Commit
·
f14ec11
1
Parent(s):
4e4a281
Upload checkpoints
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- checkpoints/.DS_Store +0 -0
- checkpoints/checkpoint-1000/README.md +202 -0
- checkpoints/checkpoint-1000/adapter_config.json +29 -0
- checkpoints/checkpoint-1000/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoints/checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoints/checkpoint-1000/latest +1 -0
- checkpoints/checkpoint-1000/rng_state.pth +3 -0
- checkpoints/checkpoint-1000/scheduler.pt +3 -0
- checkpoints/checkpoint-1000/special_tokens_map.json +24 -0
- checkpoints/checkpoint-1000/tokenizer.json +0 -0
- checkpoints/checkpoint-1000/tokenizer_config.json +42 -0
- checkpoints/checkpoint-1000/trainer_state.json +737 -0
- checkpoints/checkpoint-1000/training_args.bin +3 -0
- checkpoints/checkpoint-1000/zero_to_fp32.py +604 -0
- checkpoints/checkpoint-1500/README.md +202 -0
- checkpoints/checkpoint-1500/adapter_config.json +29 -0
- checkpoints/checkpoint-1500/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-1500/global_step1500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoints/checkpoint-1500/global_step1500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoints/checkpoint-1500/latest +1 -0
- checkpoints/checkpoint-1500/rng_state.pth +3 -0
- checkpoints/checkpoint-1500/scheduler.pt +3 -0
- checkpoints/checkpoint-1500/special_tokens_map.json +24 -0
- checkpoints/checkpoint-1500/tokenizer.json +0 -0
- checkpoints/checkpoint-1500/tokenizer_config.json +42 -0
- checkpoints/checkpoint-1500/trainer_state.json +1095 -0
- checkpoints/checkpoint-1500/training_args.bin +3 -0
- checkpoints/checkpoint-1500/zero_to_fp32.py +604 -0
- checkpoints/checkpoint-2000/README.md +202 -0
- checkpoints/checkpoint-2000/adapter_config.json +29 -0
- checkpoints/checkpoint-2000/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoints/checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoints/checkpoint-2000/latest +1 -0
- checkpoints/checkpoint-2000/rng_state.pth +3 -0
- checkpoints/checkpoint-2000/scheduler.pt +3 -0
- checkpoints/checkpoint-2000/special_tokens_map.json +24 -0
- checkpoints/checkpoint-2000/tokenizer.json +0 -0
- checkpoints/checkpoint-2000/tokenizer_config.json +42 -0
- checkpoints/checkpoint-2000/trainer_state.json +1453 -0
- checkpoints/checkpoint-2000/training_args.bin +3 -0
- checkpoints/checkpoint-2000/zero_to_fp32.py +604 -0
- checkpoints/checkpoint-2500/README.md +202 -0
- checkpoints/checkpoint-2500/adapter_config.json +29 -0
- checkpoints/checkpoint-2500/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-2500/global_step2500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": "gaussian",
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 32,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 8,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"v_proj",
|
| 24 |
+
"q_proj"
|
| 25 |
+
],
|
| 26 |
+
"task_type": "CAUSAL_LM",
|
| 27 |
+
"use_dora": false,
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc12271f98dc5360edbd7b573143dee888c2dcd38b2bfc2fd39140291875ebb8
|
| 3 |
+
size 5919456
|
checkpoints/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
checkpoints/checkpoint-1000/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-1000/adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": "gaussian",
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 32,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 8,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"v_proj",
|
| 24 |
+
"q_proj"
|
| 25 |
+
],
|
| 26 |
+
"task_type": "CAUSAL_LM",
|
| 27 |
+
"use_dora": false,
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
checkpoints/checkpoint-1000/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d0b71af557e40475bbd0ed5580b1163fc1e5813e6f18549c162fde489d38b7f
|
| 3 |
+
size 5919456
|
checkpoints/checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4a4c216a05e414bd591cc3e065a79ed8d7d527e52eb808fce6d214c43d12a8a
|
| 3 |
+
size 35393392
|
checkpoints/checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3394fcb77dc912f199fe9c2ebfb5a65dd81faa98b7bd60c9a238314ef859fcee
|
| 3 |
+
size 183275
|
checkpoints/checkpoint-1000/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1000
|
checkpoints/checkpoint-1000/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8e0d9241eef1fbbb5da2f0e430c8a311fd2376d925c255c8ae5c0b1105086c8
|
| 3 |
+
size 14244
|
checkpoints/checkpoint-1000/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fac7b4ec7da78a13fae6d5e24455e41750b089d8c7eca1f0a65f95de6385bb8
|
| 3 |
+
size 1064
|
checkpoints/checkpoint-1000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
checkpoints/checkpoint-1000/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoints/checkpoint-1000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bos_token": "<s>",
|
| 31 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": true,
|
| 35 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
+
"pad_token": "</s>",
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"unk_token": "<unk>",
|
| 41 |
+
"use_default_system_prompt": false
|
| 42 |
+
}
|
checkpoints/checkpoint-1000/trainer_state.json
ADDED
|
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.5350454788657036,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 1000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.01,
|
| 13 |
+
"grad_norm": 7.3019086777975994,
|
| 14 |
+
"learning_rate": 5e-06,
|
| 15 |
+
"loss": 0.6939,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.01,
|
| 20 |
+
"grad_norm": 5.150989333266983,
|
| 21 |
+
"learning_rate": 1e-05,
|
| 22 |
+
"loss": 0.7167,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.02,
|
| 27 |
+
"grad_norm": 3.640558809610037,
|
| 28 |
+
"learning_rate": 1.5e-05,
|
| 29 |
+
"loss": 0.5683,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.02,
|
| 34 |
+
"grad_norm": 7.517999397731128,
|
| 35 |
+
"learning_rate": 2e-05,
|
| 36 |
+
"loss": 0.5472,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.03,
|
| 41 |
+
"grad_norm": 1.9687061679463425,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 0.4439,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.03,
|
| 48 |
+
"grad_norm": 3.643479206523606,
|
| 49 |
+
"learning_rate": 3e-05,
|
| 50 |
+
"loss": 0.2486,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.04,
|
| 55 |
+
"grad_norm": 2.2754773308695095,
|
| 56 |
+
"learning_rate": 3.5e-05,
|
| 57 |
+
"loss": 0.2217,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.04,
|
| 62 |
+
"grad_norm": 1.7144730049127388,
|
| 63 |
+
"learning_rate": 4e-05,
|
| 64 |
+
"loss": 0.169,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.05,
|
| 69 |
+
"grad_norm": 3.4702829704135114,
|
| 70 |
+
"learning_rate": 4.5e-05,
|
| 71 |
+
"loss": 0.1994,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.05,
|
| 76 |
+
"grad_norm": 1.3985127340985621,
|
| 77 |
+
"learning_rate": 5e-05,
|
| 78 |
+
"loss": 0.1612,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.06,
|
| 83 |
+
"grad_norm": 1.375992184386137,
|
| 84 |
+
"learning_rate": 4.982758620689655e-05,
|
| 85 |
+
"loss": 0.1576,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.06,
|
| 90 |
+
"grad_norm": 1.9528635753013313,
|
| 91 |
+
"learning_rate": 4.9655172413793107e-05,
|
| 92 |
+
"loss": 0.1393,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.07,
|
| 97 |
+
"grad_norm": 4.075169010198401,
|
| 98 |
+
"learning_rate": 4.9482758620689655e-05,
|
| 99 |
+
"loss": 0.1969,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.07,
|
| 104 |
+
"grad_norm": 2.0953991165751207,
|
| 105 |
+
"learning_rate": 4.931034482758621e-05,
|
| 106 |
+
"loss": 0.1294,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.08,
|
| 111 |
+
"grad_norm": 1.942660591044849,
|
| 112 |
+
"learning_rate": 4.913793103448276e-05,
|
| 113 |
+
"loss": 0.1306,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.09,
|
| 118 |
+
"grad_norm": 3.1508904015728345,
|
| 119 |
+
"learning_rate": 4.896551724137931e-05,
|
| 120 |
+
"loss": 0.1526,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.09,
|
| 125 |
+
"grad_norm": 1.9862795165358471,
|
| 126 |
+
"learning_rate": 4.8793103448275864e-05,
|
| 127 |
+
"loss": 0.1186,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.1,
|
| 132 |
+
"grad_norm": 2.633061833817991,
|
| 133 |
+
"learning_rate": 4.862068965517241e-05,
|
| 134 |
+
"loss": 0.1457,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.1,
|
| 139 |
+
"grad_norm": 1.8017052368446178,
|
| 140 |
+
"learning_rate": 4.844827586206897e-05,
|
| 141 |
+
"loss": 0.1234,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.11,
|
| 146 |
+
"grad_norm": 2.1560694100709803,
|
| 147 |
+
"learning_rate": 4.827586206896552e-05,
|
| 148 |
+
"loss": 0.1346,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.11,
|
| 153 |
+
"grad_norm": 1.5737689267430703,
|
| 154 |
+
"learning_rate": 4.810344827586207e-05,
|
| 155 |
+
"loss": 0.116,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.12,
|
| 160 |
+
"grad_norm": 1.957864677854788,
|
| 161 |
+
"learning_rate": 4.793103448275863e-05,
|
| 162 |
+
"loss": 0.1692,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.12,
|
| 167 |
+
"grad_norm": 2.215039223521855,
|
| 168 |
+
"learning_rate": 4.7758620689655176e-05,
|
| 169 |
+
"loss": 0.1245,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.13,
|
| 174 |
+
"grad_norm": 1.370517239734168,
|
| 175 |
+
"learning_rate": 4.7586206896551725e-05,
|
| 176 |
+
"loss": 0.1476,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.13,
|
| 181 |
+
"grad_norm": 1.7341334563022532,
|
| 182 |
+
"learning_rate": 4.741379310344828e-05,
|
| 183 |
+
"loss": 0.1236,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.14,
|
| 188 |
+
"grad_norm": 1.5994298113068974,
|
| 189 |
+
"learning_rate": 4.724137931034483e-05,
|
| 190 |
+
"loss": 0.1161,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.14,
|
| 195 |
+
"grad_norm": 1.5317433190951963,
|
| 196 |
+
"learning_rate": 4.7068965517241385e-05,
|
| 197 |
+
"loss": 0.1035,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.15,
|
| 202 |
+
"grad_norm": 2.191977732539556,
|
| 203 |
+
"learning_rate": 4.689655172413793e-05,
|
| 204 |
+
"loss": 0.1427,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.16,
|
| 209 |
+
"grad_norm": 1.6038667570691656,
|
| 210 |
+
"learning_rate": 4.672413793103448e-05,
|
| 211 |
+
"loss": 0.1225,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.16,
|
| 216 |
+
"grad_norm": 2.577572731831179,
|
| 217 |
+
"learning_rate": 4.655172413793104e-05,
|
| 218 |
+
"loss": 0.1399,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.17,
|
| 223 |
+
"grad_norm": 1.6199241001441385,
|
| 224 |
+
"learning_rate": 4.6379310344827586e-05,
|
| 225 |
+
"loss": 0.1242,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.17,
|
| 230 |
+
"grad_norm": 2.236577821186196,
|
| 231 |
+
"learning_rate": 4.6206896551724135e-05,
|
| 232 |
+
"loss": 0.1656,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.18,
|
| 237 |
+
"grad_norm": 1.7294690605254757,
|
| 238 |
+
"learning_rate": 4.603448275862069e-05,
|
| 239 |
+
"loss": 0.1382,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.18,
|
| 244 |
+
"grad_norm": 2.196527516378511,
|
| 245 |
+
"learning_rate": 4.586206896551724e-05,
|
| 246 |
+
"loss": 0.1257,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.19,
|
| 251 |
+
"grad_norm": 2.1057444340221463,
|
| 252 |
+
"learning_rate": 4.5689655172413794e-05,
|
| 253 |
+
"loss": 0.1238,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.19,
|
| 258 |
+
"grad_norm": 1.5409556870328274,
|
| 259 |
+
"learning_rate": 4.551724137931035e-05,
|
| 260 |
+
"loss": 0.1383,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.2,
|
| 265 |
+
"grad_norm": 1.5204083616874053,
|
| 266 |
+
"learning_rate": 4.53448275862069e-05,
|
| 267 |
+
"loss": 0.1068,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.2,
|
| 272 |
+
"grad_norm": 2.3557725298931746,
|
| 273 |
+
"learning_rate": 4.5172413793103454e-05,
|
| 274 |
+
"loss": 0.1071,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.21,
|
| 279 |
+
"grad_norm": 3.2601538460418644,
|
| 280 |
+
"learning_rate": 4.5e-05,
|
| 281 |
+
"loss": 0.125,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.21,
|
| 286 |
+
"grad_norm": 1.9031725385762286,
|
| 287 |
+
"learning_rate": 4.482758620689655e-05,
|
| 288 |
+
"loss": 0.0991,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.22,
|
| 293 |
+
"grad_norm": 1.3946050262183123,
|
| 294 |
+
"learning_rate": 4.465517241379311e-05,
|
| 295 |
+
"loss": 0.1156,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.22,
|
| 300 |
+
"grad_norm": 1.097644875106397,
|
| 301 |
+
"learning_rate": 4.4482758620689656e-05,
|
| 302 |
+
"loss": 0.1366,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.23,
|
| 307 |
+
"grad_norm": 1.37846299019108,
|
| 308 |
+
"learning_rate": 4.431034482758621e-05,
|
| 309 |
+
"loss": 0.126,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.24,
|
| 314 |
+
"grad_norm": 1.8340152889320331,
|
| 315 |
+
"learning_rate": 4.413793103448276e-05,
|
| 316 |
+
"loss": 0.1066,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.24,
|
| 321 |
+
