MarianMT¶
Bugs: If you see something strange, file a Github Issue and assign @patrickvonplaten.
Translations should be similar, but not identical to output in the test set linked to in each model card.
Implementation Notes¶
Each model is about 298 MB on disk, there are more than 1,000 models.
The list of supported language pairs can be found here.
Models were originally trained by Jörg Tiedemann using the Marian C++ library, which supports fast training and translation.
All models are transformer encoder-decoders with 6 layers in each component. Each model’s performance is documented in a model card.
The 80 opus models that require BPE preprocessing are not supported.
The modeling code is the same as
BartForConditionalGenerationwith a few minor modifications:static (sinusoid) positional embeddings (
MarianConfig.static_position_embeddings=True)no layernorm_embedding (
MarianConfig.normalize_embedding=False)the model starts generating with
pad_token_id(which has 0 as a token_embedding) as the prefix (Bart uses<s/>),
Code to bulk convert models can be found in
convert_marian_to_pytorch.py.This model was contributed by sshleifer.
Naming¶
All model names use the following format:
Helsinki-NLP/opus-mt-{src}-{tgt}The language codes used to name models are inconsistent. Two digit codes can usually be found here, three digit codes require googling “language code {code}”.
Codes formatted like
es_ARare usuallycode_{region}. That one is Spanish from Argentina.The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second group use a combination of ISO-639-5 codes and ISO-639-2 codes.
Examples¶
Since Marian models are smaller than many other translation models available in the library, they can be useful for fine-tuning experiments and integration tests.
Multilingual Models¶
All model names use the following format:
Helsinki-NLP/opus-mt-{src}-{tgt}:If a model can output multiple languages, and you should specify a language code by prepending the desired output language to the
src_text.You can see a models’s supported language codes in its model card, under target constituents, like in opus-mt-en-roa.
Note that if a model is only multilingual on the source side, like
Helsinki-NLP/opus-mt-roa-en, no language codes are required.
New multi-lingual models from the Tatoeba-Challenge repo require 3 character language codes:
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... '>>fra<< this is a sentence in english that we want to translate to french',
... '>>por<< This should go to portuguese',
... '>>esp<< And this to Spanish'
>>> ]
>>> model_name = 'Helsinki-NLP/opus-mt-en-roa'
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> print(tokenizer.supported_language_codes)
['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<']
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o portuguĂŞs.',
'Y esto al español']
Here is the code to see all available pretrained models on the hub:
from transformers.hf_api import HfApi
model_list = HfApi().model_list()
org = "Helsinki-NLP"
model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
suffix = [x.split('/')[1] for x in model_ids]
old_style_multi_models = [f'{org}/{s}' for s in suffix if s != s.lower()]
Old Style Multi-Lingual Models¶
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language group:
['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
'Helsinki-NLP/opus-mt-ROMANCE-en',
'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
'Helsinki-NLP/opus-mt-de-ZH',
'Helsinki-NLP/opus-mt-en-CELTIC',
'Helsinki-NLP/opus-mt-en-ROMANCE',
'Helsinki-NLP/opus-mt-es-NORWAY',
'Helsinki-NLP/opus-mt-fi-NORWAY',
'Helsinki-NLP/opus-mt-fi-ZH',
'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
'Helsinki-NLP/opus-mt-sv-NORWAY',
'Helsinki-NLP/opus-mt-sv-ZH']
GROUP_MEMBERS = {
'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
}
Example of translating english to many romance languages, using old-style 2 character language codes
MarianConfig¶
-
class
transformers.MarianConfig(vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function='gelu', d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=58100, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, pad_token_id=58100, eos_token_id=0, forced_eos_token_id=0, **kwargs)[source]¶ This is the configuration class to store the configuration of a
MarianModel. It is used to instantiate an Marian model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Marian Helsinki-NLP/opus-mt-en-de architecture.Configuration objects inherit from
PretrainedConfigand can be used to control the model outputs. Read the documentation fromPretrainedConfigfor more information.- Parameters
vocab_size (
int, optional, defaults to 50265) – Vocabulary size of the Marian model. Defines the number of different tokens that can be represented by theinputs_idspassed when callingMarianModelorTFMarianModel.d_model (
int, optional, defaults to 1024) – Dimensionality of the layers and the pooler layer.encoder_layers (
int, optional, defaults to 12) – Number of encoder layers.decoder_layers (
int, optional, defaults to 12) – Number of decoder layers.encoder_attention_heads (
int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer encoder.decoder_attention_heads (
int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer decoder.decoder_ffn_dim (
int, optional, defaults to 4096) – Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.encoder_ffn_dim (
int, optional, defaults to 4096) – Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.activation_function (
strorfunction, optional, defaults to"gelu") – The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","silu"and"gelu_new"are supported.dropout (
float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_dropout (
float, optional, defaults to 0.0) – The dropout ratio for the attention probabilities.activation_dropout (
float, optional, defaults to 0.0) – The dropout ratio for activations inside the fully connected layer.classifier_dropout (
float, optional, defaults to 0.0) – The dropout ratio for classifier.max_position_embeddings (
int, optional, defaults to 1024) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).init_std (
float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.encoder_layerdrop – (
float, optional, defaults to 0.0): The LayerDrop probability for the encoder. See the LayerDrop paper for more details.decoder_layerdrop – (
float, optional, defaults to 0.0): The LayerDrop probability for the decoder. See the LayerDrop paper for more details.gradient_checkpointing (
bool, optional, defaults toFalse) – If True, use gradient checkpointing to save memory at the expense of slower backward pass.scale_embedding (
bool, optional, defaults toFalse) – Scale embeddings by diving by sqrt(d_model).use_cache (
bool, optional, defaults toTrue) – Whether or not the model should return the last key/values attentions (not used by all models)forced_eos_token_id (
int, optional, defaults to 0) – The id of the token to force as the last generated token whenmax_lengthis reached. Usually set toeos_token_id.
