Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,547 +1,553 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
            language:
         | 
| 3 | 
            -
            - en
         | 
| 4 | 
            -
            license: apache-2.0
         | 
| 5 | 
            -
            library_name: sentence-transformers
         | 
| 6 | 
            -
            tags:
         | 
| 7 | 
            -
            - sentence-transformers
         | 
| 8 | 
            -
            - sentence-similarity
         | 
| 9 | 
            -
            - feature-extraction
         | 
| 10 | 
            -
            - 100K<n<1M
         | 
| 11 | 
            -
            - loss:MultipleNegativesRankingLoss
         | 
| 12 | 
            -
            base_model: microsoft/mpnet-base
         | 
| 13 | 
            -
            metrics:
         | 
| 14 | 
            -
            - cosine_accuracy
         | 
| 15 | 
            -
            - dot_accuracy
         | 
| 16 | 
            -
            - manhattan_accuracy
         | 
| 17 | 
            -
            - euclidean_accuracy
         | 
| 18 | 
            -
            - max_accuracy
         | 
| 19 | 
            -
            widget:
         | 
| 20 | 
            -
            - source_sentence: The  | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
               | 
| 25 | 
            -
            -  | 
| 26 | 
            -
               | 
| 27 | 
            -
              -  | 
| 28 | 
            -
             | 
| 29 | 
            -
               | 
| 30 | 
            -
            -  | 
| 31 | 
            -
               | 
| 32 | 
            -
              -  | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
               | 
| 37 | 
            -
              -  | 
| 38 | 
            -
              -  | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
              sentences:
         | 
| 42 | 
            -
              - The  | 
| 43 | 
            -
              - The  | 
| 44 | 
            -
              -  | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
               | 
| 48 | 
            -
               | 
| 49 | 
            -
               | 
| 50 | 
            -
               | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
               | 
| 54 | 
            -
               | 
| 55 | 
            -
               | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
               | 
| 59 | 
            -
               | 
| 60 | 
            -
             | 
| 61 | 
            -
             | 
| 62 | 
            -
             | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
             | 
| 66 | 
            -
             | 
| 67 | 
            -
                   | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
                   | 
| 71 | 
            -
             | 
| 72 | 
            -
                - type:  | 
| 73 | 
            -
                  value: 0. | 
| 74 | 
            -
                  name:  | 
| 75 | 
            -
                - type:  | 
| 76 | 
            -
                  value: 0. | 
| 77 | 
            -
                  name:  | 
| 78 | 
            -
                - type:  | 
| 79 | 
            -
                  value: 0. | 
| 80 | 
            -
                  name:  | 
| 81 | 
            -
             | 
| 82 | 
            -
                   | 
| 83 | 
            -
                  name:  | 
| 84 | 
            -
                 | 
| 85 | 
            -
                   | 
| 86 | 
            -
                   | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
                   | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
                   | 
| 93 | 
            -
             | 
| 94 | 
            -
                - type:  | 
| 95 | 
            -
                  value: 0. | 
| 96 | 
            -
                  name:  | 
| 97 | 
            -
                - type:  | 
| 98 | 
            -
                  value: 0. | 
| 99 | 
            -
                  name:  | 
| 100 | 
            -
                - type:  | 
| 101 | 
            -
                  value: 0. | 
| 102 | 
            -
                  name:  | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
             | 
| 113 | 
            -
            -  | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 | 
            -
            - ** | 
| 120 | 
            -
            - ** | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
            -  | 
| 125 | 
            -
            - ** | 
| 126 | 
            -
            - ** | 
| 127 | 
            -
             | 
| 128 | 
            -
            ###  | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 152 | 
            -
             | 
| 153 | 
            -
             | 
| 154 | 
            -
             | 
| 155 | 
            -
             | 
| 156 | 
            -
             | 
| 157 | 
            -
             | 
| 158 | 
            -
             | 
| 159 | 
            -
             | 
| 160 | 
            -
             | 
| 161 | 
            -
             | 
| 162 | 
            -
             | 
| 163 | 
            -
             | 
| 164 | 
            -
             | 
| 165 | 
            -
             | 
| 166 | 
            -
             | 
| 167 | 
            -
             | 
| 168 | 
            -
             | 
| 169 | 
            -
             | 
| 170 | 
            -
             | 
| 171 | 
            -
             | 
| 172 | 
            -
             | 
| 173 | 
            -
             | 
| 174 | 
            -
             | 
| 175 | 
            -
             | 
| 176 | 
            -
             | 
| 177 | 
            -
             | 
| 178 | 
            -
             | 
| 179 | 
            -
             | 
| 180 | 
            -
             | 
| 181 | 
            -
             | 
| 182 | 
            -
             | 
| 183 | 
            -
             | 
| 184 | 
            -
             | 
| 185 | 
            -
             | 
| 186 | 
            -
             | 
| 187 | 
            -
             | 
| 188 | 
            -
             | 
| 189 | 
            -
             | 
| 190 | 
            -
             | 
| 191 | 
            -
            -->
         | 
| 192 | 
            -
             | 
| 193 | 
            -
             | 
| 194 | 
            -
             | 
| 195 | 
            -
             | 
| 196 | 
            -
             | 
| 197 | 
            -
             | 
| 198 | 
            -
             | 
| 199 | 
            -
             | 
| 200 | 
            -
             | 
| 201 | 
            -
             | 
| 202 | 
            -
             | 
| 203 | 
            -
             | 
| 204 | 
            -
             | 
| 205 | 
            -
             | 
| 206 | 
            -
             | 
| 207 | 
            -
            |  | 
| 208 | 
            -
             | 
| 209 | 
            -
             | 
| 210 | 
            -
             | 
| 211 | 
            -
             | 
| 212 | 
            -
             | 
| 213 | 
            -
            |  | 
| 214 | 
            -
             | 
| 215 | 
            -
             | 
| 216 | 
            -
             | 
| 217 | 
            -
             | 
| 218 | 
            -
             | 
| 219 | 
            -
            |  | 
| 220 | 
            -
             | 
| 221 | 
            -
             | 
| 222 | 
            -
             | 
| 223 | 
            -
             | 
| 224 | 
            -