"grad_norm": 1.8304505611337867,
|
| 322 |
+
"learning_rate": 4.396551724137931e-05,
|
| 323 |
+
"loss": 0.0868,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.25,
|
| 328 |
+
"grad_norm": 1.550196490898523,
|
| 329 |
+
"learning_rate": 4.3793103448275864e-05,
|
| 330 |
+
"loss": 0.1286,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.25,
|
| 335 |
+
"grad_norm": 2.176112247796248,
|
| 336 |
+
"learning_rate": 4.362068965517241e-05,
|
| 337 |
+
"loss": 0.1206,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.26,
|
| 342 |
+
"grad_norm": 1.6589263894091213,
|
| 343 |
+
"learning_rate": 4.344827586206897e-05,
|
| 344 |
+
"loss": 0.1008,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.26,
|
| 349 |
+
"grad_norm": 1.8349611508902046,
|
| 350 |
+
"learning_rate": 4.327586206896552e-05,
|
| 351 |
+
"loss": 0.1198,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.27,
|
| 356 |
+
"grad_norm": 2.1218964920724126,
|
| 357 |
+
"learning_rate": 4.3103448275862066e-05,
|
| 358 |
+
"loss": 0.1166,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.27,
|
| 363 |
+
"eval_loss": 0.6078919172286987,
|
| 364 |
+
"eval_runtime": 116.8471,
|
| 365 |
+
"eval_samples_per_second": 11.288,
|
| 366 |
+
"eval_steps_per_second": 2.824,
|
| 367 |
+
"step": 500
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.27,
|
| 371 |
+
"grad_norm": 2.5775141311007856,
|
| 372 |
+
"learning_rate": 4.293103448275863e-05,
|
| 373 |
+
"loss": 0.1124,
|
| 374 |
+
"step": 510
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.28,
|
| 378 |
+
"grad_norm": 1.6019517017800202,
|
| 379 |
+
"learning_rate": 4.275862068965518e-05,
|
| 380 |
+
"loss": 0.1068,
|
| 381 |
+
"step": 520
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.28,
|
| 385 |
+
"grad_norm": 2.6901962755310205,
|
| 386 |
+
"learning_rate": 4.2586206896551725e-05,
|
| 387 |
+
"loss": 0.1286,
|
| 388 |
+
"step": 530
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.29,
|
| 392 |
+
"grad_norm": 3.9517995356721767,
|
| 393 |
+
"learning_rate": 4.241379310344828e-05,
|
| 394 |
+
"loss": 0.1149,
|
| 395 |
+
"step": 540
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.29,
|
| 399 |
+
"grad_norm": 2.0428896228074076,
|
| 400 |
+
"learning_rate": 4.224137931034483e-05,
|
| 401 |
+
"loss": 0.141,
|
| 402 |
+
"step": 550
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.3,
|
| 406 |
+
"grad_norm": 2.263258592133553,
|
| 407 |
+
"learning_rate": 4.2068965517241385e-05,
|
| 408 |
+
"loss": 0.0949,
|
| 409 |
+
"step": 560
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.3,
|
| 413 |
+
"grad_norm": 1.4823165953974604,
|
| 414 |
+
"learning_rate": 4.1896551724137934e-05,
|
| 415 |
+
"loss": 0.1365,
|
| 416 |
+
"step": 570
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.31,
|
| 420 |
+
"grad_norm": 1.4441377020989878,
|
| 421 |
+
"learning_rate": 4.172413793103448e-05,
|
| 422 |
+
"loss": 0.1015,
|
| 423 |
+
"step": 580
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.32,
|
| 427 |
+
"grad_norm": 1.4779059254436886,
|
| 428 |
+
"learning_rate": 4.155172413793104e-05,
|
| 429 |
+
"loss": 0.0988,
|
| 430 |
+
"step": 590
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.32,
|
| 434 |
+
"grad_norm": 1.7777823671018818,
|
| 435 |
+
"learning_rate": 4.1379310344827587e-05,
|
| 436 |
+
"loss": 0.1124,
|
| 437 |
+
"step": 600
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.33,
|
| 441 |
+
"grad_norm": 1.737579831138191,
|
| 442 |
+
"learning_rate": 4.120689655172414e-05,
|
| 443 |
+
"loss": 0.086,
|
| 444 |
+
"step": 610
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.33,
|
| 448 |
+
"grad_norm": 2.708453961232997,
|
| 449 |
+
"learning_rate": 4.103448275862069e-05,
|
| 450 |
+
"loss": 0.0933,
|
| 451 |
+
"step": 620
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.34,
|
| 455 |
+
"grad_norm": 1.8871805824236731,
|
| 456 |
+
"learning_rate": 4.086206896551724e-05,
|
| 457 |
+
"loss": 0.1407,
|
| 458 |
+
"step": 630
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.34,
|
| 462 |
+
"grad_norm": 1.7300112722427339,
|
| 463 |
+
"learning_rate": 4.0689655172413795e-05,
|
| 464 |
+
"loss": 0.1224,
|
| 465 |
+
"step": 640
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.35,
|
| 469 |
+
"grad_norm": 1.4631236252240614,
|
| 470 |
+
"learning_rate": 4.0517241379310344e-05,
|
| 471 |
+
"loss": 0.1014,
|
| 472 |
+
"step": 650
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.35,
|
| 476 |
+
"grad_norm": 1.2602431597419264,
|
| 477 |
+
"learning_rate": 4.03448275862069e-05,
|
| 478 |
+
"loss": 0.1583,
|
| 479 |
+
"step": 660
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.36,
|
| 483 |
+
"grad_norm": 1.2077937041919453,
|
| 484 |
+
"learning_rate": 4.0172413793103455e-05,
|
| 485 |
+
"loss": 0.1209,
|
| 486 |
+
"step": 670
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.36,
|
| 490 |
+
"grad_norm": 1.4386184566429954,
|
| 491 |
+
"learning_rate": 4e-05,
|
| 492 |
+
"loss": 0.1016,
|
| 493 |
+
"step": 680
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.37,
|
| 497 |
+
"grad_norm": 2.6160358835758584,
|
| 498 |
+
"learning_rate": 3.982758620689656e-05,
|
| 499 |
+
"loss": 0.1062,
|
| 500 |
+
"step": 690
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.37,
|
| 504 |
+
"grad_norm": 1.9278794640498955,
|
| 505 |
+
"learning_rate": 3.965517241379311e-05,
|
| 506 |
+
"loss": 0.1037,
|
| 507 |
+
"step": 700
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.38,
|
| 511 |
+
"grad_norm": 1.2872571900237024,
|
| 512 |
+
"learning_rate": 3.9482758620689656e-05,
|
| 513 |
+
"loss": 0.096,
|
| 514 |
+
"step": 710
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.39,
|
| 518 |
+
"grad_norm": 1.243554309347296,
|
| 519 |
+
"learning_rate": 3.931034482758621e-05,
|
| 520 |
+
"loss": 0.1084,
|
| 521 |
+
"step": 720
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.39,
|
| 525 |
+
"grad_norm": 1.5090589714253309,
|
| 526 |
+
"learning_rate": 3.913793103448276e-05,
|
| 527 |
+
"loss": 0.0877,
|
| 528 |
+
"step": 730
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.4,
|
| 532 |
+
"grad_norm": 2.1419550623025168,
|
| 533 |
+
"learning_rate": 3.896551724137931e-05,
|
| 534 |
+
"loss": 0.0994,
|
| 535 |
+
"step": 740
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.4,
|
| 539 |
+
"grad_norm": 1.7807417973632438,
|
| 540 |
+
"learning_rate": 3.8793103448275865e-05,
|
| 541 |
+
"loss": 0.1029,
|
| 542 |
+
"step": 750
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.41,
|
| 546 |
+
"grad_norm": 1.3342960263057682,
|
| 547 |
+
"learning_rate": 3.862068965517241e-05,
|
| 548 |
+
"loss": 0.1072,
|
| 549 |
+
"step": 760
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.41,
|
| 553 |
+
"grad_norm": 2.3865282340158136,
|
| 554 |
+
"learning_rate": 3.844827586206897e-05,
|
| 555 |
+
"loss": 0.1193,
|
| 556 |
+
"step": 770
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.42,
|
| 560 |
+
"grad_norm": 1.5428742248459941,
|
| 561 |
+
"learning_rate": 3.827586206896552e-05,
|
| 562 |
+
"loss": 0.1156,
|
| 563 |
+
"step": 780
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.42,
|
| 567 |
+
"grad_norm": 1.7660532115509044,
|
| 568 |
+
"learning_rate": 3.8103448275862066e-05,
|
| 569 |
+
"loss": 0.122,
|
| 570 |
+
"step": 790
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.43,
|
| 574 |
+
"grad_norm": 1.8149742752994733,
|
| 575 |
+
"learning_rate": 3.793103448275862e-05,
|
| 576 |
+
"loss": 0.1346,
|
| 577 |
+
"step": 800
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.43,
|
| 581 |
+
"grad_norm": 1.7456408876472995,
|
| 582 |
+
"learning_rate": 3.775862068965517e-05,
|
| 583 |
+
"loss": 0.1223,
|
| 584 |
+
"step": 810
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.44,
|
| 588 |
+
"grad_norm": 1.10163248244056,
|
| 589 |
+
"learning_rate": 3.7586206896551726e-05,
|
| 590 |
+
"loss": 0.1031,
|
| 591 |
+
"step": 820
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.44,
|
| 595 |
+
"grad_norm": 1.6441057737088702,
|
| 596 |
+
"learning_rate": 3.741379310344828e-05,
|
| 597 |
+
"loss": 0.1059,
|
| 598 |
+
"step": 830
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.45,
|
| 602 |
+
"grad_norm": 2.3999279790163484,
|
| 603 |
+
"learning_rate": 3.724137931034483e-05,
|
| 604 |
+
"loss": 0.1125,
|
| 605 |
+
"step": 840
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.45,
|
| 609 |
+
"grad_norm": 2.2081477934156903,
|
| 610 |
+
"learning_rate": 3.7068965517241385e-05,
|
| 611 |
+
"loss": 0.1266,
|
| 612 |
+
"step": 850
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.46,
|
| 616 |
+
"grad_norm": 2.366783771480017,
|
| 617 |
+
"learning_rate": 3.6896551724137934e-05,
|
| 618 |
+
"loss": 0.1127,
|
| 619 |
+
"step": 860
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.47,
|
| 623 |
+
"grad_norm": 1.3077873674136173,
|
| 624 |
+
"learning_rate": 3.672413793103448e-05,
|
| 625 |
+
"loss": 0.1095,
|
| 626 |
+
"step": 870
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.47,
|
| 630 |
+
"grad_norm": 1.8197812508114701,
|
| 631 |
+
"learning_rate": 3.655172413793104e-05,
|
| 632 |
+
"loss": 0.0932,
|
| 633 |
+
"step": 880
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.48,
|
| 637 |
+
"grad_norm": 1.0806192057981219,
|
| 638 |
+
"learning_rate": 3.637931034482759e-05,
|
| 639 |
+
"loss": 0.1166,
|
| 640 |
+
"step": 890
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.48,
|
| 644 |
+
"grad_norm": 1.520666439337001,
|
| 645 |
+
"learning_rate": 3.620689655172414e-05,
|
| 646 |
+
"loss": 0.0883,
|
| 647 |
+
"step": 900
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.49,
|
| 651 |
+
"grad_norm": 1.690002270629302,
|
| 652 |
+
"learning_rate": 3.603448275862069e-05,
|
| 653 |
+
"loss": 0.1199,
|
| 654 |
+
"step": 910
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.49,
|
| 658 |
+
"grad_norm": 1.4319374130118003,
|
| 659 |
+
"learning_rate": 3.586206896551724e-05,
|
| 660 |
+
"loss": 0.0991,
|
| 661 |
+
"step": 920
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.5,
|
| 665 |
+
"grad_norm": 1.0626084369653164,
|
| 666 |
+
"learning_rate": 3.5689655172413795e-05,
|
| 667 |
+
"loss": 0.0923,
|
| 668 |
+
"step": 930
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.5,
|
| 672 |
+
"grad_norm": 2.0848060597460902,
|
| 673 |
+
"learning_rate": 3.5517241379310344e-05,
|
| 674 |
+
"loss": 0.0979,
|
| 675 |
+
"step": 940
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.51,
|
| 679 |
+
"grad_norm": 1.4997189461483256,
|
| 680 |
+
"learning_rate": 3.53448275862069e-05,
|
| 681 |
+
"loss": 0.0949,
|
| 682 |
+
"step": 950
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.51,
|
| 686 |
+
"grad_norm": 1.7887817042743388,
|
| 687 |
+
"learning_rate": 3.517241379310345e-05,
|
| 688 |
+
"loss": 0.1135,
|
| 689 |
+
"step": 960
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.52,
|
| 693 |
+
"grad_norm": 3.242965692388458,
|
| 694 |
+
"learning_rate": 3.5e-05,
|
| 695 |
+
"loss": 0.1315,
|
| 696 |
+
"step": 970
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.52,
|
| 700 |
+
"grad_norm": 1.5034762176322083,
|
| 701 |
+
"learning_rate": 3.482758620689655e-05,
|
| 702 |
+
"loss": 0.1177,
|
| 703 |
+
"step": 980
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.53,
|
| 707 |
+
"grad_norm": 1.6679474444200848,
|
| 708 |
+
"learning_rate": 3.465517241379311e-05,
|
| 709 |
+
"loss": 0.1182,
|
| 710 |
+
"step": 990
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.54,
|
| 714 |
+
"grad_norm": 2.814574507251776,
|
| 715 |
+
"learning_rate": 3.4482758620689657e-05,
|
| 716 |
+
"loss": 0.0912,
|
| 717 |
+
"step": 1000
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.54,
|
| 721 |
+
"eval_loss": 0.6101276874542236,
|
| 722 |
+
"eval_runtime": 113.9995,
|
| 723 |
+
"eval_samples_per_second": 11.57,
|
| 724 |
+
"eval_steps_per_second": 2.895,
|
| 725 |
+
"step": 1000
|
| 726 |
+
}
|
| 727 |
+
],
|
| 728 |
+
"logging_steps": 10,
|
| 729 |
+
"max_steps": 3000,
|
| 730 |
+
"num_input_tokens_seen": 0,
|
| 731 |
+
"num_train_epochs": 2,
|
| 732 |
+
"save_steps": 500,
|
| 733 |
+
"total_flos": 28899016704000.0,
|
| 734 |
+
"train_batch_size": 4,
|
| 735 |
+
"trial_name": null,
|
| 736 |
+
"trial_params": null
|
| 737 |
+
}
|
checkpoints/checkpoint-1000/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22266252322e6977894297b61731ca9228c8fcfe4e8d788aef270218c40fec98
|
| 3 |
+
size 6776
|
checkpoints/checkpoint-1000/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/checkpoint-1500/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-1500/adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": "gaussian",
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 32,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 8,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"v_proj",
|
| 24 |
+
"q_proj"
|
| 25 |
+
],
|
| 26 |
+
"task_type": "CAUSAL_LM",
|
| 27 |
+
"use_dora": false,
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
checkpoints/checkpoint-1500/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de9e2856e08d5173f8e2af8a3753fd4b9d7ff846b54a5ff0c58f7c3f5766adbd
|
| 3 |
+
size 5919456
|
