chantera commited on
Commit
9aa06da
·
verified ·
1 Parent(s): ea479f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -184
README.md CHANGED
@@ -1,199 +1,161 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
4
+ language:
5
+ - ja
6
+ - en
7
+ tags:
8
+ - vila
9
+ - nvila
10
+ - conversational
11
+ - multimodal
12
+ base_model:
13
+ - Qwen/Qwen2.5-0.5B-Instruct
14
+ - Efficient-Large-Model/paligemma-siglip-so400m-patch14-448
15
+ pipeline_tag: image-text-to-text
16
  ---
17
+ # Heron-NVILA-Lite-1B-hf
18
+
19
+ Heron-NVILA-Lite-1B-hf is a vision language model trained for Japanese, based on the [NVILA](https://arxiv.org/abs/2412.04468)-Lite architecture.
20
+ This implementation is compatible with [transformers.AutoModelForImageTextToText](https://huggingface.co/docs/transformers/main/en/tasks/image_text_to_text).
21
+
22
+ ## Model Overview
23
+
24
+ * **Developer**: [Turing Inc.](https://www.turing-motors.com/)
25
+ * **Vision Encoder**: [paligemma-siglip-so400m-patch14-448](https://huggingface.co/Efficient-Large-Model/paligemma-siglip-so400m-patch14-448)
26
+ * **Projector**: mlp_downsample_2x2_fix
27
+ * **LLM**: [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)
28
+ * **Supported Languages**: Japanese, English
29
+
30
+ ## Setup
31
+
32
+ ```bash
33
+ # We have developed this implementation with `transformers==4.57.1`. Other versions of transformers may also work, but we have not tested them.
34
+ pip install "transformers[torch]==4.57.1" pillow
35
+ ```
36
+
37
+ ## Usage
38
+
39
+ ```python
40
+ from transformers import AutoConfig, AutoModelForImageTextToText, AutoProcessor
41
+
42
+ MODEL_NAME = "turing-motors/Heron-NVILA-Lite-1B-hf"
43
+
44
+ # you can use config
45
+ config = AutoConfig.from_pretrained(MODEL_NAME, trust_remote_code=True)
46
+ model = AutoModelForImageTextToText.from_config(config, trust_remote_code=True)
47
+
48
+ # or directly from_pretrained
49
+ model = AutoModelForImageTextToText.from_pretrained(MODEL_NAME, trust_remote_code=True, device_map="auto")
50
+
51
+ # load processor
52
+ processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
53
+
54
+ # show chat_template
55
+ print(processor.tokenizer.chat_template)
56
+
57
+ def generate_content(content: str, images: list | None = None, **kwargs) -> str:
58
+ conversation = [{"role": "user", "content": content}]
59
+ text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
60
+ encoding = processor(text=text, images=images, return_tensors="pt").to(model.device)
61
+ output = model.generate(**encoding, **kwargs)
62
+ return processor.decode(output[0, len(encoding["input_ids"][0]):], skip_special_tokens=True)
63
+
64
+ # examples generate with raw text
65
+ response = generate_content("こんにちは")
66
+ print(response)
67
+ print("---" * 40)
68
+
69
+ # examples generate with text + image
70
+ from PIL import Image
71
+ import requests
72
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
73
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
74
+ response = generate_content("<image>\n画像を説明してください。", images=[image])
75
+ print(response)
76
+ print("---" * 40)
77
+
78
+ # examples generate using generation_config
79
+ from PIL import Image
80
+ import requests
81
+ from transformers import GenerationConfig
82
+ generation_config = {
83
+ "max_new_tokens": 512,
84
+ "temperature": 0.5,
85
+ "do_sample": True,
86
+ }
87
+ generation_config = GenerationConfig(**generation_config)
88
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
89
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
90
+ response = generate_content(
91
+ "<image>\n画像を説明してください。",
92
+ images=[image],
93
+ generation_config=generation_config
94
+ )
95
+ print(response)
96
+ print("---" * 40)
97
+
98
+ # examples generate with text + image + text + image + text
99
+ from PIL import Image
100
+ import requests
101
+ url_list = [
102
+ "https://images.unsplash.com/photo-1694831404826-3400c48c188d?q=80&w=2070&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D",
103
+ "https://images.unsplash.com/photo-1693240876439-473af88b4ed7?q=80&w=1974&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
104
+ ]
105
+ images = [
106
+ Image.open(requests.get(url, stream=True).raw).convert("RGB") for url in url_list
107
+ ]
108
+ response = generate_content("".join([
109
+ "<image>\n",
110
+ "これは日本の画像です",
111
+ "<image>\n",
112
+ "これはオーストリアの画像です",
113
+ "各画像の違いを説明して"]), images)
114
+ print(response)
115
+ print("---" * 40)
116
+ ```
117
+
118
+ ## Training Summary
119
+
120
+ | Stage | Training | Data Sources | Samples |
121
+ |--------|-------------------------------|-------------------------------|-------------|
122
+ | Stage1 | Projector | [Japanese image text pairs](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-japanese-image-text-pairs), [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) | 1.1M |
123
+ | Stage2 | Projector, LLM | Filtered [MOMIJI](https://huggingface.co/datasets/turing-motors/MOMIJI) (CC-MAIN-2024-46, CC-MAIN-2024-51, CC-MAIN-2025-05) | 13M |
124
+ | | | [Japanese image text pairs (subset)](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-japanese-image-text-pairs), [Japanese interleaved data (subset)](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-japanese-interleaved-data), [mmc4-core (subset)](https://github.com/allenai/mmc4), [coyo-700m (subset)](https://huggingface.co/datasets/kakaobrain/coyo-700m), [wikipedia_ja](https://huggingface.co/datasets/turing-motors/Wikipedia-Vision-JA), [llava_pretrain_ja](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA), [stair_captions](http://captions.stair.center/) | 20M |
125
+ | Stage3 | Vision Encoder, Projector, LLM | [llava-instruct-v1_5-en-subset-358k](https://huggingface.co/datasets/llm-jp/llava-instruct-v1_5-en-subset-358k), [llava-instruct-ja](https://huggingface.co/datasets/llm-jp/llava-instruct-ja), [japanese-photos-conv](https://huggingface.co/datasets/llm-jp/japanese-photos-conversation), [ja-vg-vqa](https://huggingface.co/datasets/llm-jp/ja-vg-vqa-conversation), [synthdog-ja (subset)](https://huggingface.co/datasets/naver-clova-ix/synthdog-ja), [ai2d](https://huggingface.co/datasets/lmms-lab/ai2d), [synthdog-en](https://huggingface.co/datasets/naver-clova-ix/synthdog-en), [sherlock](https://github.com/allenai/sherlock) | 1.1M |
126
 
