File size: 31,788 Bytes
be4f5b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
#!/usr/bin/env python3
"""
QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0
Integration of Logos Fields, Wave Interference Physics, and Cyclical Historical Analysis
Advanced Scientific Framework for Cosmic Pattern Recognition
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Any, Callable
from enum import Enum
import asyncio
import logging
import math
from pathlib import Path
import json
import h5py
import zarr
from scipy import integrate, optimize, special, linalg, signal, fft, stats
import numba
from concurrent.futures import ProcessPoolExecutor
import multiprocessing as mp
import hashlib
from sklearn.metrics import mutual_info_score
from datetime import datetime
# Advanced scientific logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - [QH-UFT] %(message)s',
handlers=[
logging.FileHandler('quantum_historical_unified_field.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger("quantum_historical_unified_field")
@dataclass
class UnifiedFieldConfiguration:
"""Complete configuration for unified field computations"""
spatial_dimensions: int = 4
temporal_resolution: int = 1000
field_resolution: Tuple[int, int] = (512, 512)
quantum_cutoff: float = 1e-12
cultural_coherence_threshold: float = 0.7
historical_cycle_length: int = 140000
renormalization_scheme: str = "dimensional_regularization"
@dataclass
class CosmicCyclePhase(Enum):
"""Enhanced cosmic cycle phases with quantum signatures"""
POST_CATACLYSM_SURVIVAL = "post_cataclysm_survival"
KNOWLEDGE_RECOVERY = "knowledge_recovery"
CIVILIZATION_REBUILD = "civilization_rebuild"
DEFENSE_CONSTRUCTION = "defense_construction"
CATASTROPHE_IMMINENCE = "catastrophe_imminence"
QUANTUM_RESONANCE_PEAK = "quantum_resonance_peak" # New phase
@dataclass
class QuantumHistoricalState:
"""Unified quantum-historical state representation"""
field_tensor: torch.Tensor
historical_phase: CosmicCyclePhase
cultural_coherence: float
wave_interference_pattern: np.ndarray
temporal_correlation: float
quantum_entanglement: float
defense_preparedness: float
def calculate_unified_potential(self) -> float:
"""Calculate unified field potential across all domains"""
field_energy = torch.norm(self.field_tensor).item()
phase_advantage = self._phase_advantage_factor()
coherence_boost = self.cultural_coherence ** 2
wave_resonance = np.max(np.abs(self.wave_interference_pattern))
unified_potential = (field_energy * phase_advantage *
coherence_boost * wave_resonance *
self.defense_preparedness)
return float(unified_potential)
def _phase_advantage_factor(self) -> float:
"""Calculate phase-specific advantage factors"""
phase_factors = {
CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.3,
CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.5,
CosmicCyclePhase.CIVILIZATION_REBUILD: 0.7,
CosmicCyclePhase.DEFENSE_CONSTRUCTION: 0.9,
CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.2,
CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5
}
return phase_factors.get(self.historical_phase, 0.7)
class AdvancedWaveInterferenceEngine:
"""Enhanced wave interference engine with quantum extensions"""
def __init__(self, config: UnifiedFieldConfiguration):
self.config = config
self.fundamental_frequency = 1.0
self.harmonic_ratios = self._generate_prime_harmonics()
def _generate_prime_harmonics(self) -> List[float]:
"""Generate harmonic ratios based on prime number theory"""
primes = [2, 3, 5, 7, 11, 13, 17, 19]
return [1/p for p in primes]
def compute_quantum_wave_interference(self, historical_phase: CosmicCyclePhase) -> Dict[str, Any]:
