File size: 5,767 Bytes
5eae6ef
4de9ffa
 
 
5eae6ef
 
 
4de9ffa
 
 
 
 
 
5eae6ef
4de9ffa
 
 
dc2eccf
fba5f84
ec4abe9
 
beec9f1
 
 
 
 
 
4de9ffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beec9f1
 
4de9ffa
 
 
 
 
 
beec9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de9ffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---

quantized_by: ubergarm
pipeline_tag: text-generation
base_model: moonshotai/Kimi-K2-Instruct-0905
license: other
license_name: modified-mit
license_link: https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905/blob/main/LICENSE
base_model_relation: quantized
tags:
- mla
- imatrix
- conversational
- ik_llama.cpp
---


## **WIP**

- [x] download fp8 safetensors
- [x] cast fp8 safetensors to bf16 safetensors
- [x] convert to bf16 GGUF
- [x] quantize Q8_0 without imatrix

- [x] calculate and upload imatrix from Q8_0 (note imatrix is missing data for a few tensors: https://huggingface.co/ubergarm/Kimi-K2-Instruct-0905-GGUF/discussions/1#68bc58de31fa67452e075b9f )
- [x] begin quantizing and releasing
- [x] IQ2_KS

- [ ] smol-IQ4_KSS
- [ ] smol-IQ2_KL

- [ ] etc...



Open a discussion if you have a specific target RAM+VRAM in mind for your rig and I'll see what I can do given the available quants. Cheers!



## `ik_llama.cpp` imatrix Quantizations of moonshotai/Kimi-K2-Instruct-0905
This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!

*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP.

These quants provide best in class perplexity for the given memory footprint.

## Big Thanks
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)!  **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!

Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!

## Quant Collection
Compare with Perplexity of full size `Q8_0` TODO

Final estimate: PPL = TODO

![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")

### `smol-IQ4_KSS` TODO

Final estimate: PPL = TODO



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

echo TODO

```



</details>



### `IQ3_KS` TODO
Final estimate: PPL = TODO

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash

echo TODO

```

</details>


### `IQ2_KL` TODO

Final estimate: PPL = TODO



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

echo TODO

```



</details>



### `IQ2_KS` 289.820 GiB (2.425 BPW)
Final estimate: PPL = 3.2478 +/- 0.01721

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash

#!/usr/bin/env bash



custom="

## Attention [0-60] (GPU)

blk\..*\.attn_k_b\.weight=q8_0

blk\..*\.attn_v_b\.weight=q8_0



# Balance of attn tensors

blk\..*\.attn_kv_a_mqa\.weight=q8_0

blk\..*\.attn_q_a\.weight=q8_0

blk\..*\.attn_q_b\.weight=q8_0

blk\..*\.attn_output\.weight=q8_0



## First Single Dense Layer [0] (GPU)

blk\..*\.ffn_down\.weight=q8_0

blk\..*\.ffn_(gate|up)\.weight=q8_0



## Shared Expert [1-60] (GPU)

blk\..*\.ffn_down_shexp\.weight=q8_0

blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0



## Routed Experts [1-60] (CPU)

blk\..*\.ffn_down_exps\.weight=iq2_kl

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks



## Token embedding and output tensors (GPU)

token_embd\.weight=iq4_k

output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 1 -m 1 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \

    /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ2_KS.gguf \

    IQ2_KS \

    192

```

</details>

### `IQ1_KT` TODO

Final estimate: PPL = TODO



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

echo TODO

```



</details>



## Example Commands

### Hybrid (multiple) CUDA + CPU

```bash

# Two CUDA devices with enough VRAM to offload more layers

# Keep in mind Kimi-K2 starts at 1 unlike DeepSeek at 3 (first dense layers)

./build/bin/llama-server \

    --model "$model"\

    --alias ubergarm/Kimi-K2-Instruct-0905 \

    --ctx-size 32768 \

    -ctk q8_0 \
    -fa -fmoe \

    -mla 3 \

    -ngl 99 \

    -ot "blk\.(1|2|3)\.ffn_.*=CUDA0" \

    -ot "blk\.(4|5|6)\.ffn_.*=CUDA1" \

    -ot exps=CPU \

    --parallel 1 \

    --threads 48 \

    --threads-batch 64 \

    --host 127.0.0.1 \

    --port 8080

```


### CPU-Only (no GPU)
```bash

# compile

cmake -B build -DGGML_CUDA=0 -DGGML_BLAS=0 -DGGML_VULKAN=0

cmake --build build --config Release -j $(nproc)



# run server

# single CPU of a dual socket rig configured one NUMA per socket

numactl -N 0 -m 0 \

./build/bin/llama-server \

    --model "$model"\

    --alias ubergarm/Kimi-K2-Instruct-0905 \

    --ctx-size 98304 \

    -ctk q8_0 \

    -fa -fmoe \

    -mla 3 \

    --parallel 1 \

    --threads 128 \

    --threads-batch 192 \

    --numa numactl \

    --host 127.0.0.1 \

    --port 8080

```

## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)