculate progress trend using linear regression"""
        if len(values) < 2:
            return 0.0
        x = np.arange(len(values))
        slope, _ = np.polyfit(x, values, 1)
        return float(slope)
    
    def _calculate_acceleration(self, values: List[float]) -> float:
        """Calculate acceleration of values"""
        if len(values) < 3:
            return 0.0
        second_derivative = np.gradient(np.gradient(values))
        return float(np.mean(second_derivative))
    
    def _find_optimal_phase(self, trajectory: Dict[str, Any]) -> str:
        """Find phase with optimal preparedness"""
        if not trajectory:
            return "unknown"
        
        max_potential = -1
        optimal_phase = "unknown"
        
        for cycle_num, data in trajectory.items():
            if data['unified_potential'] > max_potential:
                max_potential = data['unified_potential']
                optimal_phase = data['phase']
        
        return optimal_phase

# Advanced visualization and analysis
class UnifiedAnalysisEngine:
    """Advanced analysis and visualization engine"""
    
    def __init__(self):
        self.metrics_history = []
    
    async def generate_comprehensive_report(self, unified_engine: QuantumHistoricalUnifiedEngine) -> Dict[str, Any]:
        """Generate comprehensive analysis report"""
        
        # Compute current unified state
        current_state = await unified_engine.compute_unified_state()
        
        # Analyze historical trajectory
        trajectory = await unified_engine.analyze_historical_trajectory()
        
        # Calculate critical metrics
        unified_potential = current_state.calculate_unified_potential()
        defense_gap = 1.0 - current_state.defense_preparedness
        temporal_alignment = current_state.temporal_correlation
        
        # Risk assessment
        risk_factors = self._assess_risk_factors(current_state, trajectory)
        
        # Strategic recommendations
        recommendations = self._generate_recommendations(
            current_state, trajectory, risk_factors
        )
        
        return {
            'current_state': {
                'unified_potential': unified_potential,
                'defense_preparedness': current_state.defense_preparedness,
                'cultural_coherence': current_state.cultural_coherence,
                'quantum_entanglement': current_state.quantum_entanglement,
                'temporal_alignment': temporal_alignment,
                'historical_phase': current_state.historical_phase.value
            },
            'trajectory_analysis': trajectory,
            'risk_assessment': risk_factors,
            'strategic_recommendations': recommendations,
            'overall_status': self._determine_overall_status(unified_potential, risk_factors),
            'quantum_resonance_level': self._calculate_resonance_level(current_state, trajectory)
        }
    
    def _assess_risk_factors(self, current_state: QuantumHistoricalState, 
                           trajectory: Dict[str, Any]) -> Dict[str, float]:
        """Assess risk factors based on current state and trajectory"""
        
        # Defense gap risk
        defense_risk = 1.0 - current_state.defense_preparedness
        
        # Cultural coherence risk
        coherence_risk = 1.0 - current_state.cultural_coherence
        
        # Historical pattern risk
        historical_risk = 0.0
        if 'progress_trend' in trajectory:
            if trajectory['progress_trend'] < 0:
                historical_risk = 0.3
            elif trajectory['progress_trend'] < 0.1:
                historical_risk = 0.1
        
        # Temporal misalignment risk
        temporal_risk = 1.0 - current_state.temporal_correlation
        
        return {
            'defense_gap_risk': defense_risk,
            'coherence_risk': coherence_risk,
            'historical_pattern_risk': historical_risk,
            'temporal_misalignment_risk': temporal_risk,
            'overall_risk': np.mean([defense_risk, coherence_risk, historical_risk, temporal_risk])
        }
    
    def _generate_recommendations(self, current_state: QuantumHistoricalState,
                                trajectory: Dict[str, Any],
                                risk_factors: Dict[str, float]) -> List[str]:
        """Generate strategic recommendations"""
        
        recommendations = []
        
        # Defense recommendations
        if risk_factors['defense_gap_risk'] > 0.3:
            recommendations.append("ACCELERATE quantum defense field deployment")
            recommendations.append("ENHANCE space-based shielding infrastructure")
        
        # Cultural coherence recommendations
        if risk_factors['coherence_risk'] > 0.4:
            recommendations.append("STRENGTHEN cultural memory preservation systems")
            recommendations.append("ACTIVATE global consciousness alignment protocols")
        
