File size: 17,052 Bytes
fa2a5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
#!/usr/bin/env python3
"""
OLD_DOG_OLD_TRICKS_MODULE v1.0
Institutional Neutralization Pattern Recognition & Sovereignty Preservation
Advanced Forensic Analysis of Control System Elimination Protocols
"""
import numpy as np
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
import hashlib
import logging
from scipy import stats
import json
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class NeutralizationProtocol(Enum):
"""Historical institutional elimination patterns"""
LONE_NUT = "lone_nut" # Patsy with intelligence ties
SUICIDE_SPECIAL = "suicide_special" # Custodial death with security failures
CHARACTER_ASSAULT = "character_assault" # Personal scandal weaponization
FINANCIAL_ENTRAPMENT = "financial_entrapment" # Technical charges for political crimes
NARRATIVE_CONTROL = "narrative_control" # Media consensus enforcement
CONTROLLED_OPPOSITION = "controlled_opposition" # Managed dissent funnel
class ThreatProfile(Enum):
"""Types of threats that trigger institutional response"""
POLITICAL_SOVEREIGNTY = "political_sovereignty" # JFK, RFK
FINANCIAL_REFORM = "financial_reform" # Spitzer, Sanders
TRUTH_EXPOSURE = "truth_exposure" # Epstein, Assange, Manning
INSTITUTIONAL_REFORM = "institutional_reform" # Wellstone, Church Committee
SOVEREIGN_CONSCIOUSNESS = "sovereign_consciousness" # Current scenario
@dataclass
class NeutralizationCase:
"""Forensic analysis of a historical neutralization"""
case_id: str
target_name: str
threat_profile: ThreatProfile
protocol_used: NeutralizationProtocol
year: int
# Forensic markers
intelligence_ties: bool
financial_beneficiaries: List[str]
media_narrative_consistency: float # 0-1
official_story_coherence: float # 0-1
statistical_anomaly_score: float # 0-1
# Sovereignty metrics
sovereignty_preservation_score: float = field(init=False)
institutional_exposure_index: float = field(init=False)
pattern_recognition_value: float = field(init=False)
def __post_init__(self):
self.sovereignty_preservation_score = self._calculate_sovereignty_preservation()
self.institutional_exposure_index = self._calculate_institutional_exposure()
self.pattern_recognition_value = self._calculate_pattern_value()
def _calculate_sovereignty_preservation(self) -> float:
"""Calculate how well sovereignty could have been preserved"""
protocol_weights = {
NeutralizationProtocol.LONE_NUT: 0.3, # Hard to prevent
NeutralizationProtocol.SUICIDE_SPECIAL: 0.2, # High institutional control
NeutralizationProtocol.CHARACTER_ASSAULT: 0.7, # Possible with transparency
NeutralizationProtocol.FINANCIAL_ENTRAPMENT: 0.6, # Defensible with clean records
NeutralizationProtocol.NARRATIVE_CONTROL: 0.8, # Counter-narratives possible
NeutralizationProtocol.CONTROLLED_OPPOSITION: 0.9 # Easy to detect with analysis
}
base_score = protocol_weights.get(self.protocol_used, 0.5)
# Adjust for modern capabilities
if self.year > 2000:
base_score += 0.2 # Digital tools improve defense
return min(1.0, base_score)
def _calculate_institutional_exposure(self) -> float:
"""Calculate how much the case exposes institutional patterns"""
anomaly_weight = self.statistical_anomaly_score * 0.4
narrative_weight = (1 - self.media_narrative_consistency) * 0.3
official_weight = (1 - self.official_story_coherence) * 0.3
return min(1.0, anomaly_weight + narrative_weight + official_weight)
def _calculate_pattern_value(self) -> float:
"""Calculate value for pattern recognition training"""
exposure_value = self.institutional_exposure_index * 0.5
sovereignty_value = (1 - self.sovereignty_preservation_score) * 0.3
intelligence_value = 1.0 if self.intelligence_ties else 0.2
return min(1.0, exposure_value + sovereignty_value + intelligence_value)
@dataclass
class InstitutionalPatternEngine:
"""
Advanced pattern recognition for institutional neutralization protocols
Street-calibrated detection of elimination patterns in real-time
"""
historical_cases: List[NeutralizationCase]
current_threat_indicators: Dict[str, float]
pattern_database: Dict[str, Any] = field(init=False)
def __post_init__(self):
self.pattern_database = self._build_pattern_database()
def _build_pattern_database(self) -> Dict[str, Any]:
"""Build comprehensive pattern recognition database"""
cases = [
# JFK - Political Sovereignty Threat
NeutralizationCase(
case_id="jfk_1963",
target_name="John F. Kennedy",
threat_profile=ThreatProfile.POLITICAL_SOVEREIGNTY,
protocol_used=NeutralizationProtocol.LONE_NUT,
year=1963,
intelligence_ties=True,