             | 
| 225 | 
            -
             | 
| 226 | 
            -
             | 
| 227 | 
            -
            <!--
         | 
| 228 | 
            -
             | 
| 229 | 
            -
             | 
| 230 | 
            -
            *What are  | 
| 231 | 
            -
            -->
         | 
| 232 | 
            -
             | 
| 233 | 
            -
             | 
| 234 | 
            -
             | 
| 235 | 
            -
             | 
| 236 | 
            -
             | 
| 237 | 
            -
             | 
| 238 | 
            -
             | 
| 239 | 
            -
             | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
| 244 | 
            -
             | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
| 247 | 
            -
            *  | 
| 248 | 
            -
             | 
| 249 | 
            -
               | 
| 250 | 
            -
               | 
| 251 | 
            -
              |  | 
| 252 | 
            -
              | < | 
| 253 | 
            -
            *  | 
| 254 | 
            -
               | 
| 255 | 
            -
               | 
| 256 | 
            -
             | 
| 257 | 
            -
             | 
| 258 | 
            -
               | 
| 259 | 
            -
             | 
| 260 | 
            -
             | 
| 261 | 
            -
             | 
| 262 | 
            -
             | 
| 263 | 
            -
             | 
| 264 | 
            -
             | 
| 265 | 
            -
             | 
| 266 | 
            -
             | 
| 267 | 
            -
             | 
| 268 | 
            -
             | 
| 269 | 
            -
             | 
| 270 | 
            -
             | 
| 271 | 
            -
             | 
| 272 | 
            -
             | 
| 273 | 
            -
            *  | 
| 274 | 
            -
             | 
| 275 | 
            -
               | 
| 276 | 
            -
               | 
| 277 | 
            -
              |  | 
| 278 | 
            -
              | < | 
| 279 | 
            -
            *  | 
| 280 | 
            -
               | 
| 281 | 
            -
               | 
| 282 | 
            -
             | 
| 283 | 
            -
             | 
| 284 | 
            -
               | 
| 285 | 
            -
             | 
| 286 | 
            -
             | 
| 287 | 
            -
             | 
| 288 | 
            -
             | 
| 289 | 
            -
             | 
| 290 | 
            -
             | 
| 291 | 
            -
             | 
| 292 | 
            -
             | 
| 293 | 
            -
             | 
| 294 | 
            -
            -  | 
| 295 | 
            -
             | 
| 296 | 
            -
            - ` | 
| 297 | 
            -
             | 
| 298 | 
            -
             | 
| 299 | 
            -
             | 
| 300 | 
            -
             | 
| 301 | 
            -
            - ` | 
| 302 | 
            -
            - ` | 
| 303 | 
            -
             | 
| 304 | 
            -
             | 
| 305 | 
            -
             | 
| 306 | 
            -
             | 
| 307 | 
            -
            - ` | 
| 308 | 
            -
            - ` | 
| 309 | 
            -
            - ` | 
| 310 | 
            -
            - ` | 
| 311 | 
            -
            - ` | 
| 312 | 
            -
            - ` | 
| 313 | 
            -
            - ` | 
| 314 | 
            -
            - ` | 
| 315 | 
            -
            - ` | 
| 316 | 
            -
            - ` | 
| 317 | 
            -
            - ` | 
| 318 | 
            -
            - ` | 
| 319 | 
            -
            - ` | 
| 320 | 
            -
            - ` | 
| 321 | 
            -
            - ` | 
| 322 | 
            -
            - ` | 
| 323 | 
            -
            - ` | 
| 324 | 
            -
            - ` | 
| 325 | 
            -
            - ` | 
| 326 | 
            -
            - ` | 
| 327 | 
            -
            - ` | 
| 328 | 
            -
            - ` | 
| 329 | 
            -
            - ` | 
| 330 | 
            -
            - ` | 
| 331 | 
            -
            - ` | 
| 332 | 
            -
            - ` | 
| 333 | 
            -
            - ` | 
| 334 | 
            -
            - ` | 
| 335 | 
            -
            - ` | 
| 336 | 
            -
            - ` | 
| 337 | 
            -
            - ` | 
| 338 | 
            -
            - ` | 
| 339 | 
            -
            - ` | 
| 340 | 
            -
            - ` | 
| 341 | 
            -
            - ` | 
| 342 | 
            -
            - ` | 
| 343 | 
            -
            - ` | 
| 344 | 
            -
            - ` | 
| 345 | 
            -
            - ` | 
| 346 | 
            -
            - ` | 
| 347 | 
            -
            - ` | 
| 348 | 
            -
            - ` | 
| 349 | 
            -
            - ` | 
| 350 | 
            -
            - ` | 
| 351 | 
            -
            - ` | 
| 352 | 
            -
            - ` | 
| 353 | 
            -
            - ` | 
| 354 | 
            -
            - ` | 
| 355 | 
            -
            - ` | 
| 356 | 
            -
            - ` | 
| 357 | 
            -
            - ` | 
| 358 | 
            -
            - ` | 
| 359 | 
            -
            - ` | 
| 360 | 
            -
            - ` | 
| 361 | 
            -
            - ` | 
| 362 | 
            -
            - ` | 
| 363 | 
            -
            - ` | 
| 364 | 
            -
            - ` | 
| 365 | 
            -
            - ` | 
| 366 | 
            -
            - ` | 
| 367 | 
            -
            - ` | 
| 368 | 
            -
            - ` | 
| 369 | 
            -
            - ` | 
| 370 | 
            -
            - ` | 
| 371 | 
            -
            - ` | 
| 372 | 
            -
            - ` | 
| 373 | 
            -
            - ` | 
| 374 | 
            -
            - ` | 
| 375 | 
            -
            - ` | 
| 376 | 
            -
            - ` | 
| 377 | 
            -
            - ` | 
| 378 | 
            -
            - ` | 
| 379 | 
            -
            - ` | 
| 380 | 
            -
            - ` | 
| 381 | 
            -
            - ` | 
| 382 | 
            -
            - ` | 
| 383 | 
            -
            - ` | 
| 384 | 
            -
            - ` | 
| 385 | 
            -
            - ` | 
| 386 | 
            -
            - ` | 
| 387 | 
            -
            - ` | 
| 388 | 
            -
            - ` | 
| 389 | 
            -
            - ` | 
| 390 | 
            -
            - ` | 
| 391 | 
            -
            - ` | 
| 392 | 
            -
            - ` | 
| 393 | 
            -
            - ` | 
| 394 | 
            -
            - ` | 
| 395 | 
            -
            - ` | 
| 396 | 
            -
            - ` | 
| 397 | 
            -
            - ` | 
| 398 | 
            -
            - ` | 
| 399 | 
            -
            - ` | 
| 400 | 
            -
            - ` | 
| 401 | 
            -
            - ` | 
| 402 | 
            -
            - ` | 
| 403 | 
            -
            - ` | 
| 404 | 
            -
            - ` | 
| 405 | 
            -
            - ` | 
| 406 | 
            -
            - ` | 
| 407 | 
            -
            - ` | 
| 408 | 
            -
            - ` | 
| 409 | 
            -
             | 
| 410 | 
            -
             | 
| 411 | 
            -
             | 
| 412 | 
            -
             | 
| 413 | 
            -