Examples:
>>> from transformers import MarianModel, MarianConfig >>> # Initializing a Marian Helsinki-NLP/opus-mt-en-de style configuration >>> configuration = MarianConfig() >>> # Initializing a model from the Helsinki-NLP/opus-mt-en-de style configuration >>> model = MarianModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
MarianTokenizer¶
-
class
transformers.MarianTokenizer(vocab, source_spm, target_spm, source_lang=None, target_lang=None, unk_token='<unk>', eos_token='</s>', pad_token='<pad>', model_max_length=512, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs)[source]¶ Construct a Marian tokenizer. Based on SentencePiece.
This tokenizer inherits from
PreTrainedTokenizerwhich contains most of the main methods. Users should refer to this superclass for more information regarding those methods.- Parameters
source_spm (
str) – SentencePiece file (generally has a .spm extension) that contains the vocabulary for the source language.target_spm (
str) – SentencePiece file (generally has a .spm extension) that contains the vocabulary for the target language.source_lang (
str, optional) – A string representing the source language.target_lang (
str, optional) – A string representing the target language.unk_token (
str, optional, defaults to"<unk>") – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.eos_token (
str, optional, defaults to"</s>") – The end of sequence token.pad_token (
str, optional, defaults to"<pad>") – The token used for padding, for example when batching sequences of different lengths.model_max_length (
int, optional, defaults to 512) – The maximum sentence length the model accepts.additional_special_tokens (
List[str], optional, defaults to["<eop>", "<eod>"]) – Additional special tokens used by the tokenizer.sp_model_kwargs (
dict, optional) –Will be passed to the
SentencePieceProcessor.__init__()method. The Python wrapper for SentencePiece can be used, among other things, to set:enable_sampling: Enable subword regularization.nbest_size: Sampling parameters for unigram. Invalid for BPE-Dropout.nbest_size = {0,1}: No sampling is performed.nbest_size > 1: samples from the nbest_size results.nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
alpha: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
Examples:
>>> from transformers import MarianTokenizer >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> src_texts = [ "I am a small frog.", "Tom asked his teacher for advice."] >>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional >>> inputs = tokenizer(src_texts, return_tensors="pt", padding=True) >>> with tokenizer.as_target_tokenizer(): ... labels = tokenizer(tgt_texts, return_tensors="pt", padding=True) >>> inputs["labels"] = labels["input_ids"] # keys [input_ids, attention_mask, labels]. >>> outputs = model(**inputs) should work
MarianModel¶
-
class
transformers.MarianModel(config: transformers.models.marian.configuration_marian.MarianConfig)[source]¶ The bare Marian Model outputting raw hidden-states without any specific head on top. This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MarianConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MarianModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Marian uses the
pad_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.head_mask (
torch.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) –Tuple of
tuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_ids`of shape(batch_size, sequence_length).inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensorof shape(batch_size, target_sequence_length, hidden_size), optional) –Optionally, instead of passing
decoder_input_idsyou can choose to directly pass an embedded representation. Ifpast_key_valuesis used, optionally only the lastdecoder_inputs_embedshave to be input (seepast_key_values). This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_idsanddecoder_inputs_embedsare both unset,decoder_inputs_embedstakes the value ofinputs_embeds.use_cache (
bool, optional) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple.
