tien314 commited on
Commit
7f42c25
·
verified ·
1 Parent(s): 03e9a2a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:100000
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: A man is jumping unto his filthy bed.
15
+ sentences:
16
+ - A young male is looking at a newspaper while 2 females walks past him.
17
+ - The bed is dirty.
18
+ - The man is on the moon.
19
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
20
+ beach area.
21
+ sentences:
22
+ - A man is ouside near the beach.
23
+ - Three policemen patrol the streets on bikes
24
+ - A man is sitting on his couch.
25
+ - source_sentence: The man is wearing a blue shirt.
26
+ sentences:
27
+ - Near the trashcan the man stood and smoked
28
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
29
+ with water in the background.
30
+ - A man in a black shirt is playing a guitar.
31
+ - source_sentence: The girls are outdoors.
32
+ sentences:
33
+ - Two girls riding on an amusement part ride.
34
+ - a guy laughs while doing laundry
35
+ - Three girls are standing together in a room, one is listening, one is writing
36
+ on a wall and the third is talking to them.
37
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
38
+ sits on the sidewalk smiling.
39
+ sentences:
40
+ - A worker is looking out of a manhole.
41
+ - A man is giving a presentation.
42
+ - The workers are both inside the manhole.
43
+ datasets:
44
+ - sentence-transformers/all-nli
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - cosine_accuracy
49
+ model-index:
50
+ - name: MPNet base trained on AllNLI triplets
51
+ results:
52
+ - task:
53
+ type: triplet
54
+ name: Triplet
55
+ dataset:
56
+ name: all nli dev
57
+ type: all-nli-dev
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.8253341317176819
61
+ name: Cosine Accuracy
62
+ - type: cosine_accuracy
63
+ value: 0.9163122773170471
64
+ name: Cosine Accuracy
65
+ ---
66
+
67
+ # MPNet base trained on AllNLI triplets
68
+
69
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
70
+
71
+ ## Model Details
72
+
73
+ ### Model Description
74
+ - **Model Type:** Sentence Transformer
75
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
76
+ - **Maximum Sequence Length:** 512 tokens
77
+ - **Output Dimensionality:** 768 dimensions
78
+ - **Similarity Function:** Cosine Similarity
79
+ - **Training Dataset:**
80
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
81
+ - **Language:** en
82
+ - **License:** apache-2.0
83
+
84
+ ### Model Sources
85
+
86
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
87
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
88
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
89
+
90
+ ### Full Model Architecture
91
+
92
+ ```
93
+ SentenceTransformer(
94
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
95
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
96
+ )
97
+ ```
98
+
99
+ ## Usage
100
+
101
+ ### Direct Usage (Sentence Transformers)
102
+
103
+ First install the Sentence Transformers library:
104
+
105
+ ```bash
106
+ pip install -U sentence-transformers
107
+ ```
108
+
109
+ Then you can load this model and run inference.
110
+ ```python
111
+ from sentence_transformers import SentenceTransformer
112
+
113
+ # Download from the 🤗 Hub
114
+ model = SentenceTransformer("tien314/mpnet-base-all-nli-triplet")
115
+ # Run inference
116
+ sentences = [
117
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
118
+ 'A worker is looking out of a manhole.',
119
+ 'The workers are both inside the manhole.',
120
+ ]
121
+ embeddings = model.encode(sentences)
122
+ print(embeddings.shape)
123
+ # [3, 768]
124
+
125
+ # Get the similarity scores for the embeddings
126
+ similarities = model.similarity(embeddings, embeddings)
127
+ print(similarities.shape)
128
+ # [3, 3]
129
+ ```
130
+
131
+ <!--
132
+ ### Direct Usage (Transformers)
133
+
134
+ <details><summary>Click to see the direct usage in Transformers</summary>
135
+
136
+ </details>
137
+ -->
138
+
139
+ <!--
140
+ ### Downstream Usage (Sentence Transformers)
141
+
142
+ You can finetune this model on your own dataset.