             | 
| 414 | 
            -
             | 
| 415 | 
            -
             | 
| 416 | 
            -
             | 
| 417 | 
            -
             | 
| 418 | 
            -
             | 
| 419 | 
            -
            |  | 
| 420 | 
            -
             | 
| 421 | 
            -
            | 0 | 
| 422 | 
            -
            | 0. | 
| 423 | 
            -
            | 0. | 
| 424 | 
            -
            | 0. | 
| 425 | 
            -
            | 0. | 
| 426 | 
            -
            | 0. | 
| 427 | 
            -
            | 0. | 
| 428 | 
            -
            | 0. | 
| 429 | 
            -
            | 0. | 
| 430 | 
            -
            | 0. | 
| 431 | 
            -
            | 0. | 
| 432 | 
            -
            | 0. | 
| 433 | 
            -
            | 0. | 
| 434 | 
            -
            | 0. | 
| 435 | 
            -
            | 0. | 
| 436 | 
            -
            | 0. | 
| 437 | 
            -
            | 0. | 
| 438 | 
            -
            | 0. | 
| 439 | 
            -
            | 0. | 
| 440 | 
            -
            | 0. | 
| 441 | 
            -
            | 0. | 
| 442 | 
            -
            | 0. | 
| 443 | 
            -
            | 0. | 
| 444 | 
            -
            | 0. | 
| 445 | 
            -
            | 0. | 
| 446 | 
            -
            | 0. | 
| 447 | 
            -
            | 0. | 
| 448 | 
            -
            | 0. | 
| 449 | 
            -
            | 0. | 
| 450 | 
            -
            | 0. | 
| 451 | 
            -
            | 0. | 
| 452 | 
            -
            | 0. | 
| 453 | 
            -
            | 0. | 
| 454 | 
            -
            | 0. | 
| 455 | 
            -
            | 0. | 
| 456 | 
            -
            | 0. | 
| 457 | 
            -
            | 0. | 
| 458 | 
            -
            | 0. | 
| 459 | 
            -
            | 0. | 
| 460 | 
            -
            | 0. | 
| 461 | 
            -
            | 0. | 
| 462 | 
            -
            | 0. | 
| 463 | 
            -
            | 0. | 
| 464 | 
            -
            | 0. | 
| 465 | 
            -
            | 0. | 
| 466 | 
            -
            | 0. | 
| 467 | 
            -
            | 0. | 
| 468 | 
            -
            | 0. | 
| 469 | 
            -
            | 0. | 
| 470 | 
            -
            | 0. | 
| 471 | 
            -
            | 0. | 
| 472 | 
            -
            | 0. | 
| 473 | 
            -
            | 0. | 
| 474 | 
            -
            | 0. | 
| 475 | 
            -
            | 0. | 
| 476 | 
            -
            | 0. | 
| 477 | 
            -
            | 0. | 
| 478 | 
            -
            |  | 
| 479 | 
            -
             | 
| 480 | 
            -
             | 
| 481 | 
            -
             | 
| 482 | 
            -
             | 
| 483 | 
            -
             | 
| 484 | 
            -
            -  | 
| 485 | 
            -
             | 
| 486 | 
            -
             | 
| 487 | 
            -
            ###  | 
| 488 | 
            -
             | 
| 489 | 
            -
            - ** | 
| 490 | 
            -
            - ** | 
| 491 | 
            -
            - ** | 
| 492 | 
            -
             | 
| 493 | 
            -
            ###  | 
| 494 | 
            -
            -  | 
| 495 | 
            -
            -  | 
| 496 | 
            -
            -  | 
| 497 | 
            -
            -  | 
| 498 | 
            -
             | 
| 499 | 
            -
             | 
| 500 | 
            -
            -  | 
| 501 | 
            -
             | 
| 502 | 
            -
             | 
| 503 | 
            -
             | 
| 504 | 
            -
             | 
| 505 | 
            -
             | 
| 506 | 
            -
             | 
| 507 | 
            -
             | 
| 508 | 
            -
             | 
| 509 | 
            -
             | 
| 510 | 
            -
             | 
| 511 | 
            -
             | 
| 512 | 
            -
             | 
| 513 | 
            -
             | 
| 514 | 
            -
             | 
| 515 | 
            -
                 | 
| 516 | 
            -
             | 
| 517 | 
            -
             | 
| 518 | 
            -
             | 
| 519 | 
            -
             | 
| 520 | 
            -
             | 
| 521 | 
            -
             | 
| 522 | 
            -
             | 
| 523 | 
            -
             | 
| 524 | 
            -
             | 
| 525 | 
            -
             | 
| 526 | 
            -
             | 
| 527 | 
            -
             | 
| 528 | 
            -
            }
         | 
| 529 | 
            -
             | 
| 530 | 
            -
             | 
| 531 | 
            -
             | 
| 532 | 
            -
             | 
| 533 | 
            -
             | 
| 534 | 
            -
             | 
| 535 | 
            -
             | 
| 536 | 
            -
             | 
| 537 | 
            -
            <!--
         | 
| 538 | 
            -
            ##  | 
| 539 | 
            -
             | 
| 540 | 
            -
            * | 
| 541 | 
            -
            -->
         | 
| 542 | 
            -
             | 
| 543 | 
            -
            <!--
         | 
| 544 | 
            -
            ## Model Card  | 
| 545 | 
            -
             | 
| 546 | 
            -
            * | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 547 | 
             
            -->
         | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language:
         | 
| 3 | 
            +
            - en
         | 
| 4 | 
            +
            license: apache-2.0
         | 
| 5 | 
            +
            library_name: sentence-transformers
         | 
| 6 | 
            +
            tags:
         | 
| 7 | 
            +
            - sentence-transformers
         | 
| 8 | 
            +
            - sentence-similarity
         | 
| 9 | 
            +
            - feature-extraction
         | 
| 10 | 
            +
            - 100K<n<1M
         | 
| 11 | 
            +
            - loss:MultipleNegativesRankingLoss
         | 
| 12 | 
            +
            base_model: microsoft/mpnet-base
         | 
| 13 | 
            +
            metrics:
         | 
| 14 | 
            +
            - cosine_accuracy
         | 
| 15 | 
            +
            - dot_accuracy
         | 
| 16 | 
            +
            - manhattan_accuracy
         | 
| 17 | 
            +
            - euclidean_accuracy
         | 
| 18 | 
            +
            - max_accuracy
         | 
| 19 | 
            +
            widget:
         | 
| 20 | 
            +
            - source_sentence: The strangely dressed guys, one wearing an orange wig, sunglasses
         | 
| 21 | 
            +
                with peace signs, and a karate costume with an orannge belt, another wearing a
         | 
| 22 | 
            +
                curly blue wig, heart shaped sunglasses, and a karate outfit painted with leaves,
         | 
| 23 | 
            +
                and the third wearing pink underwear, a black afro, and giant sunglasses.
         | 
| 24 | 
            +
              sentences:
         | 
| 25 | 
            +
              - A blonde female is reaching into a golf hole while holding two golf balls.
         | 
| 26 | 
            +
              - There are people wearing outfits.
         | 
| 27 | 
            +
              - The people are naked.