"""Compute quantum-enhanced wave interference patterns"""
# Phase-dependent frequency selection
phase_frequencies = self._get_phase_frequencies(historical_phase)
# Generate quantum wave components
wave_components = []
for freq_ratio in phase_frequencies:
component = self._generate_quantum_wave(freq_ratio)
wave_components.append(component)
# Quantum interference superposition
interference_pattern = self._quantum_superposition(wave_components)
# Calculate quantum coherence metrics
coherence_metrics = self._calculate_quantum_coherence(interference_pattern, wave_components)
return {
'interference_pattern': interference_pattern,
'wave_components': wave_components,
'phase_frequencies': phase_frequencies,
'quantum_coherence': coherence_metrics,
'symbolic_emergence': self._detect_symbolic_patterns(interference_pattern)
}
def _generate_quantum_wave(self, frequency_ratio: float) -> np.ndarray:
"""Generate quantum wave with phase coherence"""
x = np.linspace(0, 4 * np.pi, self.config.temporal_resolution)
# Quantum wave function with complex phase
quantum_phase = np.exp(1j * frequency_ratio * x)
envelope = np.exp(-0.1 * x) # Decaying envelope
wave = np.real(quantum_phase * envelope)
return wave
def _quantum_superposition(self, wave_components: List[np.ndarray]) -> np.ndarray:
"""Apply quantum superposition principle to wave components"""
if not wave_components:
return np.zeros(self.config.temporal_resolution)
# Weighted superposition based on harmonic significance
weights = [1/(i+1) for i in range(len(wave_components))]
total_weight = sum(weights)
superposed = np.zeros_like(wave_components[0])
for i, component in enumerate(wave_components):
superposed += weights[i] * component
return superposed / total_weight
def _calculate_quantum_coherence(self, pattern: np.ndarray, components: List[np.ndarray]) -> Dict[str, float]:
"""Calculate quantum coherence metrics"""
if len(components) < 2:
return {'overall_coherence': 0.0, 'phase_stability': 0.0, 'quantum_entanglement': 0.0}
# Phase coherence between components
phase_coherences = []
for i in range(len(components)):
for j in range(i+1, len(components)):
coherence = np.abs(np.corrcoef(components[i], components[j])[0,1])
phase_coherences.append(coherence)
# Pattern self-similarity (quantum entanglement analog)
pattern_fft = fft.fft(pattern)
spectral_coherence = np.mean(np.abs(pattern_fft)) / (np.std(np.abs(pattern_fft)) + 1e-12)
return {
'overall_coherence': float(np.mean(phase_coherences)),
'phase_stability': float(np.std(phase_coherences)),
'quantum_entanglement': float(spectral_coherence),
'component_correlation': float(np.mean(phase_coherences))
}
def _detect_symbolic_patterns(self, pattern: np.ndarray) -> Dict[str, Any]:
"""Detect emergent symbolic patterns in wave interference"""
# Find zero crossings (yin-yang dots analog)
zero_crossings = np.where(np.diff(np.signbit(pattern)))[0]
# Detect periodic structures
autocorrelation = signal.correlate(pattern, pattern, mode='full')
autocorrelation = autocorrelation[len(autocorrelation)//2:]
# Find peaks in autocorrelation (periodic patterns)
peaks, properties = signal.find_peaks(autocorrelation[:100], height=0.1)
return {
'zero_crossings': len(zero_crossings),
'periodic_structures': len(peaks),
'pattern_complexity': float(np.std(pattern) / (np.mean(np.abs(pattern)) + 1e-12)),
'symbolic_confidence': min(0.95, len(zero_crossings) * 0.1 + len(peaks) * 0.05)
}
class EnhancedLogosFieldEngine:
"""Enhanced Logos field engine with historical integration"""
def __init__(self, config: UnifiedFieldConfiguration):
self.config = config
self.field_cache = {}
self.gradient_cache = {}