checkpoints/checkpoint-1500/global_step1500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84bae28b1e6bf0e12a34d4a32f9f04cc7dacf4cb9fcc31079d3efe068b295712
|
| 3 |
+
size 35393392
|
checkpoints/checkpoint-1500/global_step1500/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e17a037ee17783aebea4d60a2ca9224419f83386c47c8f19b0e070d416c5d008
|
| 3 |
+
size 183275
|
checkpoints/checkpoint-1500/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1500
|
checkpoints/checkpoint-1500/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ff7bfe3bfc07bfdf7a752b2b29572987f4902cac1a5149315d94e9b25b3c90a
|
| 3 |
+
size 14244
|
checkpoints/checkpoint-1500/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf4ee1a21cac7b0db9a6509d4738739668da3752503f4e308a0d5e0435a00c03
|
| 3 |
+
size 1064
|
checkpoints/checkpoint-1500/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
checkpoints/checkpoint-1500/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoints/checkpoint-1500/tokenizer_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bos_token": "<s>",
|
| 31 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": true,
|
| 35 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
+
"pad_token": "</s>",
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"unk_token": "<unk>",
|
| 41 |
+
"use_default_system_prompt": false
|
| 42 |
+
}
|
checkpoints/checkpoint-1500/trainer_state.json
ADDED
|
@@ -0,0 +1,1095 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.8025682182985554,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 1500,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.01,
|
| 13 |
+
"grad_norm": 7.3019086777975994,
|
| 14 |
+
"learning_rate": 5e-06,
|
| 15 |
+
"loss": 0.6939,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.01,
|
| 20 |
+
"grad_norm": 5.150989333266983,
|
| 21 |
+
"learning_rate": 1e-05,
|
| 22 |
+
"loss": 0.7167,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.02,
|
| 27 |
+
"grad_norm": 3.640558809610037,
|
| 28 |
+
"learning_rate": 1.5e-05,
|
| 29 |
+
"loss": 0.5683,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.02,
|
| 34 |
+
"grad_norm": 7.517999397731128,
|
| 35 |
+
"learning_rate": 2e-05,
|
| 36 |
+
"loss": 0.5472,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.03,
|
| 41 |
+
"grad_norm": 1.9687061679463425,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 0.4439,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.03,
|
| 48 |
+
"grad_norm": 3.643479206523606,
|
| 49 |
+
"learning_rate": 3e-05,
|
| 50 |
+
"loss": 0.2486,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.04,
|
| 55 |
+
"grad_norm": 2.2754773308695095,
|
| 56 |
+
"learning_rate": 3.5e-05,
|
| 57 |
+
"loss": 0.2217,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.04,
|
| 62 |
+
"grad_norm": 1.7144730049127388,
|
| 63 |
+
"learning_rate": 4e-05,
|
| 64 |
+
"loss": 0.169,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.05,
|
| 69 |
+
"grad_norm": 3.4702829704135114,
|
| 70 |
+
"learning_rate": 4.5e-05,
|
| 71 |
+
"loss": 0.1994,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.05,
|
| 76 |
+
"grad_norm": 1.3985127340985621,
|
| 77 |
+
"learning_rate": 5e-05,
|
| 78 |
+
"loss": 0.1612,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.06,
|
| 83 |
+
"grad_norm": 1.375992184386137,
|
| 84 |
+
"learning_rate": 4.982758620689655e-05,
|
| 85 |
+
"loss": 0.1576,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.06,
|
| 90 |
+
"grad_norm": 1.9528635753013313,
|
| 91 |
+
"learning_rate": 4.9655172413793107e-05,
|
| 92 |
+
"loss": 0.1393,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.07,
|
| 97 |
+
"grad_norm": 4.075169010198401,
|
| 98 |
+
"learning_rate": 4.9482758620689655e-05,
|
| 99 |
+
"loss": 0.1969,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.07,
|
| 104 |
+
"grad_norm": 2.0953991165751207,
|
| 105 |
+
"learning_rate": 4.931034482758621e-05,
|
| 106 |
+
"loss": 0.1294,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.08,
|
| 111 |
+
"grad_norm": 1.942660591044849,
|
| 112 |
+
"learning_rate": 4.913793103448276e-05,
|
| 113 |
+
"loss": 0.1306,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.09,
|
| 118 |
+
"grad_norm": 3.1508904015728345,
|
| 119 |
+
"learning_rate": 4.896551724137931e-05,
|
| 120 |
+
"loss": 0.1526,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.09,
|
| 125 |
+
"grad_norm": 1.9862795165358471,
|
| 126 |
+
"learning_rate": 4.8793103448275864e-05,
|
| 127 |
+
"loss": 0.1186,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.1,
|
| 132 |
+
"grad_norm": 2.633061833817991,
|
| 133 |
+
"learning_rate": 4.862068965517241e-05,
|
| 134 |
+
"loss": 0.1457,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.1,
|
| 139 |
+
"grad_norm": 1.8017052368446178,
|
| 140 |
+
"learning_rate": 4.844827586206897e-05,
|
| 141 |
+
"loss": 0.1234,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.11,
|
| 146 |
+
"grad_norm": 2.1560694100709803,
|
| 147 |
+
"learning_rate": 4.827586206896552e-05,
|
| 148 |
+
"loss": 0.1346,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.11,
|
| 153 |
+
"grad_norm": 1.5737689267430703,
|
| 154 |
+
"learning_rate": 4.810344827586207e-05,
|
| 155 |
+
"loss": 0.116,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.12,
|
| 160 |
+
"grad_norm": 1.957864677854788,
|
| 161 |
+
"learning_rate": 4.793103448275863e-05,
|
| 162 |
+
"loss": 0.1692,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.12,
|
| 167 |
+
"grad_norm": 2.215039223521855,
|
| 168 |
+
"learning_rate": 4.7758620689655176e-05,
|
| 169 |
+
"loss": 0.1245,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.13,
|
| 174 |
+
"grad_norm": 1.370517239734168,
|
| 175 |
+
"learning_rate": 4.7586206896551725e-05,
|
| 176 |
+
"loss": 0.1476,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.13,
|
| 181 |
+
"grad_norm": 1.7341334563022532,
|
| 182 |
+
"learning_rate": 4.741379310344828e-05,
|
| 183 |
+
"loss": 0.1236,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.14,
|
| 188 |
+
"grad_norm": 1.5994298113068974,
|
| 189 |
+
"learning_rate": 4.724137931034483e-05,
|
| 190 |
+
"loss": 0.1161,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.14,
|
| 195 |
+
"grad_norm": 1.5317433190951963,
|
| 196 |
+
"learning_rate": 4.7068965517241385e-05,
|
| 197 |
+
"loss": 0.1035,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.15,
|
| 202 |
+
"grad_norm": 2.191977732539556,
|
| 203 |
+
"learning_rate": 4.689655172413793e-05,
|
| 204 |
+
"loss": 0.1427,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.16,
|
| 209 |
+
"grad_norm": 1.6038667570691656,
|
| 210 |
+
"learning_rate": 4.672413793103448e-05,
|
| 211 |
+
"loss": 0.1225,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.16,
|
| 216 |
+
"grad_norm": 2.577572731831179,
|
| 217 |
+
"learning_rate": 4.655172413793104e-05,
|
| 218 |
+
"loss": 0.1399,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.17,
|
| 223 |
+
"grad_norm": 1.6199241001441385,
|
| 224 |
+
"learning_rate": 4.6379310344827586e-05,
|
| 225 |
+
"loss": 0.1242,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.17,
|
| 230 |
+
"grad_norm": 2.236577821186196,
|
| 231 |
+
"learning_rate": 4.6206896551724135e-05,
|
| 232 |
+
"loss": 0.1656,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.18,
|
| 237 |
+
"grad_norm": 1.7294690605254757,
|
| 238 |
+
"learning_rate": 4.603448275862069e-05,
|
| 239 |
+
"loss": 0.1382,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.18,
|
| 244 |
+
"grad_norm": 2.196527516378511,
|
| 245 |
+
"learning_rate": 4.586206896551724e-05,
|
| 246 |
+
"loss": 0.1257,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.19,
|
| 251 |
+
"grad_norm": 2.1057444340221463,
|
| 252 |
+
"learning_rate": 4.5689655172413794e-05,
|
| 253 |
+
"loss": 0.1238,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.19,
|
| 258 |
+
"grad_norm": 1.5409556870328274,
|
| 259 |
+
"learning_rate": 4.551724137931035e-05,
|
| 260 |
+
"loss": 0.1383,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.2,
|
| 265 |
+
"grad_norm": 1.5204083616874053,
|
| 266 |
+
"learning_rate": 4.53448275862069e-05,
|
| 267 |
+
"loss": 0.1068,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.2,
|
| 272 |
+
"grad_norm": 2.3557725298931746,
|
| 273 |
+
"learning_rate": 4.5172413793103454e-05,
|
| 274 |
+
"loss": 0.1071,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.21,
|
| 279 |
+
"grad_norm": 3.2601538460418644,
|
| 280 |
+
"learning_rate": 4.5e-05,
|
| 281 |
+
"loss": 0.125,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.21,
|
| 286 |
+
"grad_norm": 1.9031725385762286,
|
| 287 |
+
"learning_rate": 4.482758620689655e-05,
|
| 288 |
+
"loss": 0.0991,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.22,
|
| 293 |
+
"grad_norm": 1.3946050262183123,
|
| 294 |
+
"learning_rate": 4.465517241379311e-05,
|
| 295 |
+
"loss": 0.1156,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.22,
|
| 300 |
+
"grad_norm": 1.097644875106397,
|
| 301 |
+
"learning_rate": 4.4482758620689656e-05,
|
| 302 |
+
"loss": 0.1366,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.23,
|
| 307 |
+
"grad_norm": 1.37846299019108,
|
| 308 |
+
"learning_rate": 4.431034482758621e-05,
|
| 309 |
+
"loss": 0.126,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.24,
|
| 314 |
+
"grad_norm": 1.8340152889320331,
|
| 315 |
+
"learning_rate": 4.413793103448276e-05,
|
| 316 |
+
"loss": 0.1066,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.24,
|
| 321 |
+
"grad_norm": 1.8304505611337867,
|
| 322 |
+
"learning_rate": 4.396551724137931e-05,
|
| 323 |
+
"loss": 0.0868,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.25,
|
| 328 |
+
"grad_norm": 1.550196490898523,
|
| 329 |
+
"learning_rate": 4.3793103448275864e-05,
|
| 330 |
+
"loss": 0.1286,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.25,
|
| 335 |
+
"grad_norm": 2.176112247796248,
|
| 336 |
+
"learning_rate": 4.362068965517241e-05,
|
| 337 |
+
"loss": 0.1206,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.26,
|
| 342 |
+
"grad_norm": 1.6589263894091213,
|
| 343 |
+
"learning_rate": 4.344827586206897e-05,
|
| 344 |
+
"loss": 0.1008,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.26,
|
| 349 |
+
"grad_norm": 1.8349611508902046,
|
| 350 |
+
"learning_rate": 4.327586206896552e-05,
|
| 351 |
+
"loss": 0.1198,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.27,
|
| 356 |
+
"grad_norm": 2.1218964920724126,
|
| 357 |
+
"learning_rate": 4.3103448275862066e-05,
|
| 358 |
+
"loss": 0.1166,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.27,
|
| 363 |
+
"eval_loss": 0.6078919172286987,
|
| 364 |
+
"eval_runtime": 116.8471,
|
| 365 |
+
"eval_samples_per_second": 11.288,
|
| 366 |
+
"eval_steps_per_second": 2.824,
|
| 367 |
+
"step": 500
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.27,
|
| 371 |
+
"grad_norm": 2.5775141311007856,
|
| 372 |
+
"learning_rate": 4.293103448275863e-05,
|
| 373 |
+
"loss": 0.1124,
|
| 374 |
+
"step": 510
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.28,
|
| 378 |
+
"grad_norm": 1.6019517017800202,
|
| 379 |
+
"learning_rate": 4.275862068965518e-05,
|
| 380 |
+
"loss": 0.1068,
|
| 381 |
+
"step": 520
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.28,
|
| 385 |
+
"grad_norm": 2.6901962755310205,
|
| 386 |
+
"learning_rate": 4.2586206896551725e-05,
|
| 387 |
+
"loss": 0.1286,
|
| 388 |
+
"step": 530
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.29,
|
| 392 |
+
"grad_norm": 3.9517995356721767,
|
| 393 |
+
"learning_rate": 4.241379310344828e-05,
|
| 394 |
+
"loss": 0.1149,
|
| 395 |
+
"step": 540
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.29,
|
| 399 |
+
"grad_norm": 2.0428896228074076,
|
| 400 |
+
"learning_rate": 4.224137931034483e-05,
|
| 401 |
+
"loss": 0.141,
|
| 402 |
+
"step": 550
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.3,
|
| 406 |
+
"grad_norm": 2.263258592133553,
|
| 407 |
+
"learning_rate": 4.2068965517241385e-05,
|
| 408 |
+
"loss": 0.0949,
|
| 409 |
+
"step": 560
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.3,
|
| 413 |
+
"grad_norm": 1.4823165953974604,
|
| 414 |
+
"learning_rate": 4.1896551724137934e-05,
|
| 415 |
+
"loss": 0.1365,
|
| 416 |
+
"step": 570
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.31,
|
| 420 |
+
"grad_norm": 1.4441377020989878,
|
| 421 |
+
"learning_rate": 4.172413793103448e-05,
|
| 422 |
+
"loss": 0.1015,
|
| 423 |
+
"step": 580
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.32,
|
| 427 |
+
"grad_norm": 1.4779059254436886,
|
| 428 |
+
"learning_rate": 4.155172413793104e-05,
|
| 429 |
+
"loss": 0.0988,
|
| 430 |
+
"step": 590
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.32,
|
| 434 |
+
"grad_norm": 1.7777823671018818,
|
| 435 |
+
"learning_rate": 4.1379310344827587e-05,
|
| 436 |
+
"loss": 0.1124,
|
| 437 |
+
"step": 600
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.33,
|
| 441 |
+
"grad_norm": 1.737579831138191,
|
| 442 |
+
"learning_rate": 4.120689655172414e-05,
|
| 443 |
+
"loss": 0.086,
|
| 444 |
+
"step": 610
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.33,
|
| 448 |
+
"grad_norm": 2.708453961232997,
|
| 449 |
+
"learning_rate": 4.103448275862069e-05,
|
| 450 |
+
"loss": 0.0933,
|
| 451 |
+
"step": 620
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.34,