143
+
144
+ <details><summary>Click to expand</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Out-of-Scope Use
151
+
152
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
153
+ -->
154
+
155
+ ## Evaluation
156
+
157
+ ### Metrics
158
+
159
+ #### Triplet
160
+
161
+ * Dataset: `all-nli-dev`
162
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
163
+
164
+ | Metric | Value |
165
+ |:--------------------|:-----------|
166
+ | **cosine_accuracy** | **0.8253** |
167
+
168
+ #### Triplet
169
+
170
+ * Dataset: `all-nli-dev`
171
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
172
+
173
+ | Metric | Value |
174
+ |:--------------------|:-----------|
175
+ | **cosine_accuracy** | **0.9163** |
176
+
177
+ <!--
178
+ ## Bias, Risks and Limitations
179
+
180
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
181
+ -->
182
+
183
+ <!--
184
+ ### Recommendations
185
+
186
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
187
+ -->
188
+
189
+ ## Training Details
190
+
191
+ ### Training Dataset
192
+
193
+ #### all-nli
194
+
195
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
196
+ * Size: 100,000 training samples
197
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
198
+ * Approximate statistics based on the first 1000 samples:
199
+ | | anchor | positive | negative |
200
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
201
+ | type | string | string | string |
202
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
203
+ * Samples:
204
+ | anchor | positive | negative |
205
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
206
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
207
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
208
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
209
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
210
+ ```json
211
+ {
212
+ "scale": 20.0,
213
+ "similarity_fct": "cos_sim"
214
+ }
215
+ ```
216
+
217
+ ### Evaluation Dataset
218
+
219
+ #### all-nli
220
+
221
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
222
+ * Size: 6,584 evaluation samples
223
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | anchor | positive | negative |
226
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
227
+ | type | string | string | string |
228
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
229
+ * Samples:
230
+ | anchor | positive | negative |
231
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
232
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
233
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
234
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
235
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
236
+ ```json
237
+ {
238
+ "scale": 20.0,
239
+ "similarity_fct": "cos_sim"
240
+ }
241
+ ```
242
+
243
+ ### Training Hyperparameters
244
+ #### Non-Default Hyperparameters
245
+
246
+ - `eval_strategy`: steps
247
+ - `per_device_train_batch_size`: 16
248
+ - `per_device_eval_batch_size`: 16
249
+ - `num_train_epochs`: 1
250
+ - `warmup_ratio`: 0.1
251
+ - `bf16`: True
252
+ - `batch_sampler`: no_duplicates
253
+
254
+ #### All Hyperparameters
255
+ <details><summary>Click to expand</summary>
256
+
257
+ - `overwrite_output_dir`: False
258
+ - `do_predict`: False
259
+ - `eval_strategy`: steps
260
+ - `prediction_loss_only`: True
261
+ - `per_device_train_batch_size`: 16
262
+ - `per_device_eval_batch_size`: 16
263
+ - `per_gpu_train_batch_size`: None
264
+ - `per_gpu_eval_batch_size`: None
265
+ - `gradient_accumulation_steps`: 1
266
+ - `eval_accumulation_steps`: None
267
+ - `torch_empty_cache_steps`: None
268
+ - `learning_rate`: 5e-05
269
+ - `weight_decay`: 0.0
270
+ - `adam_beta1`: 0.9
271
+ - `adam_beta2`: 0.999
272
+ - `adam_epsilon`: 1e-08
273
+ - `max_grad_norm`: 1.0
274
+ - `num_train_epochs`: 1
275
+ - `max_steps`: -1
276
+ - `lr_scheduler_type`: linear
277
+ - `lr_scheduler_kwargs`: {}
278
+ - `warmup_ratio`: 0.1
279
+ - `warmup_steps`: 0
280
+ - `log_level`: passive
281
