Update model config and README
Browse files- README.md +21 -17
- model.safetensors +3 -0
README.md
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
tags:
|
| 3 |
- image-classification
|
| 4 |
- timm
|
| 5 |
-
|
| 6 |
license: apache-2.0
|
| 7 |
datasets:
|
| 8 |
- imagenet-1k
|
|
@@ -13,7 +13,7 @@ A timm specific MaxViT (w/ a MLP Log-CPB (continuous log-coordinate relative pos
|
|
| 13 |
|
| 14 |
ImageNet-1k training done on TPUs thanks to support of the [TRC](https://sites.research.google/trc/about/) program.
|
| 15 |
|
| 16 |
-
### Model Variants in [maxxvit.py](https://github.com/
|
| 17 |
|
| 18 |
MaxxViT covers a number of related model architectures that share a common structure including:
|
| 19 |
- CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
|
|
@@ -44,8 +44,9 @@ from urllib.request import urlopen
|
|
| 44 |
from PIL import Image
|
| 45 |
import timm
|
| 46 |
|
| 47 |
-
img = Image.open(
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
model = timm.create_model('maxvit_rmlp_small_rw_224.sw_in1k', pretrained=True)
|
| 51 |
model = model.eval()
|
|
@@ -65,8 +66,9 @@ from urllib.request import urlopen
|
|
| 65 |
from PIL import Image
|
| 66 |
import timm
|
| 67 |
|
| 68 |
-
img = Image.open(
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
model = timm.create_model(
|
| 72 |
'maxvit_rmlp_small_rw_224.sw_in1k',
|
|
@@ -83,12 +85,13 @@ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batc
|
|
| 83 |
|
| 84 |
for o in output:
|
| 85 |
# print shape of each feature map in output
|
| 86 |
-
# e.g.:
|
| 87 |
-
# torch.Size([1,
|
| 88 |
-
# torch.Size([1,
|
| 89 |
-
# torch.Size([1,
|
| 90 |
-
# torch.Size([1,
|
| 91 |
-
# torch.Size([1,
|
|
|
|
| 92 |
print(o.shape)
|
| 93 |
```
|
| 94 |
|
|
@@ -98,8 +101,9 @@ from urllib.request import urlopen
|
|
| 98 |
from PIL import Image
|
| 99 |
import timm
|
| 100 |
|
| 101 |
-
img = Image.open(
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
model = timm.create_model(
|
| 105 |
'maxvit_rmlp_small_rw_224.sw_in1k',
|
|
@@ -117,10 +121,10 @@ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_featu
|
|
| 117 |
# or equivalently (without needing to set num_classes=0)
|
| 118 |
|
| 119 |
output = model.forward_features(transforms(img).unsqueeze(0))
|
| 120 |
-
# output is unpooled
|
| 121 |
|
| 122 |
output = model.forward_head(output, pre_logits=True)
|
| 123 |
-
# output is (
|
| 124 |
```
|
| 125 |
|
| 126 |
## Model Comparison
|
|
@@ -228,7 +232,7 @@ output = model.forward_head(output, pre_logits=True)
|
|
| 228 |
publisher = {GitHub},
|
| 229 |
journal = {GitHub repository},
|
| 230 |
doi = {10.5281/zenodo.4414861},
|
| 231 |
-
howpublished = {\url{https://github.com/
|
| 232 |
}
|
| 233 |
```
|
| 234 |
```bibtex
|
|
|
|
| 2 |
tags:
|
| 3 |
- image-classification
|
| 4 |
- timm
|
| 5 |
+
library_name: timm
|
| 6 |
license: apache-2.0
|
| 7 |
datasets:
|
| 8 |
- imagenet-1k
|
|
|
|
| 13 |
|
| 14 |
ImageNet-1k training done on TPUs thanks to support of the [TRC](https://sites.research.google/trc/about/) program.
|
| 15 |
|
| 16 |
+
### Model Variants in [maxxvit.py](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/maxxvit.py)
|
| 17 |
|
| 18 |
MaxxViT covers a number of related model architectures that share a common structure including:
|
| 19 |
- CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
|
|
|
|
| 44 |
from PIL import Image
|
| 45 |
import timm
|
| 46 |
|
| 47 |
+
img = Image.open(urlopen(
|
| 48 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 49 |
+
))
|
| 50 |
|
| 51 |
model = timm.create_model('maxvit_rmlp_small_rw_224.sw_in1k', pretrained=True)
|
| 52 |
model = model.eval()
|
|
|
|
| 66 |
from PIL import Image
|
| 67 |
import timm
|
| 68 |
|
| 69 |
+
img = Image.open(urlopen(
|
| 70 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 71 |
+
))
|
| 72 |
|
| 73 |
model = timm.create_model(
|
| 74 |
'maxvit_rmlp_small_rw_224.sw_in1k',
|
|
|
|
| 85 |
|
| 86 |
for o in output:
|
| 87 |
# print shape of each feature map in output
|
| 88 |
+
# e.g.:
|
| 89 |
+
# torch.Size([1, 64, 112, 112])
|
| 90 |
+
# torch.Size([1, 96, 56, 56])
|
| 91 |
+
# torch.Size([1, 192, 28, 28])
|
| 92 |
+
# torch.Size([1, 384, 14, 14])
|
| 93 |
+
# torch.Size([1, 768, 7, 7])
|
| 94 |
+
|
| 95 |
print(o.shape)
|
| 96 |
```
|
| 97 |
|
|
|
|
| 101 |
from PIL import Image
|
| 102 |
import timm
|
| 103 |
|
| 104 |
+
img = Image.open(urlopen(
|
| 105 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 106 |
+
))
|
| 107 |
|
| 108 |
model = timm.create_model(
|
| 109 |
'maxvit_rmlp_small_rw_224.sw_in1k',
|
|
|
|
| 121 |
# or equivalently (without needing to set num_classes=0)
|
| 122 |
|
| 123 |
output = model.forward_features(transforms(img).unsqueeze(0))
|
| 124 |
+
# output is unpooled, a (1, 768, 7, 7) shaped tensor
|
| 125 |
|
| 126 |
output = model.forward_head(output, pre_logits=True)
|
| 127 |
+
# output is a (1, num_features) shaped tensor
|
| 128 |
```
|
| 129 |
|
| 130 |
## Model Comparison
|
|
|
|
| 232 |
publisher = {GitHub},
|
| 233 |
journal = {GitHub repository},
|
| 234 |
doi = {10.5281/zenodo.4414861},
|
| 235 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
| 236 |
}
|
| 237 |
```
|
| 238 |
```bibtex
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02b85e2d9dd3b76f72676dd452a60d3dd220a990023eb0d53a2cc089131eb976
|
| 3 |
+
size 259892372
|