|
| 455 |
+
"grad_norm": 1.8871805824236731,
|
| 456 |
+
"learning_rate": 4.086206896551724e-05,
|
| 457 |
+
"loss": 0.1407,
|
| 458 |
+
"step": 630
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.34,
|
| 462 |
+
"grad_norm": 1.7300112722427339,
|
| 463 |
+
"learning_rate": 4.0689655172413795e-05,
|
| 464 |
+
"loss": 0.1224,
|
| 465 |
+
"step": 640
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.35,
|
| 469 |
+
"grad_norm": 1.4631236252240614,
|
| 470 |
+
"learning_rate": 4.0517241379310344e-05,
|
| 471 |
+
"loss": 0.1014,
|
| 472 |
+
"step": 650
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.35,
|
| 476 |
+
"grad_norm": 1.2602431597419264,
|
| 477 |
+
"learning_rate": 4.03448275862069e-05,
|
| 478 |
+
"loss": 0.1583,
|
| 479 |
+
"step": 660
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.36,
|
| 483 |
+
"grad_norm": 1.2077937041919453,
|
| 484 |
+
"learning_rate": 4.0172413793103455e-05,
|
| 485 |
+
"loss": 0.1209,
|
| 486 |
+
"step": 670
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.36,
|
| 490 |
+
"grad_norm": 1.4386184566429954,
|
| 491 |
+
"learning_rate": 4e-05,
|
| 492 |
+
"loss": 0.1016,
|
| 493 |
+
"step": 680
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.37,
|
| 497 |
+
"grad_norm": 2.6160358835758584,
|
| 498 |
+
"learning_rate": 3.982758620689656e-05,
|
| 499 |
+
"loss": 0.1062,
|
| 500 |
+
"step": 690
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.37,
|
| 504 |
+
"grad_norm": 1.9278794640498955,
|
| 505 |
+
"learning_rate": 3.965517241379311e-05,
|
| 506 |
+
"loss": 0.1037,
|
| 507 |
+
"step": 700
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.38,
|
| 511 |
+
"grad_norm": 1.2872571900237024,
|
| 512 |
+
"learning_rate": 3.9482758620689656e-05,
|
| 513 |
+
"loss": 0.096,
|
| 514 |
+
"step": 710
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.39,
|
| 518 |
+
"grad_norm": 1.243554309347296,
|
| 519 |
+
"learning_rate": 3.931034482758621e-05,
|
| 520 |
+
"loss": 0.1084,
|
| 521 |
+
"step": 720
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.39,
|
| 525 |
+
"grad_norm": 1.5090589714253309,
|
| 526 |
+
"learning_rate": 3.913793103448276e-05,
|
| 527 |
+
"loss": 0.0877,
|
| 528 |
+
"step": 730
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.4,
|
| 532 |
+
"grad_norm": 2.1419550623025168,
|
| 533 |
+
"learning_rate": 3.896551724137931e-05,
|
| 534 |
+
"loss": 0.0994,
|
| 535 |
+
"step": 740
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.4,
|
| 539 |
+
"grad_norm": 1.7807417973632438,
|
| 540 |
+
"learning_rate": 3.8793103448275865e-05,
|
| 541 |
+
"loss": 0.1029,
|
| 542 |
+
"step": 750
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.41,
|
| 546 |
+
"grad_norm": 1.3342960263057682,
|
| 547 |
+
"learning_rate": 3.862068965517241e-05,
|
| 548 |
+
"loss": 0.1072,
|
| 549 |
+
"step": 760
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.41,
|
| 553 |
+
"grad_norm": 2.3865282340158136,
|
| 554 |
+
"learning_rate": 3.844827586206897e-05,
|
| 555 |
+
"loss": 0.1193,
|
| 556 |
+
"step": 770
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.42,
|
| 560 |
+
"grad_norm": 1.5428742248459941,
|
| 561 |
+
"learning_rate": 3.827586206896552e-05,
|
| 562 |
+
"loss": 0.1156,
|
| 563 |
+
"step": 780
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.42,
|
| 567 |
+
"grad_norm": 1.7660532115509044,
|
| 568 |
+
"learning_rate": 3.8103448275862066e-05,
|
| 569 |
+
"loss": 0.122,
|
| 570 |
+
"step": 790
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.43,
|
| 574 |
+
"grad_norm": 1.8149742752994733,
|
| 575 |
+
"learning_rate": 3.793103448275862e-05,
|
| 576 |
+
"loss": 0.1346,
|
| 577 |
+
"step": 800
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.43,
|
| 581 |
+
"grad_norm": 1.7456408876472995,
|
| 582 |
+
"learning_rate": 3.775862068965517e-05,
|
| 583 |
+
"loss": 0.1223,
|
| 584 |
+
"step": 810
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.44,
|
| 588 |
+
"grad_norm": 1.10163248244056,
|
| 589 |
+
"learning_rate": 3.7586206896551726e-05,
|
| 590 |
+
"loss": 0.1031,
|
| 591 |
+
"step": 820
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.44,
|
| 595 |
+
"grad_norm": 1.6441057737088702,
|
| 596 |
+
"learning_rate": 3.741379310344828e-05,
|
| 597 |
+
"loss": 0.1059,
|
| 598 |
+
"step": 830
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.45,
|
| 602 |
+
"grad_norm": 2.3999279790163484,
|
| 603 |
+
"learning_rate": 3.724137931034483e-05,
|
| 604 |
+
"loss": 0.1125,
|
| 605 |
+
"step": 840
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.45,
|
| 609 |
+
"grad_norm": 2.2081477934156903,
|
| 610 |
+
"learning_rate": 3.7068965517241385e-05,
|
| 611 |
+
"loss": 0.1266,
|
| 612 |
+
"step": 850
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.46,
|
| 616 |
+
"grad_norm": 2.366783771480017,
|
| 617 |
+
"learning_rate": 3.6896551724137934e-05,
|
| 618 |
+
"loss": 0.1127,
|
| 619 |
+
"step": 860
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.47,
|
| 623 |
+
"grad_norm": 1.3077873674136173,
|
| 624 |
+
"learning_rate": 3.672413793103448e-05,
|
| 625 |
+
"loss": 0.1095,
|
| 626 |
+
"step": 870
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.47,
|
| 630 |
+
"grad_norm": 1.8197812508114701,
|
| 631 |
+
"learning_rate": 3.655172413793104e-05,
|
| 632 |
+
"loss": 0.0932,
|
| 633 |
+
"step": 880
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.48,
|
| 637 |
+
"grad_norm": 1.0806192057981219,
|
| 638 |
+
"learning_rate": 3.637931034482759e-05,
|
| 639 |
+
"loss": 0.1166,
|
| 640 |
+
"step": 890
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.48,
|
| 644 |
+
"grad_norm": 1.520666439337001,
|
| 645 |
+
"learning_rate": 3.620689655172414e-05,
|
| 646 |
+
"loss": 0.0883,
|
| 647 |
+
"step": 900
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.49,
|
| 651 |
+
"grad_norm": 1.690002270629302,
|
| 652 |
+
"learning_rate": 3.603448275862069e-05,
|
| 653 |
+
"loss": 0.1199,
|
| 654 |
+
"step": 910
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.49,
|
| 658 |
+
"grad_norm": 1.4319374130118003,
|
| 659 |
+
"learning_rate": 3.586206896551724e-05,
|
| 660 |
+
"loss": 0.0991,
|
| 661 |
+
"step": 920
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.5,
|
| 665 |
+
"grad_norm": 1.0626084369653164,
|
| 666 |
+
"learning_rate": 3.5689655172413795e-05,
|
| 667 |
+
"loss": 0.0923,
|
| 668 |
+
"step": 930
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.5,
|
| 672 |
+
"grad_norm": 2.0848060597460902,
|
| 673 |
+
"learning_rate": 3.5517241379310344e-05,
|
| 674 |
+
"loss": 0.0979,
|
| 675 |
+
"step": 940
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.51,
|
| 679 |
+
"grad_norm": 1.4997189461483256,
|
| 680 |
+
"learning_rate": 3.53448275862069e-05,
|
| 681 |
+
"loss": 0.0949,
|
| 682 |
+
"step": 950
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.51,
|
| 686 |
+
"grad_norm": 1.7887817042743388,
|
| 687 |
+
"learning_rate": 3.517241379310345e-05,
|
| 688 |
+
"loss": 0.1135,
|
| 689 |
+
"step": 960
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.52,
|
| 693 |
+
"grad_norm": 3.242965692388458,
|
| 694 |
+
"learning_rate": 3.5e-05,
|
| 695 |
+
"loss": 0.1315,
|
| 696 |
+
"step": 970
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.52,
|
| 700 |
+
"grad_norm": 1.5034762176322083,
|
| 701 |
+
"learning_rate": 3.482758620689655e-05,
|
| 702 |
+
"loss": 0.1177,
|
| 703 |
+
"step": 980
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.53,
|
| 707 |
+
"grad_norm": 1.6679474444200848,
|
| 708 |
+
"learning_rate": 3.465517241379311e-05,
|
| 709 |
+
"loss": 0.1182,
|
| 710 |
+
"step": 990
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.54,
|
| 714 |
+
"grad_norm": 2.814574507251776,
|
| 715 |
+
"learning_rate": 3.4482758620689657e-05,
|
| 716 |
+
"loss": 0.0912,
|
| 717 |
+
"step": 1000
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.54,
|
| 721 |
+
"eval_loss": 0.6101276874542236,
|
| 722 |
+
"eval_runtime": 113.9995,
|
| 723 |
+
"eval_samples_per_second": 11.57,
|
| 724 |
+
"eval_steps_per_second": 2.895,
|
| 725 |
+
"step": 1000
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"epoch": 0.54,
|
| 729 |
+
"grad_norm": 2.1321319681580535,
|
| 730 |
+
"learning_rate": 3.431034482758621e-05,
|
| 731 |
+
"loss": 0.0983,
|
| 732 |
+
"step": 1010
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"epoch": 0.55,
|
| 736 |
+
"grad_norm": 1.8915101367452352,
|
| 737 |
+
"learning_rate": 3.413793103448276e-05,
|
| 738 |
+
"loss": 0.1113,
|
| 739 |
+
"step": 1020
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 0.55,
|
| 743 |
+
"grad_norm": 1.4160985095468477,
|
| 744 |
+
"learning_rate": 3.3965517241379316e-05,
|
| 745 |
+
"loss": 0.1076,
|
| 746 |
+
"step": 1030
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.56,
|
| 750 |
+
"grad_norm": 1.8562788974878586,
|
| 751 |
+
"learning_rate": 3.3793103448275865e-05,
|
| 752 |
+
"loss": 0.1011,
|
| 753 |
+
"step": 1040
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.56,
|
| 757 |
+
"grad_norm": 1.3793192563691294,
|
| 758 |
+
"learning_rate": 3.3620689655172414e-05,
|
| 759 |
+
"loss": 0.0978,
|
| 760 |
+
"step": 1050
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.57,
|
| 764 |
+
"grad_norm": 1.4606563129628805,
|
| 765 |
+
"learning_rate": 3.344827586206897e-05,
|
| 766 |
+
"loss": 0.1069,
|
| 767 |
+
"step": 1060
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.57,
|
| 771 |
+
"grad_norm": 1.5680856211032999,
|
| 772 |
+
"learning_rate": 3.327586206896552e-05,
|
| 773 |
+
"loss": 0.0988,
|
| 774 |
+
"step": 1070
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"epoch": 0.58,
|
| 778 |
+
"grad_norm": 1.5829345931951275,
|
| 779 |
+
"learning_rate": 3.310344827586207e-05,
|
| 780 |
+
"loss": 0.1256,
|
| 781 |
+
"step": 1080
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"epoch": 0.58,
|
| 785 |
+
"grad_norm": 1.6200852939319585,
|
| 786 |
+
"learning_rate": 3.293103448275862e-05,
|
| 787 |
+
"loss": 0.097,
|
| 788 |
+
"step": 1090
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"epoch": 0.59,
|
| 792 |
+
"grad_norm": 2.259656836213122,
|
| 793 |
+
"learning_rate": 3.275862068965517e-05,
|
| 794 |
+
"loss": 0.1137,
|
| 795 |
+
"step": 1100
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 0.59,
|
| 799 |
+
"grad_norm": 2.2483622341560645,
|
| 800 |
+
"learning_rate": 3.2586206896551726e-05,
|
| 801 |
+
"loss": 0.0999,
|
| 802 |
+
"step": 1110
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.6,
|
| 806 |
+
"grad_norm": 1.168198861956421,
|
| 807 |
+
"learning_rate": 3.2413793103448275e-05,
|
| 808 |
+
"loss": 0.1018,
|
| 809 |
+
"step": 1120
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"epoch": 0.6,
|
| 813 |
+
"grad_norm": 2.4699824799031482,
|
| 814 |
+
"learning_rate": 3.2241379310344824e-05,
|
| 815 |
+
"loss": 0.1132,
|
| 816 |
+
"step": 1130
|
| 817 |
+
},
|
| 818 |
+
{
|
| 819 |
+
"epoch": 0.61,
|
| 820 |
+
"grad_norm": 1.2571654549549751,
|
| 821 |
+
"learning_rate": 3.206896551724138e-05,
|
| 822 |
+
"loss": 0.1054,
|
| 823 |
+
"step": 1140
|
| 824 |
+
},
|
| 825 |
+
{
|
| 826 |
+
"epoch": 0.62,
|
| 827 |
+
"grad_norm": 0.5559534032307631,
|
| 828 |
+
"learning_rate": 3.1896551724137935e-05,
|
| 829 |
+
"loss": 0.0789,
|
| 830 |
+
"step": 1150
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 0.62,
|
| 834 |
+
"grad_norm": 1.636369759504475,
|
| 835 |
+
"learning_rate": 3.172413793103448e-05,
|
| 836 |
+
"loss": 0.0902,
|
| 837 |
+
"step": 1160
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.63,
|
| 841 |
+
"grad_norm": 1.6137142935446496,
|
| 842 |
+
"learning_rate": 3.155172413793104e-05,
|
| 843 |
+
"loss": 0.1199,
|
| 844 |
+
"step": 1170
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"epoch": 0.63,
|
| 848 |
+
"grad_norm": 1.7448003760796802,
|
| 849 |
+
"learning_rate": 3.137931034482759e-05,
|
| 850 |
+
"loss": 0.1295,
|
| 851 |
+
"step": 1180
|
| 852 |
+
},
|
| 853 |
+
{
|
| 854 |
+
"epoch": 0.64,
|
| 855 |
+
"grad_norm": 1.3261005358227276,
|
| 856 |
+
"learning_rate": 3.120689655172414e-05,
|
| 857 |
+
"loss": 0.1117,
|
| 858 |
+
"step": 1190
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.64,
|
| 862 |
+
"grad_norm": 1.7353127177901462,
|
| 863 |
+
"learning_rate": 3.103448275862069e-05,
|
| 864 |
+
"loss": 0.0951,
|
| 865 |
+
"step": 1200
|
| 866 |
+
},
|
| 867 |
+
{
|
| 868 |
+
"epoch": 0.65,
|
| 869 |
+
"grad_norm": 2.8569975913367074,
|
| 870 |
+
"learning_rate": 3.086206896551724e-05,
|
| 871 |
+
"loss": 0.112,
|
| 872 |
+
"step": 1210
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"epoch": 0.65,
|
| 876 |
+
"grad_norm": 1.3481947218871082,
|
| 877 |
+
"learning_rate": 3.0689655172413796e-05,
|
| 878 |
+
"loss": 0.0876,
|
| 879 |
+
"step": 1220
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.66,
|
| 883 |
+
"grad_norm": 2.015933141613929,
|
| 884 |
+
"learning_rate": 3.0517241379310348e-05,
|
| 885 |
+
"loss": 0.0993,
|
| 886 |
+
"step": 1230
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 0.66,
|
| 890 |
+
"grad_norm": 1.0588164394448019,
|
| 891 |
+
"learning_rate": 3.0344827586206897e-05,
|
| 892 |
+
"loss": 0.1034,
|
| 893 |
+
"step": 1240
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"epoch": 0.67,