- Returns
A
Seq2SeqModelOutputor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (MarianConfig) and inputs.last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import MarianTokenizer, MarianModel >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> model = MarianModel.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("<pad> Studien haben gezeigt dass es hilfreich ist einen Hund zu besitzen", ... return_tensors="pt", add_special_tokens=False).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state
- Return type
Seq2SeqModelOutputortuple(torch.FloatTensor)
MarianMTModel¶
-
class
transformers.MarianMTModel(config: transformers.models.marian.configuration_marian.MarianConfig)[source]¶ The Marian Model with a language modeling head. Can be used for summarization. This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MarianConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MarianMTModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Marian uses the
pad_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.head_mask (
torch.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) –Tuple of
tuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_ids`of shape(batch_size, sequence_length).inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensorof shape(batch_size, target_sequence_length, hidden_size), optional) –Optionally, instead of passing
decoder_input_idsyou can choose to directly pass an embedded representation. Ifpast_key_valuesis used, optionally only the lastdecoder_inputs_embedshave to be input (seepast_key_values). This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_idsanddecoder_inputs_embedsare both unset,decoder_inputs_embedstakes the value ofinputs_embeds.use_cache (
bool, optional) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
- Returns
A
Seq2SeqLMOutputor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (MarianConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Language modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Pytorch version of marian-nmt’s transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed here.
Examples:
>>> from transformers import MarianTokenizer, MarianMTModel >>> from typing import List >>> src = 'fr' # source language >>> trg = 'en' # target language >>> sample_text = "oĂą est l'arrĂŞt de bus ?" >>> model_name = f'Helsinki-NLP/opus-mt-{src}-{trg}' >>> model = MarianMTModel.from_pretrained(model_name) >>> tokenizer = MarianTokenizer.from_pretrained(model_name) >>> batch = tokenizer([sample_text], return_tensors="pt") >>> gen = model.generate(**batch) >>> tokenizer.batch_decode(gen, skip_special_tokens=True) "Where is the bus stop ?"
- Return type
Seq2SeqLMOutputortuple(torch.FloatTensor)
MarianForCausalLM¶
-
class
transformers.MarianForCausalLM(config)[source]¶ -
forward(input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ - Args:
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
- encoder_hidden_states (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
- encoder_attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in
[0, 1]:- head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional): Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
- cross_attn_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional): Mask to nullify selected heads of the cross-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
- past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True): Tuple of
tuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head). The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).- labels (
torch.LongTensorof shape(batch_size, sequence_length), optional): Labels for computing the masked language modeling loss. Indices should either be in
[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].- use_cache (
bool, optional): If set to
True,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).1 for tokens that are not masked,
0 for tokens that are masked.
- output_attentions (
bool, optional): Whether or not to return the attentions tensors of all attention layers. See
attentionsunder returned tensors for more detail.- output_hidden_states (
bool, optional): Whether or not to return the hidden states of all layers. See
hidden_statesunder returned tensors for more detail.- return_dict (
bool, optional): Whether or not to return a
ModelOutputinstead of a plain tuple.
- input_ids (
- Returns
A
CausalLMOutputWithCrossAttentionsor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (MarianConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Language modeling loss (for next-token prediction).logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftorch.FloatTensortuples of lengthconfig.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.
Example:
>>> from transformers import MarianTokenizer, MarianForCausalLM >>> tokenizer = MarianTokenizer.from_pretrained('facebook/bart-large') >>> model = MarianForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
- Return type
CausalLMOutputWithCrossAttentionsortuple(torch.FloatTensor)
-
TFMarianModel¶
-
class
transformers.TFMarianModel(*args, **kwargs)[source]¶ The bare MARIAN Model outputting raw hidden-states without any specific head on top. This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(input_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MarianConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, transformers.modeling_tf_outputs.TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]¶ The
TFMarianModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
tf.Tensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
tf.Tensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Marian uses the
pad_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
tf.Tensorof shape(batch_size, target_sequence_length), optional) – will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.head_mask (
tf.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tf.FloatTensor, optional) – hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape(batch_size, sequence_length, hidden_size)is a sequence ofpast_key_values (
Tuple[Tuple[tf.Tensor]]of lengthconfig.n_layers) – contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generationoutput_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool, optional, defaults toFalse) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFSeq2SeqModelOutputor a tuple oftf.Tensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (MarianConfig) and inputs.last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSeq2SeqModelOutputortuple(tf.Tensor)
Example:
>>> from transformers import MarianTokenizer, TFMarianModel >>> import tensorflow as tf >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> model = TFMarianModel.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFMarianMTModel¶
-
class
transformers.TFMarianMTModel(*args, **kwargs)[source]¶ The MARIAN Model with a language modeling head. Can be used for summarization. This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(input_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MarianConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[transformers.modeling_tf_outputs.TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]¶ The
TFMarianMTModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensorof shape({0})) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
tf.Tensorof shape({0}), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
tf.Tensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Marian uses the
pad_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
tf.Tensorof shape(batch_size, target_sequence_length), optional) – will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.head_mask (
tf.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tf.FloatTensor, optional) – hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape(batch_size, sequence_length, hidden_size)is a sequence ofpast_key_values (
Tuple[Tuple[tf.Tensor]]of lengthconfig.n_layers) – contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generationoutput_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool, optional, defaults toFalse) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.tensorof shape(batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
- Returns
A
TFSeq2SeqLMOutputor a tuple oftf.Tensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (MarianConfig) and inputs.loss (
tf.Tensorof shape(n,), optional, where n is the number of non-masked labels, returned whenlabelsis provided) – Language modeling loss.logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
TF version of marian-nmt’s transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed here.