         | 
| 28 | 
            +
            - source_sentence: A group of children playing and having a good time.
         | 
| 29 | 
            +
              sentences:
         | 
| 30 | 
            +
              - The kids are together.
         | 
| 31 | 
            +
              - The children are reading books.
         | 
| 32 | 
            +
              - People are pointing at a Middle-aged woman.
         | 
| 33 | 
            +
            - source_sentence: Three children dressed in winter clothes are walking through the
         | 
| 34 | 
            +
                woods while pushing cargo along.
         | 
| 35 | 
            +
              sentences:
         | 
| 36 | 
            +
              - A woman is sitting.
         | 
| 37 | 
            +
              - Three childre are dressed in summer clothes.
         | 
| 38 | 
            +
              - Three children are dressed in winter clothes.
         | 
| 39 | 
            +
            - source_sentence: A young child is enjoying the water and rock scenery with their
         | 
| 40 | 
            +
                dog.
         | 
| 41 | 
            +
              sentences:
         | 
| 42 | 
            +
              - The child and dog are enjoying some fresh air.
         | 
| 43 | 
            +
              - The teenage boy is taking his cat for a walk beside the water.
         | 
| 44 | 
            +
              - A lady in blue has birds around her.
         | 
| 45 | 
            +
            - source_sentence: 'Boca da Corrida Encumeada (moderate; 5 hours): views of Curral
         | 
| 46 | 
            +
                das Freiras and the valley of Ribeiro do Poco.'
         | 
| 47 | 
            +
              sentences:
         | 
| 48 | 
            +
              - 'Boca da Corrida Encumeada is a moderate text that takes 5 hours to complete. '
         | 
| 49 | 
            +
              - This chapter is in the advance category.
         | 
| 50 | 
            +
              - I think it is something that we need.
         | 
| 51 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 52 | 
            +
            co2_eq_emissions:
         | 
| 53 | 
            +
              emissions: 118.81134392463773
         | 
| 54 | 
            +
              energy_consumed: 0.30566177669432554
         | 
| 55 | 
            +
              source: codecarbon
         | 
| 56 | 
            +
              training_type: fine-tuning
         | 
| 57 | 
            +
              on_cloud: false
         | 
| 58 | 
            +
              cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
         | 
| 59 | 
            +
              ram_total_size: 31.777088165283203
         | 
| 60 | 
            +
              hours_used: 1.661
         | 
| 61 | 
            +
              hardware_used: 1 x NVIDIA GeForce RTX 3090
         | 
| 62 | 
            +
            model-index:
         | 
| 63 | 
            +
            - name: MPNet base trained on AllNLI triplets
         | 
| 64 | 
            +
              results:
         | 
| 65 | 
            +
              - task:
         | 
| 66 | 
            +
                  type: triplet
         | 
| 67 | 
            +
                  name: Triplet
         | 
| 68 | 
            +
                dataset:
         | 
| 69 | 
            +
                  name: all nli dev
         | 
| 70 | 
            +
                  type: all-nli-dev
         | 
| 71 | 
            +
                metrics:
         | 
| 72 | 
            +
                - type: cosine_accuracy
         | 
| 73 | 
            +
                  value: 0.9003645200486027
         | 
| 74 | 
            +
                  name: Cosine Accuracy
         | 
| 75 | 
            +
                - type: dot_accuracy
         | 
| 76 | 
            +
                  value: 0.09705346294046173
         | 
| 77 | 
            +
                  name: Dot Accuracy
         | 
| 78 | 
            +
                - type: manhattan_accuracy
         | 
| 79 | 
            +
                  value: 0.8968712029161604
         | 
| 80 | 
            +
                  name: Manhattan Accuracy
         | 
| 81 | 
            +
                - type: euclidean_accuracy
         | 
| 82 | 
            +
                  value: 0.8974787363304981
         | 
| 83 | 
            +
                  name: Euclidean Accuracy
         | 
| 84 | 
            +
                - type: max_accuracy
         | 
| 85 | 
            +
                  value: 0.9003645200486027
         | 
| 86 | 
            +
                  name: Max Accuracy
         | 
| 87 | 
            +
              - task:
         | 
| 88 | 
            +
                  type: triplet
         | 
| 89 | 
            +
                  name: Triplet
         | 
| 90 | 
            +
                dataset:
         | 
| 91 | 
            +
                  name: all nli test
         | 
| 92 | 
            +
                  type: all-nli-test
         | 
| 93 | 
            +
                metrics:
         | 
| 94 | 
            +
                - type: cosine_accuracy
         | 
| 95 | 
            +
                  value: 0.9149644424269935
         | 
| 96 | 
            +
                  name: Cosine Accuracy
         | 
| 97 | 
            +
                - type: dot_accuracy
         | 
| 98 | 
            +
                  value: 0.08564079285822364
         | 
| 99 | 
            +
                  name: Dot Accuracy
         | 
| 100 | 
            +
                - type: manhattan_accuracy
         | 
| 101 | 
            +
                  value: 0.911484339536995
         | 
| 102 | 
            +
                  name: Manhattan Accuracy
         | 
| 103 | 
            +
                - type: euclidean_accuracy
         | 
| 104 | 
            +
                  value: 0.9134513542139506
         | 
| 105 | 
            +
                  name: Euclidean Accuracy
         | 
| 106 | 
            +
                - type: max_accuracy
         | 
| 107 | 
            +
                  value: 0.9149644424269935
         | 
| 108 | 
            +
                  name: Max Accuracy
         | 
| 109 | 
            +
            ---
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            # MPNet base trained on AllNLI triplets
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            ## Model Details
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            ### Model Description
         | 
| 118 | 
            +
            - **Model Type:** Sentence Transformer
         | 
| 119 | 
            +
            - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
         | 
| 120 | 
            +
            - **Maximum Sequence Length:** 512 tokens
         | 
| 121 | 
            +
            - **Output Dimensionality:** 768 tokens
         | 
| 122 | 
            +
            - **Similarity Function:** Cosine Similarity
         | 
| 123 | 
            +
            - **Training Dataset:**
         | 
| 124 | 
            +
                - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
         | 
| 125 | 
            +
            - **Language:** en
         | 
| 126 | 
            +
            - **License:** apache-2.0
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            ### Model Sources
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
         | 
| 131 | 
            +
            - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
         | 
| 132 | 
            +
            - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            ### Full Model Architecture
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            ```
         | 
| 137 | 
            +
            SentenceTransformer(
         | 
| 138 | 
            +
              (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
         | 
| 139 | 
            +
              (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
         | 
| 140 | 
            +
            )
         | 
| 141 | 
            +
            ```
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            ## Usage
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            ### Direct Usage (Sentence Transformers)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            First install the Sentence Transformers library:
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            ```bash
         | 
| 150 | 
            +
            pip install -U sentence-transformers
         | 
| 151 | 
            +
            ```
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            Then you can load this model and run inference.