|
| 897 |
+
"grad_norm": 1.3594986645993228,
|
| 898 |
+
"learning_rate": 3.017241379310345e-05,
|
| 899 |
+
"loss": 0.1004,
|
| 900 |
+
"step": 1250
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.67,
|
| 904 |
+
"grad_norm": 1.333098402625009,
|
| 905 |
+
"learning_rate": 3e-05,
|
| 906 |
+
"loss": 0.1259,
|
| 907 |
+
"step": 1260
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"epoch": 0.68,
|
| 911 |
+
"grad_norm": 1.1324206075196583,
|
| 912 |
+
"learning_rate": 2.9827586206896553e-05,
|
| 913 |
+
"loss": 0.1155,
|
| 914 |
+
"step": 1270
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.68,
|
| 918 |
+
"grad_norm": 1.2270687927795876,
|
| 919 |
+
"learning_rate": 2.96551724137931e-05,
|
| 920 |
+
"loss": 0.092,
|
| 921 |
+
"step": 1280
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.69,
|
| 925 |
+
"grad_norm": 1.3085362507403875,
|
| 926 |
+
"learning_rate": 2.9482758620689654e-05,
|
| 927 |
+
"loss": 0.1064,
|
| 928 |
+
"step": 1290
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.7,
|
| 932 |
+
"grad_norm": 1.7135250277750762,
|
| 933 |
+
"learning_rate": 2.9310344827586206e-05,
|
| 934 |
+
"loss": 0.1132,
|
| 935 |
+
"step": 1300
|
| 936 |
+
},
|
| 937 |
+
{
|
| 938 |
+
"epoch": 0.7,
|
| 939 |
+
"grad_norm": 1.6121189707451158,
|
| 940 |
+
"learning_rate": 2.913793103448276e-05,
|
| 941 |
+
"loss": 0.1006,
|
| 942 |
+
"step": 1310
|
| 943 |
+
},
|
| 944 |
+
{
|
| 945 |
+
"epoch": 0.71,
|
| 946 |
+
"grad_norm": 1.3958680925504208,
|
| 947 |
+
"learning_rate": 2.8965517241379313e-05,
|
| 948 |
+
"loss": 0.0956,
|
| 949 |
+
"step": 1320
|
| 950 |
+
},
|
| 951 |
+
{
|
| 952 |
+
"epoch": 0.71,
|
| 953 |
+
"grad_norm": 1.546226150121884,
|
| 954 |
+
"learning_rate": 2.8793103448275865e-05,
|
| 955 |
+
"loss": 0.1142,
|
| 956 |
+
"step": 1330
|
| 957 |
+
},
|
| 958 |
+
{
|
| 959 |
+
"epoch": 0.72,
|
| 960 |
+
"grad_norm": 2.1837739995965415,
|
| 961 |
+
"learning_rate": 2.8620689655172417e-05,
|
| 962 |
+
"loss": 0.1127,
|
| 963 |
+
"step": 1340
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.72,
|
| 967 |
+
"grad_norm": 1.9402402206909504,
|
| 968 |
+
"learning_rate": 2.844827586206897e-05,
|
| 969 |
+
"loss": 0.0922,
|
| 970 |
+
"step": 1350
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.73,
|
| 974 |
+
"grad_norm": 1.7914401953164802,
|
| 975 |
+
"learning_rate": 2.8275862068965518e-05,
|
| 976 |
+
"loss": 0.1038,
|
| 977 |
+
"step": 1360
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"epoch": 0.73,
|
| 981 |
+
"grad_norm": 1.505804090650568,
|
| 982 |
+
"learning_rate": 2.810344827586207e-05,
|
| 983 |
+
"loss": 0.1034,
|
| 984 |
+
"step": 1370
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"epoch": 0.74,
|
| 988 |
+
"grad_norm": 1.9907350713586716,
|
| 989 |
+
"learning_rate": 2.7931034482758622e-05,
|
| 990 |
+
"loss": 0.103,
|
| 991 |
+
"step": 1380
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"epoch": 0.74,
|
| 995 |
+
"grad_norm": 1.6948381773166858,
|
| 996 |
+
"learning_rate": 2.7758620689655175e-05,
|
| 997 |
+
"loss": 0.1091,
|
| 998 |
+
"step": 1390
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 0.75,
|
| 1002 |
+
"grad_norm": 1.3995985437024723,
|
| 1003 |
+
"learning_rate": 2.7586206896551727e-05,
|
| 1004 |
+
"loss": 0.0852,
|
| 1005 |
+
"step": 1400
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 0.75,
|
| 1009 |
+
"grad_norm": 1.9347024029069393,
|
| 1010 |
+
"learning_rate": 2.7413793103448275e-05,
|
| 1011 |
+
"loss": 0.1393,
|
| 1012 |
+
"step": 1410
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"epoch": 0.76,
|
| 1016 |
+
"grad_norm": 1.608776792445342,
|
| 1017 |
+
"learning_rate": 2.7241379310344827e-05,
|
| 1018 |
+
"loss": 0.0951,
|
| 1019 |
+
"step": 1420
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"epoch": 0.77,
|
| 1023 |
+
"grad_norm": 1.6005483580619249,
|
| 1024 |
+
"learning_rate": 2.706896551724138e-05,
|
| 1025 |
+
"loss": 0.1037,
|
| 1026 |
+
"step": 1430
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.77,
|
| 1030 |
+
"grad_norm": 2.374208686020403,
|
| 1031 |
+
"learning_rate": 2.689655172413793e-05,
|
| 1032 |
+
"loss": 0.0926,
|
| 1033 |
+
"step": 1440
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"epoch": 0.78,
|
| 1037 |
+
"grad_norm": 1.7554923995400171,
|
| 1038 |
+
"learning_rate": 2.672413793103448e-05,
|
| 1039 |
+
"loss": 0.1164,
|
| 1040 |
+
"step": 1450
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.78,
|
| 1044 |
+
"grad_norm": 1.2965114220197742,
|
| 1045 |
+
"learning_rate": 2.6551724137931032e-05,
|
| 1046 |
+
"loss": 0.1102,
|
| 1047 |
+
"step": 1460
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.79,
|
| 1051 |
+
"grad_norm": 1.8857303249108055,
|
| 1052 |
+
"learning_rate": 2.637931034482759e-05,
|
| 1053 |
+
"loss": 0.0868,
|
| 1054 |
+
"step": 1470
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.79,
|
| 1058 |
+
"grad_norm": 1.406207551120988,
|
| 1059 |
+
"learning_rate": 2.620689655172414e-05,
|
| 1060 |
+
"loss": 0.1179,
|
| 1061 |
+
"step": 1480
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"epoch": 0.8,
|
| 1065 |
+
"grad_norm": 1.275728362064451,
|
| 1066 |
+
"learning_rate": 2.6034482758620692e-05,
|
| 1067 |
+
"loss": 0.1128,
|
| 1068 |
+
"step": 1490
|
| 1069 |
+
},
|
| 1070 |
+
{
|
| 1071 |
+
"epoch": 0.8,
|
| 1072 |
+
"grad_norm": 1.7122434387720797,
|
| 1073 |
+
"learning_rate": 2.5862068965517244e-05,
|
| 1074 |
+
"loss": 0.1045,
|
| 1075 |
+
"step": 1500
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"epoch": 0.8,
|
| 1079 |
+
"eval_loss": 0.6075221300125122,
|
| 1080 |
+
"eval_runtime": 114.4297,
|
| 1081 |
+
"eval_samples_per_second": 11.527,
|
| 1082 |
+
"eval_steps_per_second": 2.884,
|
| 1083 |
+
"step": 1500
|
| 1084 |
+
}
|
| 1085 |
+
],
|
| 1086 |
+
"logging_steps": 10,
|
| 1087 |
+
"max_steps": 3000,
|
| 1088 |
+
"num_input_tokens_seen": 0,
|
| 1089 |
+
"num_train_epochs": 2,
|
| 1090 |
+
"save_steps": 500,
|
| 1091 |
+
"total_flos": 43348525056000.0,
|
| 1092 |
+
"train_batch_size": 4,
|
| 1093 |
+
"trial_name": null,
|
| 1094 |
+
"trial_params": null
|
| 1095 |
+
}
|
checkpoints/checkpoint-1500/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22266252322e6977894297b61731ca9228c8fcfe4e8d788aef270218c40fec98
|
| 3 |
+
size 6776
|
checkpoints/checkpoint-1500/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/checkpoint-2000/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-2000/adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": "gaussian",
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 32,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 8,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"v_proj",
|
| 24 |
+
"q_proj"
|
| 25 |
+
],
|
| 26 |
+
"task_type": "CAUSAL_LM",
|
| 27 |
+
"use_dora": false,
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
checkpoints/checkpoint-2000/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1b8d76bd1aed8b1d8412eb6c56e84db43664bebd6ad688ad0950fd8209fc950
|
| 3 |
+
size 5919456
|
checkpoints/checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dda5a911ff898c12d55662a92778edfd52a8073eea19f9b26697459b3193b10a
|
| 3 |
+
size 35393392
|
checkpoints/checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4e9a98f645b03701444c7e44c6c6a7f0356f803ea2720858c1e66a25b785255d
|
| 3 |
+
size 183275
|
checkpoints/checkpoint-2000/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2000
|
checkpoints/checkpoint-2000/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a818498d41465e958bf28c1ed45c89226bd9e0922529cc444009e8907e458b5c
|
| 3 |
+
size 14244
|
checkpoints/checkpoint-2000/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:047852d7b48f1f8dbf5d56d9f5244137e0e2504e7bca2d487065561fcb1ffc15
|
| 3 |
+
size 1064
|
checkpoints/checkpoint-2000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
checkpoints/checkpoint-2000/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoints/checkpoint-2000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bos_token": "<s>",
|
| 31 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": true,
|
| 35 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
+
"pad_token": "</s>",
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"unk_token": "<unk>",
|
| 41 |
+
"use_default_system_prompt": false
|
| 42 |
+
}
|
checkpoints/checkpoint-2000/trainer_state.json
ADDED
|
@@ -0,0 +1,1453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.070090957731407,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 2000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.01,
|
| 13 |
+
"grad_norm": 7.3019086777975994,
|
| 14 |
+
"learning_rate": 5e-06,
|
| 15 |
+
"loss": 0.6939,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.01,
|
| 20 |
+
"grad_norm": 5.150989333266983,
|
| 21 |
+
"learning_rate": 1e-05,
|
| 22 |
+
"loss": 0.7167,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.02,
|
| 27 |
+
"grad_norm": 3.640558809610037,
|
| 28 |
+
"learning_rate": 1.5e-05,
|
| 29 |
+
"loss": 0.5683,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.02,
|
| 34 |
+
"grad_norm": 7.517999397731128,
|
| 35 |
+
"learning_rate": 2e-05,
|
| 36 |
+
"loss": 0.5472,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.03,
|
| 41 |
+
"grad_norm": 1.9687061679463425,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 0.4439,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.03,
|
| 48 |
+
"grad_norm": 3.643479206523606,
|
| 49 |
+
"learning_rate": 3e-05,
|
| 50 |
+
"loss": 0.2486,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.04,
|
| 55 |
+
"grad_norm": 2.2754773308695095,
|
| 56 |
+
"learning_rate": 3.5e-05,
|
| 57 |
+
"loss": 0.2217,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.04,
|
| 62 |
+
"grad_norm": 1.7144730049127388,
|
| 63 |
+
"learning_rate": 4e-05,
|
| 64 |
+
"loss": 0.169,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.05,
|
| 69 |
+
"grad_norm": 3.4702829704135114,
|
| 70 |
+
"learning_rate": 4.5e-05,
|
| 71 |
+
"loss": 0.1994,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.05,
|
| 76 |
+
"grad_norm": 1.3985127340985621,
|
| 77 |
+
"learning_rate": 5e-05,
|
| 78 |
+
"loss": 0.1612,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.06,
|
| 83 |
+
"grad_norm": 1.375992184386137,
|
| 84 |
+
"learning_rate": 4.982758620689655e-05,
|
| 85 |
+
"loss": 0.1576,
|
| 86 |
+
"step": 110
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.06,
|
| 90 |
+
"grad_norm": 1.9528635753013313,
|
| 91 |
+
"learning_rate": 4.9655172413793107e-05,
|
| 92 |
+
"loss": 0.1393,
|
| 93 |
+
"step": 120
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.07,
|
| 97 |
+
"grad_norm": 4.075169010198401,
|
| 98 |
+
"learning_rate": 4.9482758620689655e-05,
|
| 99 |
+
"loss": 0.1969,
|
| 100 |
+
"step": 130
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.07,
|
| 104 |
+
"grad_norm": 2.0953991165751207,
|
| 105 |
+
"learning_rate": 4.931034482758621e-05,
|
| 106 |
+
"loss": 0.1294,
|
| 107 |
+
"step": 140
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.08,
|
| 111 |
+
"grad_norm": 1.942660591044849,
|
| 112 |
+
"learning_rate": 4.913793103448276e-05,
|
| 113 |
+
"loss": 0.1306,
|
| 114 |
+
"step": 150
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.09,
|
| 118 |
+
"grad_norm": 3.1508904015728345,
|
| 119 |
+
"learning_rate": 4.896551724137931e-05,
|
| 120 |
+
"loss": 0.1526,
|
| 121 |
+
"step": 160
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.09,
|
| 125 |
+
"grad_norm": 1.9862795165358471,
|
| 126 |
+
"learning_rate": 4.8793103448275864e-05,
|
| 127 |
+
"loss": 0.1186,
|
| 128 |
+
"step": 170
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.1,
|
| 132 |
+
"grad_norm": 2.633061833817991,
|
| 133 |
+
"learning_rate": 4.862068965517241e-05,
|
| 134 |
+
"loss": 0.1457,
|
| 135 |
+
"step": 180
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.1,
|
| 139 |
+
"grad_norm": 1.8017052368446178,
|
| 140 |
+
"learning_rate": 4.844827586206897e-05,
|
| 141 |
+
"loss": 0.1234,
|
| 142 |
+
"step": 190
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.11,
|
| 146 |
+
"grad_norm": 2.1560694100709803,
|
| 147 |
+
"learning_rate": 4.827586206896552e-05,
|
| 148 |
+
"loss": 0.1346,
|
| 149 |
+
"step": 200
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.11,
|
| 153 |
+
"grad_norm": 1.5737689267430703,
|
| 154 |
+
"learning_rate": 4.810344827586207e-05,
|
| 155 |
+
"loss": 0.116,
|
| 156 |
+
"step": 210
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.12,
|
| 160 |
+
"grad_norm": 1.957864677854788,
|
| 161 |
+
"learning_rate": 4.793103448275863e-05,
|
| 162 |
+
"loss": 0.1692,
|
| 163 |
+
"step": 220
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.12,
|
| 167 |
+
"grad_norm": 2.215039223521855,
|
| 168 |
+
"learning_rate": 4.7758620689655176e-05,
|
| 169 |
+
"loss": 0.1245,
|
| 170 |
+
"step": 230
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.13,
|
| 174 |
+
"grad_norm": 1.370517239734168,
|
| 175 |
+
"learning_rate": 4.7586206896551725e-05,
|
| 176 |
+
"loss": 0.1476,
|
| 177 |
+
"step": 240
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.13,
|
| 181 |
+
"grad_norm": 1.7341334563022532,
|
| 182 |
+