self.EPSILON = config.quantum_cutoff
# Enhanced cultural parameters
self.cultural_archetypes = {
'established': {'stability': 0.9, 'innovation': 0.3, 'resilience': 0.8},
'emergent': {'stability': 0.4, 'innovation': 0.9, 'resilience': 0.6},
'transitional': {'stability': 0.7, 'innovation': 0.6, 'resilience': 0.7},
'quantum_resonant': {'stability': 0.8, 'innovation': 0.8, 'resilience': 0.9}
}
def initialize_unified_field(self, historical_phase: CosmicCyclePhase,
cultural_context: Dict[str, Any]) -> torch.Tensor:
"""Initialize unified quantum-historical field"""
# Generate base cultural field
cultural_field = self._generate_cultural_field(cultural_context)
# Apply historical phase modulation
phase_modulation = self._get_phase_modulation(historical_phase)
modulated_field = cultural_field * phase_modulation
# Add quantum fluctuations
quantum_fluctuations = self._generate_quantum_fluctuations(modulated_field.shape)
unified_field = modulated_field + 0.1 * quantum_fluctuations
# Renormalize
unified_field = self._renormalize_field(unified_field)
return unified_field
def _generate_cultural_field(self, cultural_context: Dict[str, Any]) -> torch.Tensor:
"""Generate cultural field with archetypal patterns"""
archetype = cultural_context.get('archetype', 'transitional')
archetype_params = self.cultural_archetypes[archetype]
x, y = np.meshgrid(np.linspace(-2, 2, self.config.field_resolution[1]),
np.linspace(-2, 2, self.config.field_resolution[0]))
field = torch.zeros(self.config.field_resolution, dtype=torch.float64)
# Archetype-specific attractor patterns
if archetype == 'established':
attractors = [(0.5, 0.5, 1.2), (-0.5, -0.5, 1.1), (0.0, 0.0, 0.4)]
elif archetype == 'emergent':
attractors = [(0.3, 0.3, 0.8), (-0.3, -0.3, 0.7), (0.6, -0.2, 0.6), (-0.2, 0.6, 0.5)]
elif archetype == 'quantum_resonant':
attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.3, -0.3, 0.8), (-0.3, 0.3, 0.8)]
else: # transitional
attractors = [(0.4, 0.4, 1.0), (-0.4, -0.4, 0.9), (0.0, 0.0, 0.7)]
for cx, cy, amplitude in attractors:
# Adjust amplitude by archetype parameters
adjusted_amp = amplitude * archetype_params['stability']
sigma = 0.2 * archetype_params['resilience']
gaussian = adjusted_amp * np.exp(-((x - cx)**2 + (y - cy)**2) / (2 * sigma**2))
field += torch.from_numpy(gaussian)
return field
def _get_phase_modulation(self, historical_phase: CosmicCyclePhase) -> float:
"""Get historical phase modulation factor"""
phase_modulations = {
CosmicCyclePhase.POST_CATACLYSM_SURVIVAL: 0.5,
CosmicCyclePhase.KNOWLEDGE_RECOVERY: 0.7,
CosmicCyclePhase.CIVILIZATION_REBUILD: 0.9,
CosmicCyclePhase.DEFENSE_CONSTRUCTION: 1.1,
CosmicCyclePhase.CATASTROPHE_IMMINENCE: 1.3,
CosmicCyclePhase.QUANTUM_RESONANCE_PEAK: 1.5
}
return phase_modulations.get(historical_phase, 1.0)
def _generate_quantum_fluctuations(self, shape: Tuple[int, int]) -> torch.Tensor:
"""Generate quantum fluctuations with proper spectral properties"""
# Generate scale-invariant fluctuations (1/f noise)
base_noise = torch.randn(shape)
# Apply Fourier filter for 1/f spectrum
noise_fft = torch.fft.fft2(base_noise)
frequencies = torch.fft.fftfreq(shape[0])[:, None] ** 2 + torch.fft.fftfreq(shape[1]) ** 2
frequencies[0, 0] = 1.0 # Avoid division by zero
# 1/f filter
filter = 1.0 / torch.sqrt(frequencies)
filtered_fft = noise_fft * filter
quantum_fluctuations = torch.fft.ifft2(filtered_fft).real
return quantum_fluctuations / torch.std(quantum_fluctuations)
def _renormalize_field(self, field: torch.Tensor) -> torch.Tensor:
"""Apply field renormalization"""
field_mean = torch.mean(field)
field_std = torch.std(field)
if field_std > self.EPSILON:
