--- quantized_by: ubergarm pipeline_tag: text-generation base_model: moonshotai/Kimi-K2-Instruct-0905 license: other license_name: modified-mit license_link: https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905/blob/main/LICENSE base_model_relation: quantized tags: - mla - imatrix - conversational - ik_llama.cpp --- ## **WIP** - [x] download fp8 safetensors - [x] cast fp8 safetensors to bf16 safetensors - [x] convert to bf16 GGUF - [x] quantize Q8_0 without imatrix - [ ] calculate and upload imatrix from Q8_0 - [ ] begin quantizing and releasing Open a discussion if you have a specific target RAM+VRAM in mind for your rig and I'll see what I can do given the available quants. Cheers! ## `ik_llama.cpp` imatrix Quantizations of moonshotai/Kimi-K2-Instruct-0905 This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc! *NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants. Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP. These quants provide best in class perplexity for the given memory footprint. ## Big Thanks Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!! Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models! ## Quant Collection Compare with Perplexity of full size `Q8_0` TODO Final estimate: PPL = TODO ![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.") ### `smol-IQ4_KSS` TODO Final estimate: PPL = TODO
👈 Secret Recipe ```bash echo TODO ```
### `IQ3_KS` TODO Final estimate: PPL = TODO
👈 Secret Recipe ```bash echo TODO ```
### `IQ2_KL` TODO Final estimate: PPL = TODO
👈 Secret Recipe ```bash echo TODO ```
### `IQ2_KS` TODO Final estimate: PPL = TODO
👈 Secret Recipe ```bash echo TODO ```
### `IQ1_KT` TODO Final estimate: PPL = TODO
👈 Secret Recipe ```bash echo TODO ```
## Example Commands ### Hybrid (multiple) CUDA + CPU ```bash # Two CUDA devices with enough VRAM to offload more layers # Keep in mind Kimi-K2 starts at 1 unlike DeepSeek at 3 (first dense layers) ./build/bin/llama-server \ --model "$model"\ --alias ubergarm/Kimi-K2-Instruct-0905 \ --ctx-size 32768 \ -ctk q8_0 \ -fa -fmoe \ -mla 3 \ -ngl 99 \ -ot "blk\.(1|2|3)\.ffn_.*=CUDA0" \ -ot "blk\.(4|5|6)\.ffn_.*=CUDA1" \ -ot exps=CPU \ --parallel 1 \ --threads 48 \ --threads-batch 64 \ --host 127.0.0.1 \ --port 8080 ``` ### CPU-Only (no GPU) ```bash # compile cmake -B build -DGGML_CUDA=0 -DGGML_BLAS=0 -DGGML_VULKAN=0 cmake --build build --config Release -j $(nproc) # run server # single CPU of a dual socket rig configured one NUMA per socket numactl -N 0 -m 0 \ ./build/bin/llama-server \ --model "$model"\ --alias ubergarm/Kimi-K2-Instruct-0905 \ --ctx-size 98304 \ -ctk q8_0 \ -fa -fmoe \ -mla 3 \ --parallel 1 \ --threads 128 \ --threads-batch 192 \ --numa numactl \ --host 127.0.0.1 \ --port 8080 ``` ## References * [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)