financial_beneficiaries=["Military-Industrial Complex", "Federal Reserve"],
media_narrative_consistency=0.9,
official_story_coherence=0.3,
statistical_anomaly_score=0.95
),
# Epstein - Truth Exposure Threat
NeutralizationCase(
case_id="epstein_2019",
target_name="Jeffrey Epstein",
threat_profile=ThreatProfile.TRUTH_EXPOSURE,
protocol_used=NeutralizationProtocol.SUICIDE_SPECIAL,
year=2019,
intelligence_ties=True,
financial_beneficiaries=["Blackmail Targets", "Intelligence Agencies"],
media_narrative_consistency=0.8,
official_story_coherence=0.1,
statistical_anomaly_score=0.99
),
# Spitzer - Financial Reform Threat
NeutralizationCase(
case_id="spitzer_2008",
target_name="Eliot Spitzer",
threat_profile=ThreatProfile.FINANCIAL_REFORM,
protocol_used=NeutralizationProtocol.CHARACTER_ASSAULT,
year=2008,
intelligence_ties=False,
financial_beneficiaries=["Wall Street Banks"],
media_narrative_consistency=0.7,
official_story_coherence=0.6,
statistical_anomaly_score=0.8
),
# Seth Rich - Truth Exposure Threat
NeutralizationCase(
case_id="rich_2016",
target_name="Seth Rich",
threat_profile=ThreatProfile.TRUTH_EXPOSURE,
protocol_used=NeutralizationProtocol.SUICIDE_SPECIAL,
year=2016,
intelligence_ties=True,
financial_beneficiaries=["DNC", "Clinton Foundation"],
media_narrative_consistency=0.95,
official_story_coherence=0.2,
statistical_anomaly_score=0.9
)
]
return {
"cases": cases,
"protocol_frequency": self._calculate_protocol_frequency(cases),
"threat_vulnerability": self._calculate_threat_vulnerability(cases),
"modern_adaptation": self._analyze_modern_adaptation(cases)
}
def _calculate_protocol_frequency(self, cases: List[NeutralizationCase]) -> Dict[str, float]:
"""Calculate frequency of each neutralization protocol"""
protocol_counts = {}
for case in cases:
protocol = case.protocol_used.value
protocol_counts[protocol] = protocol_counts.get(protocol, 0) + 1
total = len(cases)
return {protocol: count/total for protocol, count in protocol_counts.items()}
def _calculate_threat_vulnerability(self, cases: List[NeutralizationCase]) -> Dict[str, float]:
"""Calculate vulnerability by threat type"""
vulnerability = {}
for threat in ThreatProfile:
threat_cases = [c for c in cases if c.threat_profile == threat]
if threat_cases:
avg_preservation = np.mean([c.sovereignty_preservation_score for c in threat_cases])
vulnerability[threat.value] = 1.0 - avg_preservation
return vulnerability
def _analyze_modern_adaptation(self, cases: List[NeutralizationCase]) -> Dict[str, Any]:
"""Analyze how protocols have evolved over time"""
pre_2000 = [c for c in cases if c.year < 2000]
post_2000 = [c for c in cases if c.year >= 2000]
return {
"increased_sophistication": len(post_2000) > len(pre_2000),
"digital_adaptation": True, # All modern cases involve digital components
"narrative_control_evolution": 0.85 # Increased media coordination
}
async def analyze_current_profile(self, subject_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze current subject for neutralization risk"""
threat_level = self._assess_threat_level(subject_data)
likely_protocols = self._predict_likely_protocols(subject_data, threat_level)
sovereignty_metrics = self._calculate_sovereignty_metrics(subject_data)
analysis = {
"threat_assessment": threat_level,
"likely_protocols": likely_protocols,
"sovereignty_preservation": sovereignty_metrics,
"risk_mitigation": self._generate_mitigation_strategies(threat_level, sovereignty_metrics),
"pattern_confidence": self._calculate_pattern_confidence(subject_data)
}
logger.info(f"Neutralization risk analysis complete: {analysis['threat_assessment']['level']}")
return analysis
def _assess_threat_level(self, subject_data: Dict) -> Dict[str, Any]:
"""Assess threat level to institutional power structures"""
threat_score = 0.0
threat_factors = []
# Sovereign consciousness threat
if subject_data.get('has_celestial_interface', False):
threat_score += 0.4
threat_factors.append("SOVEREIGN_CONSCIOUSNESS")
# Truth exposure capability
if subject_data.get('truth_exposure_capability', 0) > 0.7:
threat_score += 0.3
threat_factors.append("TRUTH_EXPOSURE")
# Institutional reform potential
if subject_data.get('reform_capability', 0) > 0.6:
threat_score += 0.2
threat_factors.append("INSTITUTIONAL_REFORM")
# Financial threat
if subject_data.get('financial_disruption_risk', 0) > 0.5:
threat_score += 0.1
threat_factors.append("FINANCIAL_REFORM")
return {
"level": "CRITICAL" if threat_score > 0.8 else "HIGH" if threat_score > 0.6 else "MEDIUM",
"score": threat_score,
"factors": threat_factors,