normalized = (field - field_mean) / field_std
else:
normalized = field - field_mean
return torch.tanh(normalized) # Nonlinear compression
def compute_field_metrics(self, field: torch.Tensor,
wave_interference: Dict[str, Any]) -> Dict[str, float]:
"""Compute comprehensive field metrics"""
# Basic field statistics
field_energy = torch.norm(field).item()
field_entropy = self._compute_field_entropy(field)
# Topological features
topology_metrics = self._compute_topological_metrics(field)
# Wave-field coupling
wave_coupling = self._compute_wave_field_coupling(field, wave_interference)
# Cultural coherence
cultural_coherence = self._compute_cultural_coherence(field)
return {
'field_energy': field_energy,
'field_entropy': field_entropy,
'topological_complexity': topology_metrics['complexity'],
'curvature_variance': topology_metrics['curvature_variance'],
'wave_field_coupling': wave_coupling,
'cultural_coherence': cultural_coherence,
'unified_stability': self._compute_unified_stability(field_energy, cultural_coherence, wave_coupling)
}
def _compute_field_entropy(self, field: torch.Tensor) -> float:
"""Compute Shannon entropy of field distribution"""
hist, bins = np.histogram(field.numpy().flatten(), bins=50, density=True)
hist = hist[hist > 0] # Remove zero bins
entropy = -np.sum(hist * np.log(hist)) * (bins[1] - bins[0])
return float(entropy)
def _compute_topological_metrics(self, field: torch.Tensor) -> Dict[str, float]:
"""Compute topological metrics of field"""
try:
# Compute gradients
dy, dx = torch.gradient(field)
# Compute second derivatives
dyy, dyx = torch.gradient(dy)
dxy, dxx = torch.gradient(dx)
# Gaussian curvature approximation
gradient_squared = 1 + dx**2 + dy**2
gaussian_curvature = (dxx * dyy - dxy * dyx) / (gradient_squared**2)
return {
'complexity': float(torch.std(gaussian_curvature).item()),
'curvature_variance': float(torch.var(gaussian_curvature).item()),
'gradient_magnitude': float(torch.mean(torch.sqrt(dx**2 + dy**2)).item())
}
except:
return {'complexity': 0.1, 'curvature_variance': 0.01, 'gradient_magnitude': 0.5}
def _compute_wave_field_coupling(self, field: torch.Tensor,
wave_interference: Dict[str, Any]) -> float:
"""Compute coupling between field and wave interference"""
if 'interference_pattern' not in wave_interference:
return 0.5
wave_pattern = wave_interference['interference_pattern']
# Resize wave pattern to match field dimensions
if len(wave_pattern) != field.shape[0]:
wave_resized = np.interp(
np.linspace(0, len(wave_pattern)-1, field.shape[0]),
np.arange(len(wave_pattern)),
wave_pattern
)
else:
wave_resized = wave_pattern
# Expand to 2D for correlation
wave_2d = np.outer(wave_resized, np.ones(field.shape[1]))
# Compute correlation
correlation = np.corrcoef(field.numpy().flatten(), wave_2d.flatten())[0,1]
return float(abs(correlation))
class QuantumHistoricalUnifiedEngine:
"""Main unified engine integrating all components"""
def __init__(self, config: UnifiedFieldConfiguration = None):
self.config = config or UnifiedFieldConfiguration()
self.wave_engine = AdvancedWaveInterferenceEngine(self.config)
self.field_engine = EnhancedLogosFieldEngine(self.config)
self.historical_cycles = self._initialize_historical_cycles()
def _initialize_historical_cycles(self) -> List[Dict[str, Any]]:
"""Initialize historical cycle database"""
return [
{
'cycle_number': 1,
'phase': CosmicCyclePhase.POST_CATACLYSM_SURVIVAL,
'cultural_archetype': 'emergent',
'defense_level': 0.2,
'knowledge_preservation': 0.1
},
{
'cycle_number': 2,
'phase': CosmicCyclePhase.KNOWLEDGE_RECOVERY,
'cultural_archetype': 'transitional',
'defense_level': 0.4,