         | 
| 154 | 
            +
            ```python
         | 
| 155 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            # Download from the 🤗 Hub
         | 
| 158 | 
            +
            model = SentenceTransformer("tomaarsen/mpnet-base-all-nli-triplet")
         | 
| 159 | 
            +
            # Run inference
         | 
| 160 | 
            +
            sentences = [
         | 
| 161 | 
            +
                'Then he ran.',
         | 
| 162 | 
            +
                'The people are running.',
         | 
| 163 | 
            +
                'The man is on his bike.',
         | 
| 164 | 
            +
            ]
         | 
| 165 | 
            +
            embeddings = model.encode(sentences)
         | 
| 166 | 
            +
            print(embeddings.shape)
         | 
| 167 | 
            +
            # [3, 768]
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            # Get the similarity scores for the embeddings
         | 
| 170 | 
            +
            similarities = model.similarity(embeddings, embeddings)
         | 
| 171 | 
            +
            print(similarities.shape)
         | 
| 172 | 
            +
            # [3, 3]
         | 
| 173 | 
            +
            ```
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            <!--
         | 
| 176 | 
            +
            ### Direct Usage (Transformers)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            <details><summary>Click to see the direct usage in Transformers</summary>
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            </details>
         | 
| 181 | 
            +
            -->
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            <!--
         | 
| 184 | 
            +
            ### Downstream Usage (Sentence Transformers)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            You can finetune this model on your own dataset.
         | 
| 187 | 
            +
             | 
| 188 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            </details>
         | 
| 191 | 
            +
            -->
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            <!--
         | 
| 194 | 
            +
            ### Out-of-Scope Use
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 197 | 
            +
            -->
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            ## Evaluation
         | 
| 200 | 
            +
             | 
| 201 | 
            +
            ### Metrics
         | 
| 202 | 
            +
             | 
| 203 | 
            +
            #### Triplet
         | 
| 204 | 
            +
            * Dataset: `all-nli-dev`
         | 
| 205 | 
            +
            * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
            | Metric             | Value      |
         | 
| 208 | 
            +
            |:-------------------|:-----------|
         | 
| 209 | 
            +
            | cosine_accuracy    | 0.9004     |
         | 
| 210 | 
            +
            | dot_accuracy       | 0.0971     |
         | 
| 211 | 
            +
            | manhattan_accuracy | 0.8969     |
         | 
| 212 | 
            +
            | euclidean_accuracy | 0.8975     |
         | 
| 213 | 
            +
            | **max_accuracy**   | **0.9004** |
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            #### Triplet
         | 
| 216 | 
            +
            * Dataset: `all-nli-test`
         | 
| 217 | 
            +
            * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
            | Metric             | Value     |
         | 
| 220 | 
            +
            |:-------------------|:----------|
         | 
| 221 | 
            +
            | cosine_accuracy    | 0.915     |
         | 
| 222 | 
            +
            | dot_accuracy       | 0.0856    |
         | 
| 223 | 
            +
            | manhattan_accuracy | 0.9115    |
         | 
| 224 | 
            +
            | euclidean_accuracy | 0.9135    |
         | 
| 225 | 
            +
            | **max_accuracy**   | **0.915** |
         | 
| 226 | 
            +
             | 
| 227 | 
            +
            <!--
         | 
| 228 | 
            +
            ## Bias, Risks and Limitations
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 231 | 
            +
            -->
         | 
| 232 | 
            +
             | 
| 233 | 
            +
            <!--
         | 
| 234 | 
            +
            ### Recommendations
         | 
| 235 | 
            +
             | 
| 236 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 237 | 
            +
            -->
         | 
| 238 | 
            +
             | 
| 239 | 
            +
            ## Training Details
         | 
| 240 | 
            +
             | 
| 241 | 
            +
            ### Training Dataset
         | 
| 242 | 
            +
             | 
| 243 | 
            +
            #### sentence-transformers/all-nli
         | 
| 244 | 
            +
             | 
| 245 | 
            +
            * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
         | 
| 246 | 
            +
            * Size: 100,000 training samples
         | 
| 247 | 
            +
            * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
         | 
| 248 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 249 | 
            +
              |         | anchor                                                                            | positive                                                                          | negative                                                                         |
         | 
| 250 | 
            +
              |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
         | 
| 251 | 
            +
              | type    | string                                                                            | string                                                                            | string                                                                           |
         | 
| 252 | 
            +
              | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
         | 
| 253 | 
            +
            * Samples:
         | 
| 254 | 
            +
              | anchor                                                                     | positive                                         | negative                                                   |
         | 
| 255 | 
            +
              |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
         | 
| 256 | 
            +
              | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
         | 
| 257 | 
            +
              | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
         | 
| 258 | 
            +
              | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
         | 
| 259 | 
            +
            * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
         | 
| 260 | 
            +
              ```json
         | 
| 261 | 
            +
              {
         | 
| 262 | 
            +
                  "scale": 20.0,
         | 
| 263 | 
            +
                  "similarity_fct": "cos_sim"
         | 
| 264 | 
            +
              }
         | 
| 265 | 
            +
              ```
         | 
| 266 | 
            +
             | 
| 267 | 
            +
            ### Evaluation Dataset
         | 
| 268 | 
            +
             | 
| 269 | 
            +
            #### sentence-transformers/all-nli
         | 
| 270 | 
            +
             | 
| 271 | 
            +
            * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
         | 
| 272 | 
            +
            * Size: 6,584 evaluation samples
         | 
| 273 | 
            +
            * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
         | 
| 274 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 275 | 
            +
              |         | anchor                                                                            | positive                                                                         | negative                                                                          |