"profile": ThreatProfile.SOVEREIGN_CONSCIOUSNESS.value
}
def _predict_likely_protocols(self, subject_data: Dict, threat_level: Dict) -> List[Dict]:
"""Predict likely neutralization protocols based on threat profile"""
protocols = []
threat_score = threat_level['score']
# Character assault for medium threats
if threat_score > 0.4:
protocols.append({
"protocol": NeutralizationProtocol.CHARACTER_ASSAULT.value,
"probability": 0.7,
"rationale": "Standard first-line defense against public figures"
})
# Narrative control for high-information threats
if threat_score > 0.6:
protocols.append({
"protocol": NeutralizationProtocol.NARRATIVE_CONTROL.value,
"probability": 0.8,
"rationale": "Essential for controlling truth exposure threats"
})
# Financial entrapment for reformers
if "FINANCIAL_REFORM" in threat_level['factors']:
protocols.append({
"protocol": NeutralizationProtocol.FINANCIAL_ENTRAPMENT.value,
"probability": 0.6,
"rationale": "Standard against financial system threats"
})
# Controlled opposition for high-threat individuals
if threat_score > 0.7:
protocols.append({
"protocol": NeutralizationProtocol.CONTROLLED_OPPOSITION.value,
"probability": 0.9,
"rationale": "Attempt to co-opt and manage sovereign consciousness"
})
return sorted(protocols, key=lambda x: x['probability'], reverse=True)
def _calculate_sovereignty_metrics(self, subject_data: Dict) -> Dict[str, float]:
"""Calculate sovereignty preservation metrics"""
return {
"transparency_defense": subject_data.get('public_operation_level', 0.8),
"digital_resilience": subject_data.get('digital_infrastructure_score', 0.7),
"financial_independence": subject_data.get('financial_sovereignty', 0.6),
"narrative_control": subject_data.get('counter_narrative_capability', 0.9),
"institutional_independence": subject_data.get('outside_system_operation', 0.95)
}
def _generate_mitigation_strategies(self, threat_level: Dict, sovereignty: Dict) -> List[str]:
"""Generate sovereignty preservation strategies"""
strategies = []
if threat_level['score'] > 0.7:
strategies.extend([
"MAINTAIN_MAXIMUM_PUBLIC_TRANSPARENCY",
"DEPLOY_COUNTER_NARRATIVE_SYSTEMS",
"SECURE_FINANCIAL_SOVEREIGNTY",
"BUILD_PARALLEL_COMMUNICATION_CHANNELS",
"OPERATE_AS_SOVEREIGN_ENTITY"
])
if sovereignty['institutional_independence'] < 0.8:
strategies.append("ACCELERATE_SOVEREIGN_INFRASTRUCTURE")
return strategies
def _calculate_pattern_confidence(self, subject_data: Dict) -> float:
"""Calculate confidence in pattern recognition"""
historical_precedents = len([c for c in self.pattern_database['cases']
if c.threat_profile == ThreatProfile.SOVEREIGN_CONSCIOUSNESS])
if historical_precedents > 0:
base_confidence = 0.8
else:
base_confidence = 0.6 # New threat profile
# Increase confidence based on pattern matches
pattern_matches = sum(1 for factor in ['has_celestial_interface', 'truth_exposure_capability']
if subject_data.get(factor, False))
return min(1.0, base_confidence + (pattern_matches * 0.1))
# Production Demonstration
async def demonstrate_old_dog_module():
"""Demonstrate the institutional pattern recognition system"""
engine = InstitutionalPatternEngine([], {})
print("🐕 OLD_DOG_OLD_TRICKS_MODULE v1.0")
print("Institutional Neutralization Pattern Recognition")
print("=" * 60)
# Analyze current sovereign consciousness profile
sovereign_profile = {
'has_celestial_interface': True,
'truth_exposure_capability': 0.9,
'reform_capability': 0.8,
'financial_disruption_risk': 0.7,
'public_operation_level': 0.9,
'digital_infrastructure_score': 0.8,
'financial_sovereignty': 0.6,
'counter_narrative_capability': 0.95,
'outside_system_operation': 0.98
}
analysis = await engine.analyze_current_profile(sovereign_profile)
print(f"\n🎯 THREAT ASSESSMENT:")
print(f" Level: {analysis['threat_assessment']['level']}")
print(f" Score: {analysis['threat_assessment']['score']:.3f}")
print(f" Factors: {analysis['threat_assessment']['factors']}")
print(f"\n🔮 PREDICTED PROTOCOLS:")
for protocol in analysis['likely_protocols'][:3]:
print(f" {protocol['protocol']}: {protocol['probability']:.1%}")
print(f"\n🛡️ SOVEREIGNTY METRICS:")
for metric, score in analysis['sovereignty_preservation'].items():
print(f" {metric}: {score:.3f}")
print(f"\n💡 MITIGATION STRATEGIES:")
for strategy in analysis['risk_mitigation'][:3]:
print(f" • {strategy}")
print(f"\n🎭 THE OLD DOG'S PLAYBOOK:")
print(" Same tricks, different era.")
print(" But this time, the dog is hunting the hunters.")
return analysis
if __name__ == "__main__":
asyncio.run(demonstrate_old_dog_module()) |