File size: 17,992 Bytes
5eae6ef
4de9ffa
 
 
5eae6ef
 
 
4de9ffa
 
 
 
 
 
5eae6ef
4de9ffa
 
 
 
 
 
3df769d
4de9ffa
 
 
 
 
 
 
 
5603ec9
 
 
 
 
 
4de9ffa
7661aa5
4de9ffa
7661aa5
4de9ffa
 
 
4adc3f9
 
5603ec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79c4a58
7661aa5
4de9ffa
 
 
 
 
 
79c4a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
 
 
 
ac9738c
 
4de9ffa
 
 
 
 
 
ac9738c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
 
 
 
ac9738c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
534bcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e012333
 
534bcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79c4a58
 
4de9ffa
 
 
 
 
 
79c4a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
 
 
 
beec9f1
 
4de9ffa
 
 
 
 
 
beec9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
 
 
 
81a7251
 
 
 
 
 
 
 
ac9738c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a7251
 
 
 
 
 
4de9ffa
 
 
 
 
 
ac9738c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
---

quantized_by: ubergarm
pipeline_tag: text-generation
base_model: moonshotai/Kimi-K2-Instruct-0905
license: other
license_name: modified-mit
license_link: https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905/blob/main/LICENSE
base_model_relation: quantized
tags:
- mla
- imatrix
- conversational
- ik_llama.cpp
---


## `ik_llama.cpp` imatrix Quantizations of moonshotai/Kimi-K2-Instruct-0905

This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!



*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP. For pre-built Windows binaries of ik_llama.cpp check out [Thireus' fork here](https://github.com/Thireus/ik_llama.cpp/releases).



These quants provide best in class perplexity for the given memory footprint.



## Big Thanks

Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)!  **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!



Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!



## Notes



* The current imatrix dat file seems to be missing entries for just the single dense layer and shared expert so all my recipes are using `q8_0` for those.
* For notes on tool calling api endpoints checkout details from this PR: https://github.com/ikawrakow/ik_llama.cpp/pull/723

* `smol` here simply means the routed experts recipe uses the same quantization for down as well as (gate|up) tensors.



## Quant Collection

Compare with baseline perplexity of full size `Q8_0` 1016.117 GiB (8.504 BPW)

Final estimate: PPL = 2.4443 +/- 0.01175

![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")

### `smol-IQ5_KS` 632.664 GiB (5.295 BPW)

Final estimate: PPL = 2.4526 +/- 0.01182



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq5_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq5_ks

## Token embedding and output tensors (GPU)
token_embd\.weight=iq6_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ5_KS.gguf \

    IQ5_KS \

    192

```


</details>

### `smol-IQ4_KSS` 485.008 GiB (4.059 BPW)

Final estimate: PPL = 2.5185 +/- 0.01221



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq4_kss

blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss

## Token embedding and output tensors (GPU)
token_embd\.weight=iq6_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ4_KSS.gguf \

    IQ4_KSS \

    192

```


</details>

### `IQ4_KS` 553.624 GiB (4.633 BPW)

Final estimate: PPL = 2.4641 +/- 0.01190



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq5_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq4_ks

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 1 -m 1 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ4_KS.gguf \

    IQ4_KS \

    192

```


</details>

### `IQ3_KS` 420.558 GiB (3.520 BPW)

Final estimate: PPL = 2.5640 +/- 0.01262



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq4_kss

blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ3_KS.gguf \

    IQ3_KS \

    192

```


</details>

### `smol-IQ3_KS` 388.258 GiB (3.249 BPW)

Final estimate: PPL = 2.5902 +/- 0.01284



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq3_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ3_KS.gguf \

    IQ3_KS \

    192

```


</details>

### `IQ2_KL` 358.419 GiB (3.000 BPW)

Final estimate: PPL = 2.7993 +/- 0.01416



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq3_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ2_KL.gguf \

    IQ2_KL \

    192

```


</details>

### `smol-IQ2_KL` 329.195 GiB (2.755 BPW)

Final estimate: PPL = 2.9294 +/- 0.01499



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq2_kl

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 1 -m 1 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ2_KL.gguf \

    IQ2_KL \

    192

```


</details>

### `IQ2_KS` 289.820 GiB (2.425 BPW)

Final estimate: PPL = 3.2478 +/- 0.01721



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq2_kl

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 1 -m 1 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ2_KS.gguf \

    IQ2_KS \

    192

```


</details>

### `smol-IQ2_KS` 270.133 GiB (2.261 BPW)

Final estimate: PPL = 3.4977 +/- 0.01924



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq2_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ2_KS.gguf \

    IQ2_KS \

    192

```


</details>

### `smol-IQ1_KT` 218.936 GiB (1.832 BPW)

Final estimate: PPL = 4.2224 +/- 0.02443



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq1_kt

blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt

## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ1_KT.gguf \

    IQ1_KT \

    192

```


</details>

## Example Commands
### Hybrid (multiple) CUDA + CPU
```bash

# Two CUDA devices with enough VRAM to offload more layers

# Keep in mind Kimi-K2 starts at 1 unlike DeepSeek at 3 (first dense layers)

./build/bin/llama-server \

    --model "$model"\

    --alias ubergarm/Kimi-K2-Instruct-0905 \

    --ctx-size 32768 \

    -ctk q8_0 \

    -fa -fmoe \

    -mla 3 \

    -ngl 99 \

    -ot "blk\.(1|2|3)\.ffn_.*=CUDA0" \

    -ot "blk\.(4|5|6)\.ffn_.*=CUDA1" \

    -ot exps=CPU \

    --parallel 1 \

    --threads 48 \

    --threads-batch 64 \

    --host 127.0.0.1 \

    --port 8080

```

### CPU-Only (no GPU)
```bash

# compile

cmake -B build -DGGML_CUDA=0 -DGGML_BLAS=0 -DGGML_VULKAN=0

cmake --build build --config Release -j $(nproc)



# run server

# single CPU of a dual socket rig configured one NUMA per socket

numactl -N 0 -m 0 \

./build/bin/llama-server \

    --model "$model"\

    --alias ubergarm/Kimi-K2-Instruct-0905 \

    --ctx-size 98304 \

    -ctk q8_0 \

    -fa -fmoe \

    -mla 3 \

    --parallel 1 \

    --threads 128 \

    --threads-batch 192 \

    --numa numactl \

    --host 127.0.0.1 \

    --port 8080

```

## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)