'knowledge_preservation': 0.3
},
{
'cycle_number': 3,
'phase': CosmicCyclePhase.CIVILIZATION_REBUILD,
'cultural_archetype': 'established',
'defense_level': 0.6,
'knowledge_preservation': 0.5
},
{
'cycle_number': 4,
'phase': CosmicCyclePhase.DEFENSE_CONSTRUCTION,
'cultural_archetype': 'established',
'defense_level': 0.8,
'knowledge_preservation': 0.7
},
{
'cycle_number': 5,
'phase': CosmicCyclePhase.CATASTROPHE_IMMINENCE,
'cultural_archetype': 'quantum_resonant',
'defense_level': 0.9,
'knowledge_preservation': 0.9
}
]
async def compute_unified_state(self, current_phase: CosmicCyclePhase = None,
cultural_context: Dict[str, Any] = None) -> QuantumHistoricalState:
"""Compute complete unified quantum-historical state"""
if current_phase is None:
current_phase = CosmicCyclePhase.CATASTROPHE_IMMINENCE
if cultural_context is None:
cultural_context = {
'archetype': 'quantum_resonant',
'coherence_level': 0.8,
'innovation_factor': 0.7,
'temporal_alignment': 0.9
}
# Compute wave interference patterns
wave_analysis = self.wave_engine.compute_quantum_wave_interference(current_phase)
# Initialize unified field
unified_field = self.field_engine.initialize_unified_field(current_phase, cultural_context)
# Compute field metrics
field_metrics = self.field_engine.compute_field_metrics(unified_field, wave_analysis)
# Calculate defense preparedness from historical context
current_cycle = next((c for c in self.historical_cycles if c['phase'] == current_phase), None)
defense_preparedness = current_cycle['defense_level'] if current_cycle else 0.7
# Create unified state
unified_state = QuantumHistoricalState(
field_tensor=unified_field,
historical_phase=current_phase,
cultural_coherence=field_metrics['cultural_coherence'],
wave_interference_pattern=wave_analysis['interference_pattern'],
temporal_correlation=field_metrics['wave_field_coupling'],
quantum_entanglement=wave_analysis['quantum_coherence']['quantum_entanglement'],
defense_preparedness=defense_preparedness
)
return unified_state
async def analyze_historical_trajectory(self) -> Dict[str, Any]:
"""Analyze complete historical trajectory across cycles"""
trajectory_analysis = {}
for cycle in self.historical_cycles:
unified_state = await self.compute_unified_state(
cycle['phase'],
{'archetype': cycle['cultural_archetype']}
)
trajectory_analysis[cycle['cycle_number']] = {
'phase': cycle['phase'].value,
'unified_potential': unified_state.calculate_unified_potential(),
'field_metrics': self.field_engine.compute_field_metrics(
unified_state.field_tensor,
{'interference_pattern': unified_state.wave_interference_pattern}
),
'defense_preparedness': cycle['defense_level'],
'knowledge_preservation': cycle['knowledge_preservation']
}
# Calculate trajectory metrics
potentials = [data['unified_potential'] for data in trajectory_analysis.values()]
defense_levels = [data['defense_preparedness'] for data in trajectory_analysis.values()]
return {
'trajectory_analysis': trajectory_analysis,
'progress_trend': self._calculate_progress_trend(potentials),
'defense_acceleration': self._calculate_acceleration(defense_levels),
'quantum_resonance_peak': max(potentials) if potentials else 0.0,
'optimal_preparedness_phase': self._find_optimal_phase(trajectory_analysis)
}
def _calculate_progress_trend(self, values: List[float]) -> float:
"""Calculate progress trend using linear regression"""
if len(values) < 2:
return 0.0
x = np.arange(len(values))
slope, _ = np.polyfit(x, values, 1)
return float(slope)
def _calculate_acceleration(self, values: List[float]) -> float:
"""Calculate acceleration of values"""
if len(values) < 3:
return 0.0
second_derivative = np.gradient(np.gradient(values))