127
  ## Evaluation
128
 
129
+ I used [llm-jp-eval-mm](https://github.com/llm-jp/llm-jp-eval-mm) for this evaluation. Scores for models other than Heron-NVILA-Lite and Sarashina2-Vision-14B were taken from [llm-jp-eval-mm leaderboard](https://llm-jp.github.io/llm-jp-eval-mm/) as of March 2025 and the [Asagi website](https://uehara-mech.github.io/asagi-vlm?v=1). Heron-NVILA-Lite and Sarashina2-Vision-14B were evaluated using llm-as-a-judge with "gpt-4o-2024-05-13". Sarashina2-Vision-14B was evaluated on the [official blog](https://www.sbintuitions.co.jp/blog/entry/2025/03/17/111703) using "gpt-4o-2024-08-06"; please note that due to differing evaluation conditions, the results for Sarashina2-Vision-14B should be treated as reference only.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
 
131
 
132
+ | Model | LLM Size | Heron-Bench overall LLM (%) | JA-VLM-Bench-In-the-Wild LLM (/5.0) | JA-VG-VQA-500 LLM (/5.0) |
133
+ |--------------------------------|----------|------------------------------|-------------------------------------|--------------------------|
134
+ | **Heron-NVILA-Lite-1B** | 0.5B | 45.9 | 2.92 | 3.16 |
135
+ | **[Heron-NVILA-Lite-2B](https://huggingface.co/turing-motors/Heron-NVILA-Lite-2B)** | 1.5B | 52.8 | 3.52 | 3.50 |
136
+ | **[Heron-NVILA-Lite-15B](https://huggingface.co/turing-motors/Heron-NVILA-Lite-15B)** | 14B | 59.6 | 4.2 | 3.82 |
137
+ | [LLaVA-CALM2-SigLIP](https://huggingface.co/cyberagent/llava-calm2-siglip) | 7B | 43.3 | 3.15 | 3.21 |
138
+ | [Llama-3-EvoVLM-JP-v2](https://huggingface.co/SakanaAI/Llama-3-EvoVLM-JP-v2) | 8B | 39.3 | 2.92 | 2.96 |
139
+ | [VILA-jp](https://huggingface.co/llm-jp/llm-jp-3-vila-14b) | 13B | 57.2 | 3.69 | 3.62 |
140
+ | [Asagi-14B](https://huggingface.co/MIL-UT/Asagi-14B) | 13B | 55.8 | 3.44 | 3.84 |
141
+ | [Sarashina2-Vision-14B](https://huggingface.co/sbintuitions/sarashina2-vision-14b) | 13B | 50.9 | 4.1 | 3.43 |
142
+ | [Qwen2-VL 7B Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) | 7B | 55.5 | 3.61 | 3.6 |
143
+ | GPT-4o | - | 87.6 | 3.85 | 3.58 |
144
 
145
+ ## Risks and Limitations
146
 
147
+ This model is experimental and has not been thoroughly calibrated for ethical compliance or legal standards. Caution is advised for sensitive applications.
148
 
149
+ ## License
150
 
151
+ - Model weights are licensed under [Apache License 2.0](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE).
152
+ - Users must comply with [OpenAI terms of use](https://openai.com/policies/terms-of-use) due to the inclusion of GPT-4-generated synthetic data.
153
 
154
+ ## Acknowledgements
155
 
156
+ This model is based on results obtained from a project, JPNP20017, subsidized by the New Energy and Industrial Technology Development Organization (NEDO).
157
 
158
+ I would like to acknowledge the use of the following open-source repositories:
159
 
160
+ - [VILA](https://github.com/NVlabs/VILA)
161
+ - [llm-jp-eval-mm](https://github.com/llm-jp/llm-jp-eval-mm)