"learning_rate": 4.741379310344828e-05,
|
| 183 |
+
"loss": 0.1236,
|
| 184 |
+
"step": 250
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.14,
|
| 188 |
+
"grad_norm": 1.5994298113068974,
|
| 189 |
+
"learning_rate": 4.724137931034483e-05,
|
| 190 |
+
"loss": 0.1161,
|
| 191 |
+
"step": 260
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.14,
|
| 195 |
+
"grad_norm": 1.5317433190951963,
|
| 196 |
+
"learning_rate": 4.7068965517241385e-05,
|
| 197 |
+
"loss": 0.1035,
|
| 198 |
+
"step": 270
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.15,
|
| 202 |
+
"grad_norm": 2.191977732539556,
|
| 203 |
+
"learning_rate": 4.689655172413793e-05,
|
| 204 |
+
"loss": 0.1427,
|
| 205 |
+
"step": 280
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.16,
|
| 209 |
+
"grad_norm": 1.6038667570691656,
|
| 210 |
+
"learning_rate": 4.672413793103448e-05,
|
| 211 |
+
"loss": 0.1225,
|
| 212 |
+
"step": 290
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.16,
|
| 216 |
+
"grad_norm": 2.577572731831179,
|
| 217 |
+
"learning_rate": 4.655172413793104e-05,
|
| 218 |
+
"loss": 0.1399,
|
| 219 |
+
"step": 300
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.17,
|
| 223 |
+
"grad_norm": 1.6199241001441385,
|
| 224 |
+
"learning_rate": 4.6379310344827586e-05,
|
| 225 |
+
"loss": 0.1242,
|
| 226 |
+
"step": 310
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.17,
|
| 230 |
+
"grad_norm": 2.236577821186196,
|
| 231 |
+
"learning_rate": 4.6206896551724135e-05,
|
| 232 |
+
"loss": 0.1656,
|
| 233 |
+
"step": 320
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.18,
|
| 237 |
+
"grad_norm": 1.7294690605254757,
|
| 238 |
+
"learning_rate": 4.603448275862069e-05,
|
| 239 |
+
"loss": 0.1382,
|
| 240 |
+
"step": 330
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.18,
|
| 244 |
+
"grad_norm": 2.196527516378511,
|
| 245 |
+
"learning_rate": 4.586206896551724e-05,
|
| 246 |
+
"loss": 0.1257,
|
| 247 |
+
"step": 340
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.19,
|
| 251 |
+
"grad_norm": 2.1057444340221463,
|
| 252 |
+
"learning_rate": 4.5689655172413794e-05,
|
| 253 |
+
"loss": 0.1238,
|
| 254 |
+
"step": 350
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.19,
|
| 258 |
+
"grad_norm": 1.5409556870328274,
|
| 259 |
+
"learning_rate": 4.551724137931035e-05,
|
| 260 |
+
"loss": 0.1383,
|
| 261 |
+
"step": 360
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.2,
|
| 265 |
+
"grad_norm": 1.5204083616874053,
|
| 266 |
+
"learning_rate": 4.53448275862069e-05,
|
| 267 |
+
"loss": 0.1068,
|
| 268 |
+
"step": 370
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.2,
|
| 272 |
+
"grad_norm": 2.3557725298931746,
|
| 273 |
+
"learning_rate": 4.5172413793103454e-05,
|
| 274 |
+
"loss": 0.1071,
|
| 275 |
+
"step": 380
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.21,
|
| 279 |
+
"grad_norm": 3.2601538460418644,
|
| 280 |
+
"learning_rate": 4.5e-05,
|
| 281 |
+
"loss": 0.125,
|
| 282 |
+
"step": 390
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.21,
|
| 286 |
+
"grad_norm": 1.9031725385762286,
|
| 287 |
+
"learning_rate": 4.482758620689655e-05,
|
| 288 |
+
"loss": 0.0991,
|
| 289 |
+
"step": 400
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.22,
|
| 293 |
+
"grad_norm": 1.3946050262183123,
|
| 294 |
+
"learning_rate": 4.465517241379311e-05,
|
| 295 |
+
"loss": 0.1156,
|
| 296 |
+
"step": 410
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.22,
|
| 300 |
+
"grad_norm": 1.097644875106397,
|
| 301 |
+
"learning_rate": 4.4482758620689656e-05,
|
| 302 |
+
"loss": 0.1366,
|
| 303 |
+
"step": 420
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.23,
|
| 307 |
+
"grad_norm": 1.37846299019108,
|
| 308 |
+
"learning_rate": 4.431034482758621e-05,
|
| 309 |
+
"loss": 0.126,
|
| 310 |
+
"step": 430
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.24,
|
| 314 |
+
"grad_norm": 1.8340152889320331,
|
| 315 |
+
"learning_rate": 4.413793103448276e-05,
|
| 316 |
+
"loss": 0.1066,
|
| 317 |
+
"step": 440
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.24,
|
| 321 |
+
"grad_norm": 1.8304505611337867,
|
| 322 |
+
"learning_rate": 4.396551724137931e-05,
|
| 323 |
+
"loss": 0.0868,
|
| 324 |
+
"step": 450
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.25,
|
| 328 |
+
"grad_norm": 1.550196490898523,
|
| 329 |
+
"learning_rate": 4.3793103448275864e-05,
|
| 330 |
+
"loss": 0.1286,
|
| 331 |
+
"step": 460
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.25,
|
| 335 |
+
"grad_norm": 2.176112247796248,
|
| 336 |
+
"learning_rate": 4.362068965517241e-05,
|
| 337 |
+
"loss": 0.1206,
|
| 338 |
+
"step": 470
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.26,
|
| 342 |
+
"grad_norm": 1.6589263894091213,
|
| 343 |
+
"learning_rate": 4.344827586206897e-05,
|
| 344 |
+
"loss": 0.1008,
|
| 345 |
+
"step": 480
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.26,
|
| 349 |
+
"grad_norm": 1.8349611508902046,
|
| 350 |
+
"learning_rate": 4.327586206896552e-05,
|
| 351 |
+
"loss": 0.1198,
|
| 352 |
+
"step": 490
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.27,
|
| 356 |
+
"grad_norm": 2.1218964920724126,
|
| 357 |
+
"learning_rate": 4.3103448275862066e-05,
|
| 358 |
+
"loss": 0.1166,
|
| 359 |
+
"step": 500
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.27,
|
| 363 |
+
"eval_loss": 0.6078919172286987,
|
| 364 |
+
"eval_runtime": 116.8471,
|
| 365 |
+
"eval_samples_per_second": 11.288,
|
| 366 |
+
"eval_steps_per_second": 2.824,
|
| 367 |
+
"step": 500
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.27,
|
| 371 |
+
"grad_norm": 2.5775141311007856,
|
| 372 |
+
"learning_rate": 4.293103448275863e-05,
|
| 373 |
+
"loss": 0.1124,
|
| 374 |
+
"step": 510
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.28,
|
| 378 |
+
"grad_norm": 1.6019517017800202,
|
| 379 |
+
"learning_rate": 4.275862068965518e-05,
|
| 380 |
+
"loss": 0.1068,
|
| 381 |
+
"step": 520
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.28,
|
| 385 |
+
"grad_norm": 2.6901962755310205,
|
| 386 |
+
"learning_rate": 4.2586206896551725e-05,
|
| 387 |
+
"loss": 0.1286,
|
| 388 |
+
"step": 530
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.29,
|
| 392 |
+
"grad_norm": 3.9517995356721767,
|
| 393 |
+
"learning_rate": 4.241379310344828e-05,
|
| 394 |
+
"loss": 0.1149,
|
| 395 |
+
"step": 540
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.29,
|
| 399 |
+
"grad_norm": 2.0428896228074076,
|
| 400 |
+
"learning_rate": 4.224137931034483e-05,
|
| 401 |
+
"loss": 0.141,
|
| 402 |
+
"step": 550
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.3,
|
| 406 |
+
"grad_norm": 2.263258592133553,
|
| 407 |
+
"learning_rate": 4.2068965517241385e-05,
|
| 408 |
+
"loss": 0.0949,
|
| 409 |
+
"step": 560
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.3,
|
| 413 |
+
"grad_norm": 1.4823165953974604,
|
| 414 |
+
"learning_rate": 4.1896551724137934e-05,
|
| 415 |
+
"loss": 0.1365,
|
| 416 |
+
"step": 570
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.31,
|
| 420 |
+
"grad_norm": 1.4441377020989878,
|
| 421 |
+
"learning_rate": 4.172413793103448e-05,
|
| 422 |
+
"loss": 0.1015,
|
| 423 |
+
"step": 580
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.32,
|
| 427 |
+
"grad_norm": 1.4779059254436886,
|
| 428 |
+
"learning_rate": 4.155172413793104e-05,
|
| 429 |
+
"loss": 0.0988,
|
| 430 |
+
"step": 590
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.32,
|
| 434 |
+
"grad_norm": 1.7777823671018818,
|
| 435 |
+
"learning_rate": 4.1379310344827587e-05,
|
| 436 |
+
"loss": 0.1124,
|
| 437 |
+
"step": 600
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.33,
|
| 441 |
+
"grad_norm": 1.737579831138191,
|
| 442 |
+
"learning_rate": 4.120689655172414e-05,
|
| 443 |
+
"loss": 0.086,
|
| 444 |
+
"step": 610
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.33,
|
| 448 |
+
"grad_norm": 2.708453961232997,
|
| 449 |
+
"learning_rate": 4.103448275862069e-05,
|
| 450 |
+
"loss": 0.0933,
|
| 451 |
+
"step": 620
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.34,
|
| 455 |
+
"grad_norm": 1.8871805824236731,
|
| 456 |
+
"learning_rate": 4.086206896551724e-05,
|
| 457 |
+
"loss": 0.1407,
|
| 458 |
+
"step": 630
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.34,
|
| 462 |
+
"grad_norm": 1.7300112722427339,
|
| 463 |
+
"learning_rate": 4.0689655172413795e-05,
|
| 464 |
+
"loss": 0.1224,
|
| 465 |
+
"step": 640
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.35,
|
| 469 |
+
"grad_norm": 1.4631236252240614,
|
| 470 |
+
"learning_rate": 4.0517241379310344e-05,
|
| 471 |
+
"loss": 0.1014,
|
| 472 |
+
"step": 650
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.35,
|
| 476 |
+
"grad_norm": 1.2602431597419264,
|
| 477 |
+
"learning_rate": 4.03448275862069e-05,
|
| 478 |
+
"loss": 0.1583,
|
| 479 |
+
"step": 660
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.36,
|
| 483 |
+
"grad_norm": 1.2077937041919453,
|
| 484 |
+
"learning_rate": 4.0172413793103455e-05,
|
| 485 |
+
"loss": 0.1209,
|
| 486 |
+
"step": 670
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.36,
|
| 490 |
+
"grad_norm": 1.4386184566429954,
|
| 491 |
+
"learning_rate": 4e-05,
|
| 492 |
+
"loss": 0.1016,
|
| 493 |
+
"step": 680
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.37,
|
| 497 |
+
"grad_norm": 2.6160358835758584,
|
| 498 |
+
"learning_rate": 3.982758620689656e-05,
|
| 499 |
+
"loss": 0.1062,
|
| 500 |
+
"step": 690
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.37,
|
| 504 |
+
"grad_norm": 1.9278794640498955,
|
| 505 |
+
"learning_rate": 3.965517241379311e-05,
|
| 506 |
+
"loss": 0.1037,
|
| 507 |
+
"step": 700
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.38,
|
| 511 |
+
"grad_norm": 1.2872571900237024,
|
| 512 |
+
"learning_rate": 3.9482758620689656e-05,
|
| 513 |
+
"loss": 0.096,
|
| 514 |
+
"step": 710
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.39,
|
| 518 |
+
"grad_norm": 1.243554309347296,
|
| 519 |
+
"learning_rate": 3.931034482758621e-05,
|
| 520 |
+
"loss": 0.1084,
|
| 521 |
+
"step": 720
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.39,
|
| 525 |
+
"grad_norm": 1.5090589714253309,
|
| 526 |
+
"learning_rate": 3.913793103448276e-05,
|
| 527 |
+
"loss": 0.0877,
|
| 528 |
+
"step": 730
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.4,
|
| 532 |
+
"grad_norm": 2.1419550623025168,
|
| 533 |
+
"learning_rate": 3.896551724137931e-05,
|
| 534 |
+
"loss": 0.0994,
|
| 535 |
+
"step": 740
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.4,
|
| 539 |
+
"grad_norm": 1.7807417973632438,
|
| 540 |
+
"learning_rate": 3.8793103448275865e-05,
|
| 541 |
+
"loss": 0.1029,
|
| 542 |
+
"step": 750
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.41,
|
| 546 |
+
"grad_norm": 1.3342960263057682,
|
| 547 |
+
"learning_rate": 3.862068965517241e-05,
|
| 548 |
+
"loss": 0.1072,
|
| 549 |
+
"step": 760
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.41,
|
| 553 |
+
"grad_norm": 2.3865282340158136,
|
| 554 |
+
"learning_rate": 3.844827586206897e-05,
|
| 555 |
+
"loss": 0.1193,
|
| 556 |
+
"step": 770
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.42,
|
| 560 |
+
"grad_norm": 1.5428742248459941,
|
| 561 |
+
"learning_rate": 3.827586206896552e-05,
|
| 562 |
+
"loss": 0.1156,
|
| 563 |
+
"step": 780
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.42,
|
| 567 |
+
"grad_norm": 1.7660532115509044,
|
| 568 |
+
"learning_rate": 3.8103448275862066e-05,
|
| 569 |
+
"loss": 0.122,
|
| 570 |
+
"step": 790
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.43,
|
| 574 |
+
"grad_norm": 1.8149742752994733,
|
| 575 |
+
"learning_rate": 3.793103448275862e-05,
|
| 576 |
+
"loss": 0.1346,
|
| 577 |
+
"step": 800
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.43,
|
| 581 |
+
"grad_norm": 1.7456408876472995,
|
| 582 |
+
"learning_rate": 3.775862068965517e-05,
|
| 583 |
+
"loss": 0.1223,
|
| 584 |
+
"step": 810
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.44,
|
| 588 |
+
"grad_norm": 1.10163248244056,
|
| 589 |
+
"learning_rate": 3.7586206896551726e-05,
|
| 590 |
+
"loss": 0.1031,
|
| 591 |
+
"step": 820
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.44,
|
| 595 |
+
"grad_norm": 1.6441057737088702,
|
| 596 |
+
"learning_rate": 3.741379310344828e-05,
|
| 597 |
+
"loss": 0.1059,
|
| 598 |
+
"step": 830
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.45,
|
| 602 |
+
"grad_norm": 2.3999279790163484,
|
| 603 |
+
"learning_rate": 3.724137931034483e-05,
|
| 604 |
+
"loss": 0.1125,
|
| 605 |
+
"step": 840
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.45,
|
| 609 |
+
"grad_norm": 2.2081477934156903,
|
| 610 |
+
"learning_rate": 3.7068965517241385e-05,
|
| 611 |
+
"loss": 0.1266,
|
| 612 |
+
"step": 850
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.46,
|
| 616 |
+
"grad_norm": 2.366783771480017,
|
| 617 |
+
"learning_rate": 3.6896551724137934e-05,
|
| 618 |
+
"loss": 0.1127,
|
| 619 |
+
"step": 860
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.47,
|
| 623 |
+
"grad_norm": 1.3077873674136173,
|
| 624 |
+
"learning_rate": 3.672413793103448e-05,
|
| 625 |
+
"loss": 0.1095,
|
| 626 |
+
"step": 870
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.47,