Examples:
>>> from transformers import MarianTokenizer, TFMarianMTModel >>> from typing import List >>> src = 'fr' # source language >>> trg = 'en' # target language >>> sample_text = "oĂą est l'arrĂŞt de bus ?" >>> model_name = f'Helsinki-NLP/opus-mt-{src}-{trg}' >>> model = TFMarianMTModel.from_pretrained(model_name) >>> tokenizer = MarianTokenizer.from_pretrained(model_name) >>> batch = tokenizer([sample_text], return_tensors="tf") >>> gen = model.generate(**batch) >>> tokenizer.batch_decode(gen, skip_special_tokens=True) "Where is the bus stop ?"
- Return type
TFSeq2SeqLMOutputortuple(tf.Tensor)
FlaxMarianModel¶
-
class
transformers.FlaxMarianModel(config: transformers.models.marian.configuration_marian.MarianConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]¶ The bare Marian Model transformer outputting raw hidden-states without any specific head on top. This model inherits from
FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- Parameters
config (
MarianConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
__call__(input_ids: jax._src.numpy.lax_numpy.ndarray, attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_input_ids: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, position_ids: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_position_ids: Optional[jax._src.numpy.lax_numpy.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None)¶ - Returns
A
FlaxSeq2SeqModelOutputor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (MarianConfig) and inputs.last_hidden_state (
jax_xla.DeviceArrayof shape(batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
tuple(tuple(jax_xla.DeviceArray)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftuple(jax_xla.DeviceArray)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(jax_xla.DeviceArray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple ofjax_xla.DeviceArray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(jax_xla.DeviceArray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple ofjax_xla.DeviceArray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(jax_xla.DeviceArray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple ofjax_xla.DeviceArray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
jax_xla.DeviceArrayof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(jax_xla.DeviceArray), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple ofjax_xla.DeviceArray(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(jax_xla.DeviceArray), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple ofjax_xla.DeviceArray(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
FlaxSeq2SeqModelOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import MarianTokenizer, FlaxMarianModel >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de'') >>> model = FlaxMarianModel.from_pretrained('Helsinki-NLP/opus-mt-en-de'') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors='jax') >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
FlaxMarianMTModel¶
-
class
transformers.FlaxMarianMTModel(config: transformers.models.marian.configuration_marian.MarianConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]¶ The MARIAN Model with a language modeling head. Can be used for translation. This model inherits from
FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- Parameters
config (
MarianConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
__call__(input_ids: jax._src.numpy.lax_numpy.ndarray, attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_input_ids: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, position_ids: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_position_ids: Optional[jax._src.numpy.lax_numpy.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: Optional[dict] = None, dropout_rng: Optional[jax._src.random.PRNGKey] = None)¶ The
FlaxMarianPreTrainedModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
jnp.ndarrayof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
jnp.ndarrayof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
jnp.ndarrayof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
MarianTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.For translation and summarization training,
decoder_input_idsshould be provided. If nodecoder_input_idsis provided, the model will create this tensor by shifting theinput_idsto the right for denoising pre-training following the paper.decoder_attention_mask (
jnp.ndarrayof shape(batch_size, target_sequence_length), optional) –Default behavior: generate a tensor that ignores pad tokens in
decoder_input_ids. Causal mask will also be used by default.If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) – Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1].decoder_position_ids (
numpy.ndarrayof shape(batch_size, sequence_length), optional) – Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1].output_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple.
Returns:
Example:
>>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de') >>> text = "My friends are cool but they eat too many carbs." >>> input_ids = tokenizer(text, max_length=64, return_tensors='jax').input_ids >>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences >>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True) >>> # should give `Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.`