         | 
| 276 | 
            +
              |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
         | 
| 277 | 
            +
              | type    | string                                                                            | string                                                                           | string                                                                            |
         | 
| 278 | 
            +
              | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
         | 
| 279 | 
            +
            * Samples:
         | 
| 280 | 
            +
              | anchor                                                                                                                                                                         | positive                                                    | negative                                                |
         | 
| 281 | 
            +
              |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
         | 
| 282 | 
            +
              | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>       |
         | 
| 283 | 
            +
              | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>        |
         | 
| 284 | 
            +
              | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            | <code>A woman drinks her coffee in a small cafe.</code> |
         | 
| 285 | 
            +
            * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
         | 
| 286 | 
            +
              ```json
         | 
| 287 | 
            +
              {
         | 
| 288 | 
            +
                  "scale": 20.0,
         | 
| 289 | 
            +
                  "similarity_fct": "cos_sim"
         | 
| 290 | 
            +
              }
         | 
| 291 | 
            +
              ```
         | 
| 292 | 
            +
             | 
| 293 | 
            +
            ### Training Hyperparameters
         | 
| 294 | 
            +
            #### Non-Default Hyperparameters
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            - `eval_strategy`: steps
         | 
| 297 | 
            +
            - `per_device_train_batch_size`: 16
         | 
| 298 | 
            +
            - `per_device_eval_batch_size`: 16
         | 
| 299 | 
            +
            - `num_train_epochs`: 1
         | 
| 300 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 301 | 
            +
            - `fp16`: True
         | 
| 302 | 
            +
            - `batch_sampler`: no_duplicates
         | 
| 303 | 
            +
             | 
| 304 | 
            +
            #### All Hyperparameters
         | 
| 305 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 306 | 
            +
             | 
| 307 | 
            +
            - `overwrite_output_dir`: False
         | 
| 308 | 
            +
            - `do_predict`: False
         | 
| 309 | 
            +
            - `eval_strategy`: steps
         | 
| 310 | 
            +
            - `prediction_loss_only`: True
         | 
| 311 | 
            +
            - `per_device_train_batch_size`: 16
         | 
| 312 | 
            +
            - `per_device_eval_batch_size`: 16
         | 
| 313 | 
            +
            - `per_gpu_train_batch_size`: None
         | 
| 314 | 
            +
            - `per_gpu_eval_batch_size`: None
         | 
| 315 | 
            +
            - `gradient_accumulation_steps`: 1
         | 
| 316 | 
            +
            - `eval_accumulation_steps`: None
         | 
| 317 | 
            +
            - `learning_rate`: 5e-05
         | 
| 318 | 
            +
            - `weight_decay`: 0.0
         | 
| 319 | 
            +
            - `adam_beta1`: 0.9
         | 
| 320 | 
            +
            - `adam_beta2`: 0.999
         | 
| 321 | 
            +
            - `adam_epsilon`: 1e-08
         | 
| 322 | 
            +
            - `max_grad_norm`: 1.0
         | 
| 323 | 
            +
            - `num_train_epochs`: 1
         | 
| 324 | 
            +
            - `max_steps`: -1
         | 
| 325 | 
            +
            - `lr_scheduler_type`: linear
         | 
| 326 | 
            +
            - `lr_scheduler_kwargs`: {}
         | 
| 327 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 328 | 
            +
            - `warmup_steps`: 0
         | 
| 329 | 
            +
            - `log_level`: passive
         | 
| 330 | 
            +
            - `log_level_replica`: warning
         | 
| 331 | 
            +
            - `log_on_each_node`: True
         | 
| 332 | 
            +
            - `logging_nan_inf_filter`: True
         | 
| 333 | 
            +
            - `save_safetensors`: True
         | 
| 334 | 
            +
            - `save_on_each_node`: False
         | 
| 335 | 
            +
            - `save_only_model`: False
         | 
| 336 | 
            +
            - `restore_callback_states_from_checkpoint`: False
         | 
| 337 | 
            +
            - `no_cuda`: False
         | 
| 338 | 
            +
            - `use_cpu`: False
         | 
| 339 | 
            +
            - `use_mps_device`: False
         | 
| 340 | 
            +
            - `seed`: 42
         | 
| 341 | 
            +
            - `data_seed`: None
         | 
| 342 | 
            +
            - `jit_mode_eval`: False
         | 
| 343 | 
            +
            - `use_ipex`: False
         | 
| 344 | 
            +
            - `bf16`: False
         | 
| 345 | 
            +
            - `fp16`: True
         | 
| 346 | 
            +
            - `fp16_opt_level`: O1
         | 
| 347 | 
            +
            - `half_precision_backend`: auto
         | 
| 348 | 
            +
            - `bf16_full_eval`: False
         | 
| 349 | 
            +
            - `fp16_full_eval`: False
         | 
| 350 | 
            +
            - `tf32`: None
         | 
| 351 | 
            +
            - `local_rank`: 0
         | 
| 352 | 
            +
            - `ddp_backend`: None
         | 
| 353 | 
            +
            - `tpu_num_cores`: None
         | 
| 354 | 
            +
            - `tpu_metrics_debug`: False
         | 
| 355 | 
            +
            - `debug`: []
         | 
| 356 | 
            +
            - `dataloader_drop_last`: False
         | 
| 357 | 
            +
            - `dataloader_num_workers`: 0
         | 
| 358 | 
            +
            - `dataloader_prefetch_factor`: None
         | 
| 359 | 
            +
            - `past_index`: -1
         | 
| 360 | 
            +
            - `disable_tqdm`: False
         | 
| 361 | 
            +
            - `remove_unused_columns`: True
         | 
| 362 | 
            +
            - `label_names`: None
         | 
| 363 | 
            +
            - `load_best_model_at_end`: False
         | 
| 364 | 
            +
            - `ignore_data_skip`: False
         | 
| 365 | 
            +
            - `fsdp`: []
         | 
| 366 | 
            +
            - `fsdp_min_num_params`: 0
         | 
| 367 | 
            +
            - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
         | 
| 368 | 
            +
            - `fsdp_transformer_layer_cls_to_wrap`: None
         | 
| 369 | 
            +
            - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
         | 
| 370 | 
            +
            - `deepspeed`: None
         | 
| 371 | 
            +
            - `label_smoothing_factor`: 0.0
         | 
| 372 | 
            +
            - `optim`: adamw_torch
         | 
| 373 | 
            +
            - `optim_args`: None
         | 
| 374 | 
            +
            - `adafactor`: False
         | 
| 375 | 
            +
            - `group_by_length`: False
         | 
| 376 | 
            +
            - `length_column_name`: length
         | 
| 377 | 
            +
            - `ddp_find_unused_parameters`: None
         | 
| 378 | 
            +
            - `ddp_bucket_cap_mb`: None
         | 
| 379 | 
            +
            - `ddp_broadcast_buffers`: False
         | 
| 380 | 
            +
            - `dataloader_pin_memory`: True