|
| 630 |
+
"grad_norm": 1.8197812508114701,
|
| 631 |
+
"learning_rate": 3.655172413793104e-05,
|
| 632 |
+
"loss": 0.0932,
|
| 633 |
+
"step": 880
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.48,
|
| 637 |
+
"grad_norm": 1.0806192057981219,
|
| 638 |
+
"learning_rate": 3.637931034482759e-05,
|
| 639 |
+
"loss": 0.1166,
|
| 640 |
+
"step": 890
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.48,
|
| 644 |
+
"grad_norm": 1.520666439337001,
|
| 645 |
+
"learning_rate": 3.620689655172414e-05,
|
| 646 |
+
"loss": 0.0883,
|
| 647 |
+
"step": 900
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.49,
|
| 651 |
+
"grad_norm": 1.690002270629302,
|
| 652 |
+
"learning_rate": 3.603448275862069e-05,
|
| 653 |
+
"loss": 0.1199,
|
| 654 |
+
"step": 910
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.49,
|
| 658 |
+
"grad_norm": 1.4319374130118003,
|
| 659 |
+
"learning_rate": 3.586206896551724e-05,
|
| 660 |
+
"loss": 0.0991,
|
| 661 |
+
"step": 920
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.5,
|
| 665 |
+
"grad_norm": 1.0626084369653164,
|
| 666 |
+
"learning_rate": 3.5689655172413795e-05,
|
| 667 |
+
"loss": 0.0923,
|
| 668 |
+
"step": 930
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.5,
|
| 672 |
+
"grad_norm": 2.0848060597460902,
|
| 673 |
+
"learning_rate": 3.5517241379310344e-05,
|
| 674 |
+
"loss": 0.0979,
|
| 675 |
+
"step": 940
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.51,
|
| 679 |
+
"grad_norm": 1.4997189461483256,
|
| 680 |
+
"learning_rate": 3.53448275862069e-05,
|
| 681 |
+
"loss": 0.0949,
|
| 682 |
+
"step": 950
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.51,
|
| 686 |
+
"grad_norm": 1.7887817042743388,
|
| 687 |
+
"learning_rate": 3.517241379310345e-05,
|
| 688 |
+
"loss": 0.1135,
|
| 689 |
+
"step": 960
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.52,
|
| 693 |
+
"grad_norm": 3.242965692388458,
|
| 694 |
+
"learning_rate": 3.5e-05,
|
| 695 |
+
"loss": 0.1315,
|
| 696 |
+
"step": 970
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.52,
|
| 700 |
+
"grad_norm": 1.5034762176322083,
|
| 701 |
+
"learning_rate": 3.482758620689655e-05,
|
| 702 |
+
"loss": 0.1177,
|
| 703 |
+
"step": 980
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.53,
|
| 707 |
+
"grad_norm": 1.6679474444200848,
|
| 708 |
+
"learning_rate": 3.465517241379311e-05,
|
| 709 |
+
"loss": 0.1182,
|
| 710 |
+
"step": 990
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.54,
|
| 714 |
+
"grad_norm": 2.814574507251776,
|
| 715 |
+
"learning_rate": 3.4482758620689657e-05,
|
| 716 |
+
"loss": 0.0912,
|
| 717 |
+
"step": 1000
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.54,
|
| 721 |
+
"eval_loss": 0.6101276874542236,
|
| 722 |
+
"eval_runtime": 113.9995,
|
| 723 |
+
"eval_samples_per_second": 11.57,
|
| 724 |
+
"eval_steps_per_second": 2.895,
|
| 725 |
+
"step": 1000
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"epoch": 0.54,
|
| 729 |
+
"grad_norm": 2.1321319681580535,
|
| 730 |
+
"learning_rate": 3.431034482758621e-05,
|
| 731 |
+
"loss": 0.0983,
|
| 732 |
+
"step": 1010
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"epoch": 0.55,
|
| 736 |
+
"grad_norm": 1.8915101367452352,
|
| 737 |
+
"learning_rate": 3.413793103448276e-05,
|
| 738 |
+
"loss": 0.1113,
|
| 739 |
+
"step": 1020
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 0.55,
|
| 743 |
+
"grad_norm": 1.4160985095468477,
|
| 744 |
+
"learning_rate": 3.3965517241379316e-05,
|
| 745 |
+
"loss": 0.1076,
|
| 746 |
+
"step": 1030
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.56,
|
| 750 |
+
"grad_norm": 1.8562788974878586,
|
| 751 |
+
"learning_rate": 3.3793103448275865e-05,
|
| 752 |
+
"loss": 0.1011,
|
| 753 |
+
"step": 1040
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.56,
|
| 757 |
+
"grad_norm": 1.3793192563691294,
|
| 758 |
+
"learning_rate": 3.3620689655172414e-05,
|
| 759 |
+
"loss": 0.0978,
|
| 760 |
+
"step": 1050
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.57,
|
| 764 |
+
"grad_norm": 1.4606563129628805,
|
| 765 |
+
"learning_rate": 3.344827586206897e-05,
|
| 766 |
+
"loss": 0.1069,
|
| 767 |
+
"step": 1060
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.57,
|
| 771 |
+
"grad_norm": 1.5680856211032999,
|
| 772 |
+
"learning_rate": 3.327586206896552e-05,
|
| 773 |
+
"loss": 0.0988,
|
| 774 |
+
"step": 1070
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"epoch": 0.58,
|
| 778 |
+
"grad_norm": 1.5829345931951275,
|
| 779 |
+
"learning_rate": 3.310344827586207e-05,
|
| 780 |
+
"loss": 0.1256,
|
| 781 |
+
"step": 1080
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"epoch": 0.58,
|
| 785 |
+
"grad_norm": 1.6200852939319585,
|
| 786 |
+
"learning_rate": 3.293103448275862e-05,
|
| 787 |
+
"loss": 0.097,
|
| 788 |
+
"step": 1090
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"epoch": 0.59,
|
| 792 |
+
"grad_norm": 2.259656836213122,
|
| 793 |
+
"learning_rate": 3.275862068965517e-05,
|
| 794 |
+
"loss": 0.1137,
|
| 795 |
+
"step": 1100
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 0.59,
|
| 799 |
+
"grad_norm": 2.2483622341560645,
|
| 800 |
+
"learning_rate": 3.2586206896551726e-05,
|
| 801 |
+
"loss": 0.0999,
|
| 802 |
+
"step": 1110
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.6,
|
| 806 |
+
"grad_norm": 1.168198861956421,
|
| 807 |
+
"learning_rate": 3.2413793103448275e-05,
|
| 808 |
+
"loss": 0.1018,
|
| 809 |
+
"step": 1120
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"epoch": 0.6,
|
| 813 |
+
"grad_norm": 2.4699824799031482,
|
| 814 |
+
"learning_rate": 3.2241379310344824e-05,
|
| 815 |
+
"loss": 0.1132,
|
| 816 |
+
"step": 1130
|
| 817 |
+
},
|
| 818 |
+
{
|
| 819 |
+
"epoch": 0.61,
|
| 820 |
+
"grad_norm": 1.2571654549549751,
|
| 821 |
+
"learning_rate": 3.206896551724138e-05,
|
| 822 |
+
"loss": 0.1054,
|
| 823 |
+
"step": 1140
|
| 824 |
+
},
|
| 825 |
+
{
|
| 826 |
+
"epoch": 0.62,
|
| 827 |
+
"grad_norm": 0.5559534032307631,
|
| 828 |
+
"learning_rate": 3.1896551724137935e-05,
|
| 829 |
+
"loss": 0.0789,
|
| 830 |
+
"step": 1150
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 0.62,
|
| 834 |
+
"grad_norm": 1.636369759504475,
|
| 835 |
+
"learning_rate": 3.172413793103448e-05,
|
| 836 |
+
"loss": 0.0902,
|
| 837 |
+
"step": 1160
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.63,
|
| 841 |
+
"grad_norm": 1.6137142935446496,
|
| 842 |
+
"learning_rate": 3.155172413793104e-05,
|
| 843 |
+
"loss": 0.1199,
|
| 844 |
+
"step": 1170
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"epoch": 0.63,
|
| 848 |
+
"grad_norm": 1.7448003760796802,
|
| 849 |
+
"learning_rate": 3.137931034482759e-05,
|
| 850 |
+
"loss": 0.1295,
|
| 851 |
+
"step": 1180
|
| 852 |
+
},
|
| 853 |
+
{
|
| 854 |
+
"epoch": 0.64,
|
| 855 |
+
"grad_norm": 1.3261005358227276,
|
| 856 |
+
"learning_rate": 3.120689655172414e-05,
|
| 857 |
+
"loss": 0.1117,
|
| 858 |
+
"step": 1190
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"epoch": 0.64,
|
| 862 |
+
"grad_norm": 1.7353127177901462,
|
| 863 |
+
"learning_rate": 3.103448275862069e-05,
|
| 864 |
+
"loss": 0.0951,
|
| 865 |
+
"step": 1200
|
| 866 |
+
},
|
| 867 |
+
{
|
| 868 |
+
"epoch": 0.65,
|
| 869 |
+
"grad_norm": 2.8569975913367074,
|
| 870 |
+
"learning_rate": 3.086206896551724e-05,
|
| 871 |
+
"loss": 0.112,
|
| 872 |
+
"step": 1210
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"epoch": 0.65,
|
| 876 |
+
"grad_norm": 1.3481947218871082,
|
| 877 |
+
"learning_rate": 3.0689655172413796e-05,
|
| 878 |
+
"loss": 0.0876,
|
| 879 |
+
"step": 1220
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.66,
|
| 883 |
+
"grad_norm": 2.015933141613929,
|
| 884 |
+
"learning_rate": 3.0517241379310348e-05,
|
| 885 |
+
"loss": 0.0993,
|
| 886 |
+
"step": 1230
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 0.66,
|
| 890 |
+
"grad_norm": 1.0588164394448019,
|
| 891 |
+
"learning_rate": 3.0344827586206897e-05,
|
| 892 |
+
"loss": 0.1034,
|
| 893 |
+
"step": 1240
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"epoch": 0.67,
|
| 897 |
+
"grad_norm": 1.3594986645993228,
|
| 898 |
+
"learning_rate": 3.017241379310345e-05,
|
| 899 |
+
"loss": 0.1004,
|
| 900 |
+
"step": 1250
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.67,
|
| 904 |
+
"grad_norm": 1.333098402625009,
|
| 905 |
+
"learning_rate": 3e-05,
|
| 906 |
+
"loss": 0.1259,
|
| 907 |
+
"step": 1260
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"epoch": 0.68,
|
| 911 |
+
"grad_norm": 1.1324206075196583,
|
| 912 |
+
"learning_rate": 2.9827586206896553e-05,
|
| 913 |
+
"loss": 0.1155,
|
| 914 |
+
"step": 1270
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.68,
|
| 918 |
+
"grad_norm": 1.2270687927795876,
|
| 919 |
+
"learning_rate": 2.96551724137931e-05,
|
| 920 |
+
"loss": 0.092,
|
| 921 |
+
"step": 1280
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.69,
|
| 925 |
+
"grad_norm": 1.3085362507403875,
|
| 926 |
+
"learning_rate": 2.9482758620689654e-05,
|
| 927 |
+
"loss": 0.1064,
|
| 928 |
+
"step": 1290
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.7,
|
| 932 |
+
"grad_norm": 1.7135250277750762,
|
| 933 |
+
"learning_rate": 2.9310344827586206e-05,
|
| 934 |
+
"loss": 0.1132,
|
| 935 |
+
"step": 1300
|
| 936 |
+
},
|
| 937 |
+
{
|
| 938 |
+
"epoch": 0.7,
|
| 939 |
+
"grad_norm": 1.6121189707451158,
|
| 940 |
+
"learning_rate": 2.913793103448276e-05,
|
| 941 |
+
"loss": 0.1006,
|
| 942 |
+
"step": 1310
|
| 943 |
+
},
|
| 944 |
+
{
|
| 945 |
+
"epoch": 0.71,
|
| 946 |
+
"grad_norm": 1.3958680925504208,
|
| 947 |
+
"learning_rate": 2.8965517241379313e-05,
|
| 948 |
+
"loss": 0.0956,
|
| 949 |
+
"step": 1320
|
| 950 |
+
},
|
| 951 |
+
{
|
| 952 |
+
"epoch": 0.71,
|
| 953 |
+
"grad_norm": 1.546226150121884,
|
| 954 |
+
"learning_rate": 2.8793103448275865e-05,
|
| 955 |
+
"loss": 0.1142,
|
| 956 |
+
"step": 1330
|
| 957 |
+
},
|
| 958 |
+
{
|
| 959 |
+
"epoch": 0.72,
|
| 960 |
+
"grad_norm": 2.1837739995965415,
|
| 961 |
+
"learning_rate": 2.8620689655172417e-05,
|
| 962 |
+
"loss": 0.1127,
|
| 963 |
+
"step": 1340
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.72,
|
| 967 |
+
"grad_norm": 1.9402402206909504,
|
| 968 |
+
"learning_rate": 2.844827586206897e-05,
|
| 969 |
+
"loss": 0.0922,
|
| 970 |
+
"step": 1350
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.73,
|
| 974 |
+
"grad_norm": 1.7914401953164802,
|
| 975 |
+
"learning_rate": 2.8275862068965518e-05,
|
| 976 |
+
"loss": 0.1038,
|
| 977 |
+
"step": 1360
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"epoch": 0.73,
|
| 981 |
+
"grad_norm": 1.505804090650568,
|
| 982 |
+
"learning_rate": 2.810344827586207e-05,
|
| 983 |
+
"loss": 0.1034,
|
| 984 |
+
"step": 1370
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"epoch": 0.74,
|
| 988 |
+
"grad_norm": 1.9907350713586716,
|
| 989 |
+
"learning_rate": 2.7931034482758622e-05,
|
| 990 |
+
"loss": 0.103,
|
| 991 |
+
"step": 1380
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"epoch": 0.74,
|
| 995 |
+
"grad_norm": 1.6948381773166858,
|
| 996 |
+
"learning_rate": 2.7758620689655175e-05,
|
| 997 |
+
"loss": 0.1091,
|
| 998 |
+
"step": 1390
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 0.75,
|
| 1002 |
+
"grad_norm": 1.3995985437024723,
|
| 1003 |
+
"learning_rate": 2.7586206896551727e-05,
|
| 1004 |
+
"loss": 0.0852,
|
| 1005 |
+
"step": 1400
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 0.75,
|
| 1009 |
+
"grad_norm": 1.9347024029069393,
|
| 1010 |
+
"learning_rate": 2.7413793103448275e-05,
|
| 1011 |
+
"loss": 0.1393,
|
| 1012 |
+
"step": 1410
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"epoch": 0.76,
|
| 1016 |
+
"grad_norm": 1.608776792445342,
|
| 1017 |
+
"learning_rate": 2.7241379310344827e-05,
|
| 1018 |
+
"loss": 0.0951,
|
| 1019 |
+
"step": 1420
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"epoch": 0.77,
|
| 1023 |
+
"grad_norm": 1.6005483580619249,
|
| 1024 |
+
"learning_rate": 2.706896551724138e-05,
|
| 1025 |
+
"loss": 0.1037,
|
| 1026 |
+
"step": 1430
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.77,
|
| 1030 |
+
"grad_norm": 2.374208686020403,
|
| 1031 |
+
"learning_rate": 2.689655172413793e-05,
|
| 1032 |
+
"loss": 0.0926,
|
| 1033 |
+
"step": 1440
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"epoch": 0.78,
|
| 1037 |
+
"grad_norm": 1.7554923995400171,
|
| 1038 |
+
"learning_rate": 2.672413793103448e-05,
|
| 1039 |
+
"loss": 0.1164,
|
| 1040 |
+
"step": 1450
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.78,
|
| 1044 |
+
"grad_norm": 1.2965114220197742,
|
| 1045 |
+
"learning_rate": 2.6551724137931032e-05,
|
| 1046 |
+
"loss": 0.1102,
|
| 1047 |
+
"step": 1460
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.79,
|
| 1051 |
+
"grad_norm": 1.8857303249108055,
|
| 1052 |
+
"learning_rate": 2.637931034482759e-05,
|
| 1053 |
+
"loss": 0.0868,
|
| 1054 |
+
"step": 1470
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.79,
|
| 1058 |
+
"grad_norm": 1.406207551120988,
|
| 1059 |
+
"learning_rate": 2.620689655172414e-05,
|
| 1060 |
+
"loss": 0.1179,
|
| 1061 |
+
"step": 1480
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"epoch": 0.8,
|
| 1065 |
+