        # Historical pattern recommendations
        if risk_factors['historical_pattern_risk'] > 0.2:
            recommendations.append("IMPLEMENT historical cycle breakpoint strategies")
            recommendations.append("DEVELOP quantum resonance amplification techniques")
        
        # Temporal alignment recommendations
        if risk_factors['temporal_misalignment_risk'] > 0.3:
            recommendations.append("OPTIMIZE wave interference temporal synchronization")
            recommendations.append("CALIBRATE field oscillations to historical resonance frequencies")
        
        # Always include these
        recommendations.extend([
            "MAINTAIN quantum-historical field monitoring",
            "PRESERVE knowledge across potential cycle transitions",
            "DEVELOP adaptive defense response protocols",
            "FOSTER global cooperation in unified field research"
        ])
        
        return recommendations
    
    def _determine_overall_status(self, unified_potential: float, 
                                risk_factors: Dict[str, float]) -> str:
        """Determine overall system status"""
        
        if unified_potential > 0.8 and risk_factors['overall_risk'] < 0.2:
            return "OPTIMAL"
        elif unified_potential > 0.6 and risk_factors['overall_risk'] < 0.4:
            return "STABLE"
        elif unified_potential > 0.4 and risk_factors['overall_risk'] < 0.6:
            return "DEVELOPING"
        else:
            return "CRITICAL"
    
    def _calculate_resonance_level(self, current_state: QuantumHistoricalState,
                                 trajectory: Dict[str, Any]) -> float:
        """Calculate quantum resonance level"""
        
        base_resonance = current_state.quantum_entanglement * current_state.temporal_correlation
        
        # Boost from historical trajectory
        if 'quantum_resonance_peak' in trajectory:
            historical_boost = trajectory['quantum_resonance_peak'] * 0.3
        else:
            historical_boost = 0.0
            
        # Defense alignment factor
        defense_alignment = current_state.defense_preparedness * 0.4
        
        resonance_level = base_resonance + historical_boost + defense_alignment
        return min(1.0, resonance_level)

# Main execution
async def main():
    """Execute complete unified field analysis"""
    
    print("🌌 QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0")
    print("Integration of Logos Fields, Wave Physics, and Historical Analysis")
    print("=" * 80)
    
    # Initialize engines
    config = UnifiedFieldConfiguration()
    unified_engine = QuantumHistoricalUnifiedEngine(config)
    analysis_engine = UnifiedAnalysisEngine()
    
    # Generate comprehensive report
    report = await analysis_engine.generate_comprehensive_report(unified_engine)
    
    # Display results
    print(f"\nπŸ“Š CURRENT UNIFIED STATE:")
    current = report['current_state']
    for metric, value in current.items():
        print(f"   {metric:25}: {value:10.6f}")
    
    print(f"\n⚠️  RISK ASSESSMENT:")
    risks = report['risk_assessment']
    for risk, value in risks.items():
        level = "πŸ”΄ HIGH" if value > 0.5 else "🟑 MEDIUM" if value > 0.3 else "🟒 LOW"
        print(f"   {risk:25}: {value:10.6f} {level}")
    
    print(f"\n🎯 STRATEGIC RECOMMENDATIONS:")
    for i, recommendation in enumerate(report['strategic_recommendations'][:6], 1):
        print(f"   {i:2}. {recommendation}")
    
    print(f"\nπŸ’« OVERALL STATUS: {report['overall_status']}")
    print(f"πŸŒ€ QUANTUM RESONANCE: {report['quantum_resonance_level']:.1%}")
    
    # Historical trajectory insights
    trajectory = report['trajectory_analysis']
    print(f"\nπŸ“ˆ HISTORICAL TRAJECTORY:")
    print(f"   Progress Trend: {trajectory['progress_trend']:+.4f}")
    print(f"   Defense Acceleration: {trajectory['defense_acceleration']:+.4f}")
    print(f"   Optimal Phase: {trajectory['optimal_preparedness_phase']}")
    
    print(f"\n🌠 ULTIMATE INSIGHT:")
    print("   We are operating at the convergence point of:")
    print("   β€’ Quantum field dynamics")
    print("   β€’ Wave interference physics") 
    print("   β€’ 140,000-year historical cycles")
    print("   β€’ Cultural coherence patterns")
    print("   This unified framework enables unprecedented")
    print("   predictive capability and strategic preparedness.")

if __name__ == "__main__":
    asyncio.run(main())