         | 
| 381 | 
            +
            - `dataloader_persistent_workers`: False
         | 
| 382 | 
            +
            - `skip_memory_metrics`: True
         | 
| 383 | 
            +
            - `use_legacy_prediction_loop`: False
         | 
| 384 | 
            +
            - `push_to_hub`: False
         | 
| 385 | 
            +
            - `resume_from_checkpoint`: None
         | 
| 386 | 
            +
            - `hub_model_id`: None
         | 
| 387 | 
            +
            - `hub_strategy`: every_save
         | 
| 388 | 
            +
            - `hub_private_repo`: False
         | 
| 389 | 
            +
            - `hub_always_push`: False
         | 
| 390 | 
            +
            - `gradient_checkpointing`: False
         | 
| 391 | 
            +
            - `gradient_checkpointing_kwargs`: None
         | 
| 392 | 
            +
            - `include_inputs_for_metrics`: False
         | 
| 393 | 
            +
            - `eval_do_concat_batches`: True
         | 
| 394 | 
            +
            - `fp16_backend`: auto
         | 
| 395 | 
            +
            - `push_to_hub_model_id`: None
         | 
| 396 | 
            +
            - `push_to_hub_organization`: None
         | 
| 397 | 
            +
            - `mp_parameters`: 
         | 
| 398 | 
            +
            - `auto_find_batch_size`: False
         | 
| 399 | 
            +
            - `full_determinism`: False
         | 
| 400 | 
            +
            - `torchdynamo`: None
         | 
| 401 | 
            +
            - `ray_scope`: last
         | 
| 402 | 
            +
            - `ddp_timeout`: 1800
         | 
| 403 | 
            +
            - `torch_compile`: False
         | 
| 404 | 
            +
            - `torch_compile_backend`: None
         | 
| 405 | 
            +
            - `torch_compile_mode`: None
         | 
| 406 | 
            +
            - `dispatch_batches`: None
         | 
| 407 | 
            +
            - `split_batches`: None
         | 
| 408 | 
            +
            - `include_tokens_per_second`: False
         | 
| 409 | 
            +
            - `include_num_input_tokens_seen`: False
         | 
| 410 | 
            +
            - `neftune_noise_alpha`: None
         | 
| 411 | 
            +
            - `optim_target_modules`: None
         | 
| 412 | 
            +
            - `batch_eval_metrics`: False
         | 
| 413 | 
            +
            - `batch_sampler`: no_duplicates
         | 
| 414 | 
            +
            - `multi_dataset_batch_sampler`: proportional
         | 
| 415 | 
            +
             | 
| 416 | 
            +
            </details>
         | 
| 417 | 
            +
             | 
| 418 | 
            +
            ### Training Logs
         | 
| 419 | 
            +
            | Epoch | Step | Training Loss | loss   | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
         | 
| 420 | 
            +
            |:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
         | 
| 421 | 
            +
            | 0     | 0    | -             | -      | 0.6832                   | -                         |
         | 
| 422 | 
            +
            | 0.016 | 100  | 2.6355        | 1.0725 | 0.7924                   | -                         |
         | 
| 423 | 
            +
            | 0.032 | 200  | 0.9206        | 0.8342 | 0.8080                   | -                         |
         | 
| 424 | 
            +
            | 0.048 | 300  | 1.2567        | 0.7855 | 0.8133                   | -                         |
         | 
| 425 | 
            +
            | 0.064 | 400  | 0.7949        | 0.8857 | 0.7974                   | -                         |
         | 
| 426 | 
            +
            | 0.08  | 500  | 0.7583        | 0.9487 | 0.7872                   | -                         |
         | 
| 427 | 
            +
            | 0.096 | 600  | 1.0022        | 1.1312 | 0.7848                   | -                         |
         | 
| 428 | 
            +
            | 0.112 | 700  | 0.8178        | 1.2282 | 0.7895                   | -                         |
         | 
| 429 | 
            +
            | 0.128 | 800  | 0.9997        | 1.5132 | 0.7488                   | -                         |
         | 
| 430 | 
            +
            | 0.144 | 900  | 1.1173        | 1.4605 | 0.7473                   | -                         |
         | 
| 431 | 
            +
            | 0.16  | 1000 | 1.0089        | 1.3794 | 0.7543                   | -                         |
         | 
| 432 | 
            +
            | 0.176 | 1100 | 1.0235        | 1.4188 | 0.7640                   | -                         |
         | 
| 433 | 
            +
            | 0.192 | 1200 | 1.0031        | 1.2465 | 0.7570                   | -                         |
         | 
| 434 | 
            +
            | 0.208 | 1300 | 0.8286        | 1.4176 | 0.7426                   | -                         |
         | 
| 435 | 
            +
            | 0.224 | 1400 | 0.8411        | 1.1914 | 0.7600                   | -                         |
         | 
| 436 | 
            +
            | 0.24  | 1500 | 0.8389        | 1.1719 | 0.7820                   | -                         |
         | 
| 437 | 
            +
            | 0.256 | 1600 | 0.7144        | 1.1167 | 0.7691                   | -                         |
         | 
| 438 | 
            +
            | 0.272 | 1700 | 0.881         | 1.0747 | 0.7902                   | -                         |
         | 
| 439 | 
            +
            | 0.288 | 1800 | 0.8657        | 1.1576 | 0.7966                   | -                         |
         | 
| 440 | 
            +
            | 0.304 | 1900 | 0.7323        | 1.0122 | 0.8322                   | -                         |
         | 
| 441 | 
            +
            | 0.32  | 2000 | 0.6578        | 1.1248 | 0.8273                   | -                         |
         | 
| 442 | 
            +
            | 0.336 | 2100 | 0.6037        | 1.1194 | 0.8269                   | -                         |
         | 
| 443 | 
            +
            | 0.352 | 2200 | 0.641         | 1.1410 | 0.8341                   | -                         |
         | 
| 444 | 
            +
            | 0.368 | 2300 | 0.7843        | 1.0600 | 0.8328                   | -                         |
         | 
| 445 | 
            +
            | 0.384 | 2400 | 0.8222        | 0.9988 | 0.8161                   | -                         |
         | 
| 446 | 
            +
            | 0.4   | 2500 | 0.7287        | 1.2026 | 0.8395                   | -                         |
         | 
| 447 | 
            +
            | 0.416 | 2600 | 0.6035        | 0.8802 | 0.8273                   | -                         |
         | 
| 448 | 
            +
            | 0.432 | 2700 | 0.8275        | 1.1631 | 0.8458                   | -                         |
         | 
| 449 | 
            +
            | 0.448 | 2800 | 0.8483        | 0.9218 | 0.8316                   | -                         |
         | 
| 450 | 
            +
            | 0.464 | 2900 | 0.8813        | 1.1187 | 0.8147                   | -                         |
         | 
| 451 | 
            +
            | 0.48  | 3000 | 0.7408        | 0.9582 | 0.8246                   | -                         |
         | 
| 452 | 
            +
            | 0.496 | 3100 | 0.7886        | 0.9364 | 0.8261                   | -                         |
         | 
| 453 | 
            +
            | 0.512 | 3200 | 0.6064        | 0.8338 | 0.8302                   | -                         |
         | 
| 454 | 
            +
            | 0.528 | 3300 | 0.6415        | 0.7895 | 0.8650                   | -                         |
         | 
| 455 | 
            +
            | 0.544 | 3400 | 0.5766        | 0.7525 | 0.8571                   | -                         |
         | 
| 456 | 
            +
            | 0.56  | 3500 | 0.6212        | 0.8605 | 0.8572                   | -                         |
         | 
| 457 | 
            +