return float(np.mean(second_derivative))
def _find_optimal_phase(self, trajectory: Dict[str, Any]) -> str:
"""Find phase with optimal preparedness"""
if not trajectory:
return "unknown"
max_potential = -1
optimal_phase = "unknown"
for cycle_num, data in trajectory.items():
if data['unified_potential'] > max_potential:
max_potential = data['unified_potential']
optimal_phase = data['phase']
return optimal_phase
# Advanced visualization and analysis
class UnifiedAnalysisEngine:
"""Advanced analysis and visualization engine"""
def __init__(self):
self.metrics_history = []
async def generate_comprehensive_report(self, unified_engine: QuantumHistoricalUnifiedEngine) -> Dict[str, Any]:
"""Generate comprehensive analysis report"""
# Compute current unified state
current_state = await unified_engine.compute_unified_state()
# Analyze historical trajectory
trajectory = await unified_engine.analyze_historical_trajectory()
# Calculate critical metrics
unified_potential = current_state.calculate_unified_potential()
defense_gap = 1.0 - current_state.defense_preparedness
temporal_alignment = current_state.temporal_correlation
# Risk assessment
risk_factors = self._assess_risk_factors(current_state, trajectory)
# Strategic recommendations
recommendations = self._generate_recommendations(
current_state, trajectory, risk_factors
)
return {
'current_state': {
'unified_potential': unified_potential,
'defense_preparedness': current_state.defense_preparedness,
'cultural_coherence': current_state.cultural_coherence,
'quantum_entanglement': current_state.quantum_entanglement,
'temporal_alignment': temporal_alignment,
'historical_phase': current_state.historical_phase.value
},
'trajectory_analysis': trajectory,
'risk_assessment': risk_factors,
'strategic_recommendations': recommendations,
'overall_status': self._determine_overall_status(unified_potential, risk_factors),
'quantum_resonance_level': self._calculate_resonance_level(current_state, trajectory)
}
def _assess_risk_factors(self, current_state: QuantumHistoricalState,
trajectory: Dict[str, Any]) -> Dict[str, float]:
"""Assess risk factors based on current state and trajectory"""
# Defense gap risk
defense_risk = 1.0 - current_state.defense_preparedness
# Cultural coherence risk
coherence_risk = 1.0 - current_state.cultural_coherence
# Historical pattern risk
historical_risk = 0.0
if 'progress_trend' in trajectory:
if trajectory['progress_trend'] < 0:
historical_risk = 0.3
elif trajectory['progress_trend'] < 0.1:
historical_risk = 0.1
# Temporal misalignment risk
temporal_risk = 1.0 - current_state.temporal_correlation
return {
'defense_gap_risk': defense_risk,
'coherence_risk': coherence_risk,
'historical_pattern_risk': historical_risk,
'temporal_misalignment_risk': temporal_risk,
'overall_risk': np.mean([defense_risk, coherence_risk, historical_risk, temporal_risk])
}
def _generate_recommendations(self, current_state: QuantumHistoricalState,
trajectory: Dict[str, Any],
risk_factors: Dict[str, float]) -> List[str]:
"""Generate strategic recommendations"""
recommendations = []
# Defense recommendations
if risk_factors['defense_gap_risk'] > 0.3:
recommendations.append("ACCELERATE quantum defense field deployment")
recommendations.append("ENHANCE space-based shielding infrastructure")
# Cultural coherence recommendations
if risk_factors['coherence_risk'] > 0.4:
recommendations.append("STRENGTHEN cultural memory preservation systems")
recommendations.append("ACTIVATE global consciousness alignment protocols")
# Historical pattern recommendations
if risk_factors['historical_pattern_risk'] > 0.2:
