File size: 10,241 Bytes
ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 d979769 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 0b0c3e1 ea479f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from collections.abc import Mapping
from functools import lru_cache
from typing import Unpack, cast
import numpy as np
import torch
from PIL.Image import Image
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_processing_utils import BaseImageProcessor
from transformers.image_transforms import to_pil_image
from transformers.image_utils import ImageInput, make_flat_list_of_images
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TextInput
class HeronImagesKwargs(ImagesKwargs):
min_tiles: int | None
max_tiles: int | None
class HeronProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: HeronImagesKwargs # type: ignore[misc]
_defaults = { # type: ignore
"text_kwargs": {
"return_mm_token_type_ids": False,
},
"images_kwargs": {
"min_tiles": 1,
"max_tiles": 12,
},
}
class HeronProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") # type: ignore[assignment]
image_processor: BaseImageProcessor
tokenizer: PreTrainedTokenizerBase
def __init__(self, image_processor, tokenizer, chat_template=None, num_image_features: int = 256, **kwargs):
image_token = kwargs.pop("image_token", None)
if image_token is None:
image_token = "<image>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
assert isinstance(image_token, str)
image_token_id = tokenizer.convert_tokens_to_ids(image_token)
if image_token_id is None:
raise ValueError(f"tokenizer does not contain {image_token!r} token")
self.num_image_features = num_image_features
self.image_token = tokenizer.image_token = image_token
self.image_token_id = tokenizer.image_token_id = image_token_id
super().__init__(image_processor, tokenizer, chat_template=chat_template, **kwargs)
def __call__( # type: ignore[override]
self,
text: TextInput | list[TextInput],
images: ImageInput | None = None,
**kwargs: Unpack[HeronProcessorKwargs],
) -> BatchFeature:
output_kwargs = self._merge_kwargs(
HeronProcessorKwargs, # type: ignore[arg-type]
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if not isinstance(text, list):
text = [text]
assert isinstance(text, list)
if images is not None:
images = cast(list, make_flat_list_of_images(images))
images = [to_pil_image(image) for image in images]
image_inputs: Mapping = {}
num_image_tiles = None
if images is not None:
if sum(s.count(self.image_token) for s in text) != len(images):
raise ValueError("the number of images does not match the number of image tokens in the text")
image_inputs = self.process_images(images, **output_kwargs["images_kwargs"])
num_image_tiles = image_inputs["pixel_values"].shape[1]
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
text_inputs = self.process_text(text, num_image_tiles, **output_kwargs["text_kwargs"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
def process_text(
self, text: list[str], num_image_tiles: int | None = None, **kwargs: Unpack[TextKwargs]
) -> BatchEncoding:
if all(self.image_token not in prompt for prompt in text):
return self.tokenizer(text, **kwargs)
if num_image_tiles is None:
raise ValueError("num_image_tiles must be specified when processing image tokens")
image_feature_placeholder = self.image_token * self.num_image_features
# NOTE: Original implementation appends an extra newline after image features.
# https://github.com/NVlabs/VILA/blob/36f6adcd11a10be1580caeb7e647e1b6f8517f89/llava/model/encoders/image/basic.py#L38
# Instead of appending a newline character, this implementation reserves 1 extra token to be replaced later.
# This treatment is needed because "\n\n" is tokenized as [271] instead of [198, 198].
assert self.tokenizer.eos_token is not None
image_feature_placeholder += self.tokenizer.eos_token
# Expand image tokens according to the number of image features and tiles
processed_text = []
for prompt in text:
new_prompt = prompt
assert "<placeholder>" not in new_prompt
replace_strings = []
while self.image_token in new_prompt:
replace_strings.append("\n".join([image_feature_placeholder] * num_image_tiles))
new_prompt = new_prompt.replace(self.image_token, "<placeholder>", 1)
for s in replace_strings:
new_prompt = new_prompt.replace("<placeholder>", s, 1)
processed_text.append(new_prompt)
encoding = self.tokenizer(processed_text, **kwargs)
# Replace the last token of every image tile with the newline token
token_ids = self.tokenizer.encode("\n")
assert len(token_ids) == 1
newline_token_id = token_ids[0]
for input_ids in encoding.input_ids:
i, n = 0, len(input_ids)
while i < n:
if input_ids[i] != self.image_token_id:
i += 1
continue
i += self.num_image_features
input_ids[i] = newline_token_id
i += 1
self._check_special_mm_tokens(processed_text, encoding, modalities=["image"]) # type: ignore[arg-type]
return encoding
def process_images(
self,
images: list[Image],
min_tiles: int = 1,
max_tiles: int = 12,
**kwargs: Unpack[ImagesKwargs],
) -> BatchFeature:
assert isinstance(min_tiles, int) and isinstance(max_tiles, int)
crop_size = self.image_processor.size # type: ignore[attr-defined]
assert crop_size["height"] == crop_size["width"]
return_tensors = kwargs.pop("return_tensors", None) # type: ignore[typeddict-item]
pixel_values = []
for image in images:
image_tiles = _dynamic_preprocess(
image, min_num=min_tiles, max_num=max_tiles, image_size=crop_size["height"]
)
pixel_values.append(self.image_processor(image_tiles, **kwargs, return_tensors="pt")["pixel_values"])
return BatchFeature({"pixel_values": torch.stack(pixel_values)}, tensor_type=return_tensors)
# Adapted from https://github.com/NVlabs/VILA/blob/36f6adcd11a10be1580caeb7e647e1b6f8517f89/llava/mm_utils.py#L296
def _dynamic_preprocess(
image: Image, min_num: int, max_num: int, image_size: int, use_thumbnail: bool = True
) -> list[Image]:
if image.mode != "RGB":
image = image.convert("RGB")
orig_width, orig_height = image.size
(target_width, target_height), crop_boxes = _calculate_crops(orig_width, orig_height, image_size, min_num, max_num)
resized_img = image.resize((target_width, target_height))
processed_images = [resized_img.crop(box) for box in crop_boxes]
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
@lru_cache(maxsize=32)
def _calculate_crops(
width: int, height: int, crop_size: int, min_num: int, max_num: int
) -> tuple[tuple[int, int], list[tuple[int, int, int, int]]]:
aspect_ratio = width / height
# calculate the existing image aspect ratio
target_ratio_set = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if min_num <= i * j <= max_num
}
target_ratios = sorted(target_ratio_set, key=lambda x: x[0] * x[1])
# Find the closest aspect ratio to the target
target_aspect_ratio = _find_closest_aspect_ratio(
aspect_ratio,
target_ratios,
width,
height,
crop_size,
)
# calculate the target width and height
target_width = crop_size * target_aspect_ratio[0]
target_height = crop_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
crop_boxes = []
for i in range(blocks):
box = (
(i % (target_width // crop_size)) * crop_size,
(i // (target_width // crop_size)) * crop_size,
((i % (target_width // crop_size)) + 1) * crop_size,
((i // (target_width // crop_size)) + 1) * crop_size,
)
crop_boxes.append(box)
return (target_width, target_height), crop_boxes
# Copied from https://github.com/NVlabs/VILA/blob/36f6adcd11a10be1580caeb7e647e1b6f8517f89/llava/mm_utils.py#L280
def _find_closest_aspect_ratio(
aspect_ratio: float, target_ratios: list[tuple[int, int]], width: int, height: int, image_size: int
) -> tuple[int, int]:
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
|