"grad_norm": 1.275728362064451,
|
| 1066 |
+
"learning_rate": 2.6034482758620692e-05,
|
| 1067 |
+
"loss": 0.1128,
|
| 1068 |
+
"step": 1490
|
| 1069 |
+
},
|
| 1070 |
+
{
|
| 1071 |
+
"epoch": 0.8,
|
| 1072 |
+
"grad_norm": 1.7122434387720797,
|
| 1073 |
+
"learning_rate": 2.5862068965517244e-05,
|
| 1074 |
+
"loss": 0.1045,
|
| 1075 |
+
"step": 1500
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"epoch": 0.8,
|
| 1079 |
+
"eval_loss": 0.6075221300125122,
|
| 1080 |
+
"eval_runtime": 114.4297,
|
| 1081 |
+
"eval_samples_per_second": 11.527,
|
| 1082 |
+
"eval_steps_per_second": 2.884,
|
| 1083 |
+
"step": 1500
|
| 1084 |
+
},
|
| 1085 |
+
{
|
| 1086 |
+
"epoch": 0.81,
|
| 1087 |
+
"grad_norm": 1.3880467648229133,
|
| 1088 |
+
"learning_rate": 2.5689655172413796e-05,
|
| 1089 |
+
"loss": 0.1031,
|
| 1090 |
+
"step": 1510
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 0.81,
|
| 1094 |
+
"grad_norm": 2.3475935500456657,
|
| 1095 |
+
"learning_rate": 2.551724137931035e-05,
|
| 1096 |
+
"loss": 0.1064,
|
| 1097 |
+
"step": 1520
|
| 1098 |
+
},
|
| 1099 |
+
{
|
| 1100 |
+
"epoch": 0.82,
|
| 1101 |
+
"grad_norm": 1.9746447047097486,
|
| 1102 |
+
"learning_rate": 2.5344827586206897e-05,
|
| 1103 |
+
"loss": 0.0995,
|
| 1104 |
+
"step": 1530
|
| 1105 |
+
},
|
| 1106 |
+
{
|
| 1107 |
+
"epoch": 0.82,
|
| 1108 |
+
"grad_norm": 1.2244623226185645,
|
| 1109 |
+
"learning_rate": 2.517241379310345e-05,
|
| 1110 |
+
"loss": 0.1044,
|
| 1111 |
+
"step": 1540
|
| 1112 |
+
},
|
| 1113 |
+
{
|
| 1114 |
+
"epoch": 0.83,
|
| 1115 |
+
"grad_norm": 2.2605012043265216,
|
| 1116 |
+
"learning_rate": 2.5e-05,
|
| 1117 |
+
"loss": 0.1017,
|
| 1118 |
+
"step": 1550
|
| 1119 |
+
},
|
| 1120 |
+
{
|
| 1121 |
+
"epoch": 0.83,
|
| 1122 |
+
"grad_norm": 1.624612730097256,
|
| 1123 |
+
"learning_rate": 2.4827586206896553e-05,
|
| 1124 |
+
"loss": 0.0973,
|
| 1125 |
+
"step": 1560
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"epoch": 0.84,
|
| 1129 |
+
"grad_norm": 1.3648662151461801,
|
| 1130 |
+
"learning_rate": 2.4655172413793105e-05,
|
| 1131 |
+
"loss": 0.0836,
|
| 1132 |
+
"step": 1570
|
| 1133 |
+
},
|
| 1134 |
+
{
|
| 1135 |
+
"epoch": 0.85,
|
| 1136 |
+
"grad_norm": 1.4642386177378814,
|
| 1137 |
+
"learning_rate": 2.4482758620689654e-05,
|
| 1138 |
+
"loss": 0.1058,
|
| 1139 |
+
"step": 1580
|
| 1140 |
+
},
|
| 1141 |
+
{
|
| 1142 |
+
"epoch": 0.85,
|
| 1143 |
+
"grad_norm": 1.3057087388796036,
|
| 1144 |
+
"learning_rate": 2.4310344827586206e-05,
|
| 1145 |
+
"loss": 0.1092,
|
| 1146 |
+
"step": 1590
|
| 1147 |
+
},
|
| 1148 |
+
{
|
| 1149 |
+
"epoch": 0.86,
|
| 1150 |
+
"grad_norm": 2.092348689417081,
|
| 1151 |
+
"learning_rate": 2.413793103448276e-05,
|
| 1152 |
+
"loss": 0.0958,
|
| 1153 |
+
"step": 1600
|
| 1154 |
+
},
|
| 1155 |
+
{
|
| 1156 |
+
"epoch": 0.86,
|
| 1157 |
+
"grad_norm": 1.3731115281087607,
|
| 1158 |
+
"learning_rate": 2.3965517241379314e-05,
|
| 1159 |
+
"loss": 0.0883,
|
| 1160 |
+
"step": 1610
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"epoch": 0.87,
|
| 1164 |
+
"grad_norm": 1.3983722722394134,
|
| 1165 |
+
"learning_rate": 2.3793103448275862e-05,
|
| 1166 |
+
"loss": 0.0944,
|
| 1167 |
+
"step": 1620
|
| 1168 |
+
},
|
| 1169 |
+
{
|
| 1170 |
+
"epoch": 0.87,
|
| 1171 |
+
"grad_norm": 2.4163442262002937,
|
| 1172 |
+
"learning_rate": 2.3620689655172415e-05,
|
| 1173 |
+
"loss": 0.1062,
|
| 1174 |
+
"step": 1630
|
| 1175 |
+
},
|
| 1176 |
+
{
|
| 1177 |
+
"epoch": 0.88,
|
| 1178 |
+
"grad_norm": 1.5006079944233688,
|
| 1179 |
+
"learning_rate": 2.3448275862068967e-05,
|
| 1180 |
+
"loss": 0.1129,
|
| 1181 |
+
"step": 1640
|
| 1182 |
+
},
|
| 1183 |
+
{
|
| 1184 |
+
"epoch": 0.88,
|
| 1185 |
+
"grad_norm": 1.54283270803711,
|
| 1186 |
+
"learning_rate": 2.327586206896552e-05,
|
| 1187 |
+
"loss": 0.0861,
|
| 1188 |
+
"step": 1650
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"epoch": 0.89,
|
| 1192 |
+
"grad_norm": 2.269678144223195,
|
| 1193 |
+
"learning_rate": 2.3103448275862067e-05,
|
| 1194 |
+
"loss": 0.0978,
|
| 1195 |
+
"step": 1660
|
| 1196 |
+
},
|
| 1197 |
+
{
|
| 1198 |
+
"epoch": 0.89,
|
| 1199 |
+
"grad_norm": 1.8105959776831768,
|
| 1200 |
+
"learning_rate": 2.293103448275862e-05,
|
| 1201 |
+
"loss": 0.1141,
|
| 1202 |
+
"step": 1670
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.9,
|
| 1206 |
+
"grad_norm": 1.9135579713863027,
|
| 1207 |
+
"learning_rate": 2.2758620689655175e-05,
|
| 1208 |
+
"loss": 0.0918,
|
| 1209 |
+
"step": 1680
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 0.9,
|
| 1213 |
+
"grad_norm": 1.6604450253018581,
|
| 1214 |
+
"learning_rate": 2.2586206896551727e-05,
|
| 1215 |
+
"loss": 0.096,
|
| 1216 |
+
"step": 1690
|
| 1217 |
+
},
|
| 1218 |
+
{
|
| 1219 |
+
"epoch": 0.91,
|
| 1220 |
+
"grad_norm": 2.115987565053461,
|
| 1221 |
+
"learning_rate": 2.2413793103448276e-05,
|
| 1222 |
+
"loss": 0.1166,
|
| 1223 |
+
"step": 1700
|
| 1224 |
+
},
|
| 1225 |
+
{
|
| 1226 |
+
"epoch": 0.91,
|
| 1227 |
+
"grad_norm": 1.4279927513160544,
|
| 1228 |
+
"learning_rate": 2.2241379310344828e-05,
|
| 1229 |
+
"loss": 0.1052,
|
| 1230 |
+
"step": 1710
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"epoch": 0.92,
|
| 1234 |
+
"grad_norm": 1.185880441960968,
|
| 1235 |
+
"learning_rate": 2.206896551724138e-05,
|
| 1236 |
+
"loss": 0.1053,
|
| 1237 |
+
"step": 1720
|
| 1238 |
+
},
|
| 1239 |
+
{
|
| 1240 |
+
"epoch": 0.93,
|
| 1241 |
+
"grad_norm": 1.6969029997828415,
|
| 1242 |
+
"learning_rate": 2.1896551724137932e-05,
|
| 1243 |
+
"loss": 0.106,
|
| 1244 |
+
"step": 1730
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"epoch": 0.93,
|
| 1248 |
+
"grad_norm": 2.0330998697970286,
|
| 1249 |
+
"learning_rate": 2.1724137931034484e-05,
|
| 1250 |
+
"loss": 0.1073,
|
| 1251 |
+
"step": 1740
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.94,
|
| 1255 |
+
"grad_norm": 1.19027851417408,
|
| 1256 |
+
"learning_rate": 2.1551724137931033e-05,
|
| 1257 |
+
"loss": 0.091,
|
| 1258 |
+
"step": 1750
|
| 1259 |
+
},
|
| 1260 |
+
{
|
| 1261 |
+
"epoch": 0.94,
|
| 1262 |
+
"grad_norm": 1.2470713090698218,
|
| 1263 |
+
"learning_rate": 2.137931034482759e-05,
|
| 1264 |
+
"loss": 0.0898,
|
| 1265 |
+
"step": 1760
|
| 1266 |
+
},
|
| 1267 |
+
{
|
| 1268 |
+
"epoch": 0.95,
|
| 1269 |
+
"grad_norm": 2.235740059996042,
|
| 1270 |
+
"learning_rate": 2.120689655172414e-05,
|
| 1271 |
+
"loss": 0.1327,
|
| 1272 |
+
"step": 1770
|
| 1273 |
+
},
|
| 1274 |
+
{
|
| 1275 |
+
"epoch": 0.95,
|
| 1276 |
+
"grad_norm": 1.5741742016710085,
|
| 1277 |
+
"learning_rate": 2.1034482758620692e-05,
|
| 1278 |
+
"loss": 0.1126,
|
| 1279 |
+
"step": 1780
|
| 1280 |
+
},
|
| 1281 |
+
{
|
| 1282 |
+
"epoch": 0.96,
|
| 1283 |
+
"grad_norm": 0.9343547126371113,
|
| 1284 |
+
"learning_rate": 2.086206896551724e-05,
|
| 1285 |
+
"loss": 0.0819,
|
| 1286 |
+
"step": 1790
|
| 1287 |
+
},
|
| 1288 |
+
{
|
| 1289 |
+
"epoch": 0.96,
|
| 1290 |
+
"grad_norm": 2.2764271447338937,
|
| 1291 |
+
"learning_rate": 2.0689655172413793e-05,
|
| 1292 |
+
"loss": 0.1204,
|
| 1293 |
+
"step": 1800
|
| 1294 |
+
},
|
| 1295 |
+
{
|
| 1296 |
+
"epoch": 0.97,
|
| 1297 |
+
"grad_norm": 1.981384842073209,
|
| 1298 |
+
"learning_rate": 2.0517241379310345e-05,
|
| 1299 |
+
"loss": 0.1182,
|
| 1300 |
+
"step": 1810
|
| 1301 |
+
},
|
| 1302 |
+
{
|
| 1303 |
+
"epoch": 0.97,
|
| 1304 |
+
"grad_norm": 1.044063198588911,
|
| 1305 |
+
"learning_rate": 2.0344827586206897e-05,
|
| 1306 |
+
"loss": 0.1005,
|
| 1307 |
+
"step": 1820
|
| 1308 |
+
},
|
| 1309 |
+
{
|
| 1310 |
+
"epoch": 0.98,
|
| 1311 |
+
"grad_norm": 2.370183172473789,
|
| 1312 |
+
"learning_rate": 2.017241379310345e-05,
|
| 1313 |
+
"loss": 0.1174,
|
| 1314 |
+
"step": 1830
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.98,
|
| 1318 |
+
"grad_norm": 1.9052733799672823,
|
| 1319 |
+
"learning_rate": 2e-05,
|
| 1320 |
+
"loss": 0.1125,
|
| 1321 |
+
"step": 1840
|
| 1322 |
+
},
|
| 1323 |
+
{
|
| 1324 |
+
"epoch": 0.99,
|
| 1325 |
+
"grad_norm": 1.628277530114902,
|
| 1326 |
+
"learning_rate": 1.9827586206896554e-05,
|
| 1327 |
+
"loss": 0.1015,
|
| 1328 |
+
"step": 1850
|
| 1329 |
+
},
|
| 1330 |
+
{
|
| 1331 |
+
"epoch": 1.0,
|
| 1332 |
+
"grad_norm": 1.2522124245986863,
|
| 1333 |
+
"learning_rate": 1.9655172413793106e-05,
|
| 1334 |
+
"loss": 0.0924,
|
| 1335 |
+
"step": 1860
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 1.0,
|
| 1339 |
+
"grad_norm": 0.6911426489002421,
|
| 1340 |
+
"learning_rate": 1.9482758620689655e-05,
|
| 1341 |
+
"loss": 0.0965,
|
| 1342 |
+
"step": 1870
|
| 1343 |
+
},
|
| 1344 |
+
{
|
| 1345 |
+
"epoch": 1.01,
|
| 1346 |
+
"grad_norm": 1.821890613342771,
|
| 1347 |
+
"learning_rate": 1.9310344827586207e-05,
|
| 1348 |
+
"loss": 0.081,
|
| 1349 |
+
"step": 1880
|
| 1350 |
+
},
|
| 1351 |
+
{
|
| 1352 |
+
"epoch": 1.01,
|
| 1353 |
+
"grad_norm": 0.7643588179781782,
|
| 1354 |
+
"learning_rate": 1.913793103448276e-05,
|
| 1355 |
+
"loss": 0.0761,
|
| 1356 |
+
"step": 1890
|
| 1357 |
+
},
|
| 1358 |
+
{
|
| 1359 |
+
"epoch": 1.02,
|
| 1360 |
+
"grad_norm": 1.1095002263403428,
|
| 1361 |
+
"learning_rate": 1.896551724137931e-05,
|
| 1362 |
+
"loss": 0.0871,
|
| 1363 |
+
"step": 1900
|
| 1364 |
+
},
|
| 1365 |
+
{
|
| 1366 |
+
"epoch": 1.02,
|
| 1367 |
+
"grad_norm": 1.4639820667455608,
|
| 1368 |
+
"learning_rate": 1.8793103448275863e-05,
|
| 1369 |
+
"loss": 0.0805,
|
| 1370 |
+
"step": 1910
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 1.03,
|
| 1374 |
+
"grad_norm": 1.6214269161589794,
|
| 1375 |
+
"learning_rate": 1.8620689655172415e-05,
|
| 1376 |
+
"loss": 0.0902,
|
| 1377 |
+
"step": 1920
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 1.03,
|
| 1381 |
+
"grad_norm": 1.5979085316952373,
|
| 1382 |
+
"learning_rate": 1.8448275862068967e-05,
|
| 1383 |
+
"loss": 0.0967,
|
| 1384 |
+
"step": 1930
|
| 1385 |
+
},
|
| 1386 |
+
{
|
| 1387 |
+
"epoch": 1.04,
|
| 1388 |
+
"grad_norm": 1.2001043976090235,
|
| 1389 |
+
"learning_rate": 1.827586206896552e-05,
|
| 1390 |
+
"loss": 0.069,
|
| 1391 |
+
"step": 1940
|
| 1392 |
+
},
|
| 1393 |
+
{
|
| 1394 |
+
"epoch": 1.04,
|
| 1395 |
+
"grad_norm": 2.100190633629739,
|
| 1396 |
+
"learning_rate": 1.810344827586207e-05,
|
| 1397 |
+
"loss": 0.1024,
|
| 1398 |
+
"step": 1950
|
| 1399 |
+
},
|
| 1400 |
+
{
|
| 1401 |
+
"epoch": 1.05,
|
| 1402 |
+
"grad_norm": 1.7393396532511867,
|
| 1403 |
+
"learning_rate": 1.793103448275862e-05,
|
| 1404 |
+
"loss": 0.0728,
|
| 1405 |
+
"step": 1960
|
| 1406 |
+
},
|
| 1407 |
+
{
|
| 1408 |
+
"epoch": 1.05,
|
| 1409 |
+
"grad_norm": 1.873599965711283,
|
| 1410 |
+
"learning_rate": 1.7758620689655172e-05,
|
| 1411 |
+
"loss": 0.0735,
|
| 1412 |
+
"step": 1970
|
| 1413 |
+
},
|
| 1414 |
+
{
|
| 1415 |
+
"epoch": 1.06,
|
| 1416 |
+
"grad_norm": 1.4460752726376342,
|
| 1417 |
+
"learning_rate": 1.7586206896551724e-05,
|
| 1418 |
+
"loss": 0.1,
|
| 1419 |
+
"step": 1980
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 1.06,
|
| 1423 |
+
"grad_norm": 0.8772715867399261,
|
| 1424 |
+
"learning_rate": 1.7413793103448276e-05,
|
| 1425 |
+
"loss": 0.0794,
|
| 1426 |
+
"step": 1990
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"epoch": 1.07,
|
| 1430 |
+
"grad_norm": 1.398173054729605,
|
| 1431 |
+
"learning_rate": 1.7241379310344828e-05,
|
| 1432 |
+
"loss": 0.078,
|
| 1433 |
+
"step": 2000
|
| 1434 |
+
},
|
| 1435 |
+
{
|
| 1436 |
+
"epoch": 1.07,
|
| 1437 |
+
"eval_loss": 0.6523420810699463,
|
| 1438 |
+
"eval_runtime": 115.4048,
|
| 1439 |
+
"eval_samples_per_second": 11.429,
|
| 1440 |
+
"eval_steps_per_second": 2.859,
|
| 1441 |
+
"step": 2000
|
| 1442 |
+
}
|
| 1443 |
+
],
|
| 1444 |
+
"logging_steps": 10,
|
| 1445 |
+
"max_steps": 3000,
|
| 1446 |
+
"num_input_tokens_seen": 0,
|
| 1447 |
+
"num_train_epochs": 2,
|
| 1448 |
+
"save_steps": 500,
|
| 1449 |
+
"total_flos": 57776359145472.0,
|
| 1450 |
+
"train_batch_size": 4,
|
| 1451 |
+
"trial_name": null,
|
| 1452 |
+
"trial_params": null
|
| 1453 |
+
}
|
checkpoints/checkpoint-2000/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22266252322e6977894297b61731ca9228c8fcfe4e8d788aef270218c40fec98
|
| 3 |
+
size 6776
|
checkpoints/checkpoint-2000/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/checkpoint-2500/README.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
### Framework versions
|
| 201 |
+
|
| 202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-2500/adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": "gaussian",
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 32,
|
| 14 |
+
"lora_dropout": 0.1,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 8,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"v_proj",
|
| 24 |
+
"q_proj"
|
| 25 |
+
],
|
| 26 |
+
"task_type": "CAUSAL_LM",
|
| 27 |
+
"use_dora": false,
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
checkpoints/checkpoint-2500/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3930f22046333bd2b424020c5ba937de3e5f3239dc86cbd432b2b9f92c95a70a
|
| 3 |
+
size 5919456
|
checkpoints/checkpoint-2500/global_step2500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e4efdd5c2b93b0c2c7671ca8a30ba480832bf7ecbcc638e1f13267ac9c26e5d
|
| 3 |
+
size 35393392
|