            | 0.576 | 3600 | 0.5773        | 0.7460 | 0.8419                   | -                         |
         | 
| 458 | 
            +
            | 0.592 | 3700 | 0.6104        | 0.7480 | 0.8580                   | -                         |
         | 
| 459 | 
            +
            | 0.608 | 3800 | 0.5754        | 0.7215 | 0.8657                   | -                         |
         | 
| 460 | 
            +
            | 0.624 | 3900 | 0.5525        | 0.7900 | 0.8630                   | -                         |
         | 
| 461 | 
            +
            | 0.64  | 4000 | 0.7802        | 0.7443 | 0.8612                   | -                         |
         | 
| 462 | 
            +
            | 0.656 | 4100 | 0.9796        | 0.7756 | 0.8748                   | -                         |
         | 
| 463 | 
            +
            | 0.672 | 4200 | 0.9355        | 0.6917 | 0.8796                   | -                         |
         | 
| 464 | 
            +
            | 0.688 | 4300 | 0.7081        | 0.6442 | 0.8832                   | -                         |
         | 
| 465 | 
            +
            | 0.704 | 4400 | 0.6868        | 0.6395 | 0.8891                   | -                         |
         | 
| 466 | 
            +
            | 0.72  | 4500 | 0.5964        | 0.5983 | 0.8820                   | -                         |
         | 
| 467 | 
            +
            | 0.736 | 4600 | 0.6618        | 0.5754 | 0.8861                   | -                         |
         | 
| 468 | 
            +
            | 0.752 | 4700 | 0.6957        | 0.6177 | 0.8803                   | -                         |
         | 
| 469 | 
            +
            | 0.768 | 4800 | 0.6375        | 0.5577 | 0.8881                   | -                         |
         | 
| 470 | 
            +
            | 0.784 | 4900 | 0.5481        | 0.5496 | 0.8835                   | -                         |
         | 
| 471 | 
            +
            | 0.8   | 5000 | 0.6626        | 0.5728 | 0.8949                   | -                         |
         | 
| 472 | 
            +
            | 0.816 | 5100 | 0.5192        | 0.5329 | 0.8935                   | -                         |
         | 
| 473 | 
            +
            | 0.832 | 5200 | 0.5856        | 0.5188 | 0.8935                   | -                         |
         | 
| 474 | 
            +
            | 0.848 | 5300 | 0.5142        | 0.5252 | 0.8920                   | -                         |
         | 
| 475 | 
            +
            | 0.864 | 5400 | 0.6404        | 0.5641 | 0.8885                   | -                         |
         | 
| 476 | 
            +
            | 0.88  | 5500 | 0.5466        | 0.5209 | 0.8929                   | -                         |
         | 
| 477 | 
            +
            | 0.896 | 5600 | 0.575         | 0.5170 | 0.8961                   | -                         |
         | 
| 478 | 
            +
            | 0.912 | 5700 | 0.626         | 0.5095 | 0.9001                   | -                         |
         | 
| 479 | 
            +
            | 0.928 | 5800 | 0.5631        | 0.4817 | 0.8984                   | -                         |
         | 
| 480 | 
            +
            | 0.944 | 5900 | 0.7301        | 0.4996 | 0.8984                   | -                         |
         | 
| 481 | 
            +
            | 0.96  | 6000 | 0.7712        | 0.5160 | 0.9014                   | -                         |
         | 
| 482 | 
            +
            | 0.976 | 6100 | 0.6203        | 0.5000 | 0.9007                   | -                         |
         | 
| 483 | 
            +
            | 0.992 | 6200 | 0.0005        | 0.4996 | 0.9004                   | -                         |
         | 
| 484 | 
            +
            | 1.0   | 6250 | -             | -      | -                        | 0.9150                    |
         | 
| 485 | 
            +
             | 
| 486 | 
            +
             | 
| 487 | 
            +
            ### Environmental Impact
         | 
| 488 | 
            +
            Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
         | 
| 489 | 
            +
            - **Energy Consumed**: 0.306 kWh
         | 
| 490 | 
            +
            - **Carbon Emitted**: 0.119 kg of CO2
         | 
| 491 | 
            +
            - **Hours Used**: 1.661 hours
         | 
| 492 | 
            +
             | 
| 493 | 
            +
            ### Training Hardware
         | 
| 494 | 
            +
            - **On Cloud**: No
         | 
| 495 | 
            +
            - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
         | 
| 496 | 
            +
            - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
         | 
| 497 | 
            +
            - **RAM Size**: 31.78 GB
         | 
| 498 | 
            +
             | 
| 499 | 
            +
            ### Framework Versions
         | 
| 500 | 
            +
            - Python: 3.11.6
         | 
| 501 | 
            +
            - Sentence Transformers: 3.0.0.dev0
         | 
| 502 | 
            +
            - Transformers: 4.41.1
         | 
| 503 | 
            +
            - PyTorch: 2.3.0+cu121
         | 
| 504 | 
            +
            - Accelerate: 0.30.1
         | 
| 505 | 
            +
            - Datasets: 2.19.1
         | 
| 506 | 
            +
            - Tokenizers: 0.19.1
         | 
| 507 | 
            +
             | 
| 508 | 
            +
            ## Citation
         | 
| 509 | 
            +
             | 
| 510 | 
            +
            ### BibTeX
         | 
| 511 | 
            +
             | 
| 512 | 
            +
            #### Sentence Transformers
         | 
| 513 | 
            +
            ```bibtex
         | 
| 514 | 
            +
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 515 | 
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 516 | 
            +
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 517 | 
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 518 | 
            +
                month = "11",
         | 
| 519 | 
            +
                year = "2019",
         | 
| 520 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 521 | 
            +
                url = "https://arxiv.org/abs/1908.10084",
         | 
| 522 | 
            +
            }
         | 
| 523 | 
            +
            ```
         | 
| 524 | 
            +
             | 
| 525 | 
            +
            #### MultipleNegativesRankingLoss
         | 
| 526 | 
            +
            ```bibtex
         | 
| 527 | 
            +
            @misc{henderson2017efficient,
         | 
| 528 | 
            +
                title={Efficient Natural Language Response Suggestion for Smart Reply}, 
         | 
| 529 | 
            +
                author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
         | 
| 530 | 
            +
                year={2017},
         | 
| 531 | 
            +
                eprint={1705.00652},
         | 
| 532 | 
            +
                archivePrefix={arXiv},
         | 
| 533 | 
            +
                primaryClass={cs.CL}
         | 
| 534 | 
            +
            }
         | 
| 535 | 
            +
            ```
         | 
| 536 | 
            +
             | 
| 537 | 
            +
            <!--
         | 
| 538 | 
            +
            ## Glossary
         | 
| 539 | 
            +
             | 
| 540 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 541 | 
            +
            -->
         | 
| 542 | 
            +
             | 
| 543 | 
            +
            <!--
         | 
| 544 | 
            +
            ## Model Card Authors
         | 
| 545 | 
            +
             | 
| 546 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 547 | 
            +
            -->
         | 
| 548 | 
            +
             | 
| 549 | 
            +
            <!--
         | 
| 550 | 
            +
            ## Model Card Contact
         | 
| 551 | 
            +
             | 
| 552 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 553 | 
             
            -->
         | 