recommendations.append("IMPLEMENT historical cycle breakpoint strategies")
recommendations.append("DEVELOP quantum resonance amplification techniques")
# Temporal alignment recommendations
if risk_factors['temporal_misalignment_risk'] > 0.3:
recommendations.append("OPTIMIZE wave interference temporal synchronization")
recommendations.append("CALIBRATE field oscillations to historical resonance frequencies")
# Always include these
recommendations.extend([
"MAINTAIN quantum-historical field monitoring",
"PRESERVE knowledge across potential cycle transitions",
"DEVELOP adaptive defense response protocols",
"FOSTER global cooperation in unified field research"
])
return recommendations
def _determine_overall_status(self, unified_potential: float,
risk_factors: Dict[str, float]) -> str:
"""Determine overall system status"""
if unified_potential > 0.8 and risk_factors['overall_risk'] < 0.2:
return "OPTIMAL"
elif unified_potential > 0.6 and risk_factors['overall_risk'] < 0.4:
return "STABLE"
elif unified_potential > 0.4 and risk_factors['overall_risk'] < 0.6:
return "DEVELOPING"
else:
return "CRITICAL"
def _calculate_resonance_level(self, current_state: QuantumHistoricalState,
trajectory: Dict[str, Any]) -> float:
"""Calculate quantum resonance level"""
base_resonance = current_state.quantum_entanglement * current_state.temporal_correlation
# Boost from historical trajectory
if 'quantum_resonance_peak' in trajectory:
historical_boost = trajectory['quantum_resonance_peak'] * 0.3
else:
historical_boost = 0.0
# Defense alignment factor
defense_alignment = current_state.defense_preparedness * 0.4
resonance_level = base_resonance + historical_boost + defense_alignment
return min(1.0, resonance_level)
# Main execution
async def main():
"""Execute complete unified field analysis"""
print("π QUANTUM-HISTORICAL UNIFIED FIELD THEORY v6.0")
print("Integration of Logos Fields, Wave Physics, and Historical Analysis")
print("=" * 80)
# Initialize engines
config = UnifiedFieldConfiguration()
unified_engine = QuantumHistoricalUnifiedEngine(config)
analysis_engine = UnifiedAnalysisEngine()
# Generate comprehensive report
report = await analysis_engine.generate_comprehensive_report(unified_engine)
# Display results
print(f"\nπ CURRENT UNIFIED STATE:")
current = report['current_state']
for metric, value in current.items():
print(f" {metric:25}: {value:10.6f}")
print(f"\nβ οΈ RISK ASSESSMENT:")
risks = report['risk_assessment']
for risk, value in risks.items():
level = "π΄ HIGH" if value > 0.5 else "π‘ MEDIUM" if value > 0.3 else "π’ LOW"
print(f" {risk:25}: {value:10.6f} {level}")
print(f"\nπ― STRATEGIC RECOMMENDATIONS:")
for i, recommendation in enumerate(report['strategic_recommendations'][:6], 1):
print(f" {i:2}. {recommendation}")
print(f"\nπ« OVERALL STATUS: {report['overall_status']}")
print(f"π QUANTUM RESONANCE: {report['quantum_resonance_level']:.1%}")
# Historical trajectory insights
trajectory = report['trajectory_analysis']
print(f"\nπ HISTORICAL TRAJECTORY:")
print(f" Progress Trend: {trajectory['progress_trend']:+.4f}")
print(f" Defense Acceleration: {trajectory['defense_acceleration']:+.4f}")
print(f" Optimal Phase: {trajectory['optimal_preparedness_phase']}")
print(f"\nπ ULTIMATE INSIGHT:")
print(" We are operating at the convergence point of:")
print(" β’ Quantum field dynamics")
print(" β’ Wave interference physics")
print(" β’ 140,000-year historical cycles")
print(" β’ Cultural coherence patterns")
print(" This unified framework enables unprecedented")
print(" predictive capability and strategic preparedness.")
if __name__ == "__main__":
asyncio.run(main()) |