+ - `log_level_replica`: warning
282
+ - `log_on_each_node`: True
283
+ - `logging_nan_inf_filter`: True
284
+ - `save_safetensors`: True
285
+ - `save_on_each_node`: False
286
+ - `save_only_model`: False
287
+ - `restore_callback_states_from_checkpoint`: False
288
+ - `no_cuda`: False
289
+ - `use_cpu`: False
290
+ - `use_mps_device`: False
291
+ - `seed`: 42
292
+ - `data_seed`: None
293
+ - `jit_mode_eval`: False
294
+ - `use_ipex`: False
295
+ - `bf16`: True
296
+ - `fp16`: False
297
+ - `fp16_opt_level`: O1
298
+ - `half_precision_backend`: auto
299
+ - `bf16_full_eval`: False
300
+ - `fp16_full_eval`: False
301
+ - `tf32`: None
302
+ - `local_rank`: 0
303
+ - `ddp_backend`: None
304
+ - `tpu_num_cores`: None
305
+ - `tpu_metrics_debug`: False
306
+ - `debug`: []
307
+ - `dataloader_drop_last`: False
308
+ - `dataloader_num_workers`: 0
309
+ - `dataloader_prefetch_factor`: None
310
+ - `past_index`: -1
311
+ - `disable_tqdm`: False
312
+ - `remove_unused_columns`: True
313
+ - `label_names`: None
314
+ - `load_best_model_at_end`: False
315
+ - `ignore_data_skip`: False
316
+ - `fsdp`: []
317
+ - `fsdp_min_num_params`: 0
318
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
319
+ - `tp_size`: 0
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: None
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `include_for_metrics`: []
346
+ - `eval_do_concat_batches`: True
347
+ - `fp16_backend`: auto
348
+ - `push_to_hub_model_id`: None
349
+ - `push_to_hub_organization`: None
350
+ - `mp_parameters`:
351
+ - `auto_find_batch_size`: False
352
+ - `full_determinism`: False
353
+ - `torchdynamo`: None
354
+ - `ray_scope`: last
355
+ - `ddp_timeout`: 1800
356
+ - `torch_compile`: False
357
+ - `torch_compile_backend`: None
358
+ - `torch_compile_mode`: None
359
+ - `include_tokens_per_second`: False
360
+ - `include_num_input_tokens_seen`: False
361
+ - `neftune_noise_alpha`: None
362
+ - `optim_target_modules`: None
363
+ - `batch_eval_metrics`: False
364
+ - `eval_on_start`: False
365
+ - `use_liger_kernel`: False
366
+ - `eval_use_gather_object`: False
367
+ - `average_tokens_across_devices`: False
368
+ - `prompts`: None
369
+ - `batch_sampler`: no_duplicates
370
+ - `multi_dataset_batch_sampler`: proportional
371
+
372
+ </details>
373
+
374
+ ### Training Logs
375
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy |
376
+ |:-----:|:----:|:-------------:|:---------------:|:---------------------------:|
377
+ | -1 | -1 | - | - | 0.6211 |
378
+ | 0.016 | 100 | 2.7517 | 0.8461 | 0.7871 |
379
+ | 0.032 | 200 | 1.1987 | 0.6156 | 0.8253 |
380
+ | 0.048 | 300 | 0.9926 | - | - |
381
+ | -1 | -1 | - | - | 0.8302 |
382
+ | 0.016 | 100 | 0.8938 | 0.5516 | 0.8393 |
383
+ | 0.032 | 200 | 0.542 | 0.5312 | 0.8458 |
384
+ | 0.048 | 300 | 0.2881 | 0.5963 | 0.8288 |
385
+ | 0.064 | 400 | 0.954 | 0.5271 | 0.8518 |
386
+ | 0.08 | 500 | 0.8661 | 0.5029 | 0.8612 |
387
+ | 0.096 | 600 | 0.8477 | 0.5000 | 0.8688 |
388
+ | 0.112 | 700 | 0.8385 | 0.4942 | 0.8782 |
389
+ | 0.128 | 800 | 0.8051 | 0.4967 | 0.8890 |
390
+ | 0.144 | 900 | 0.7436 | 0.4855 | 0.8829 |
391
+ | 0.16 | 1000 | 0.6705 | 0.5059 | 0.8736 |
392
+ | 0.176 | 1100 | 0.7461 | 0.4721 | 0.8875 |
393
+ | 0.192 | 1200 | 0.6506 | 0.4403 | 0.8897 |
394
+ | 0.208 | 1300 | 0.6449 | 0.4410 | 0.8964 |
395
+ | 0.224 | 1400 | 0.6272 | 0.4310 | 0.8949 |
396
+ | 0.24 | 1500 | 0.6698 | 0.4382 | 0.8967 |
397
+ | 0.256 | 1600 | 0.624 | 0.3988 | 0.9060 |
398
+ | 0.272 | 1700 | 0.5965 | 0.4297 | 0.8917 |
399
+ | 0.288 | 1800 | 0.5652 | 0.4255 | 0.8995 |
400
+ | 0.304 | 1900 | 0.5301 | 0.4271 | 0.9042 |
401
+ | 0.32 | 2000 | 0.5132 | 0.4547 | 0.8985 |
402
+ | 0.336 | 2100 | 0.4971 | 0.4141 | 0.9028 |
403
+ | 0.352 | 2200 | 0.4969 | 0.4229 | 0.8999 |
404
+ | 0.368 | 2300 | 0.4824 | 0.4106 | 0.9039 |
405
+ | 0.384 | 2400 | 0.4854 | 0.4117 | 0.8952 |
406
+ | 0.4 | 2500 | 0.4874 | 0.4071 | 0.9019 |
407
+ | 0.416 | 2600 | 0.4675 | 0.4428 | 0.8981 |
408
+ | 0.432 | 2700 | 0.517 | 0.4130 | 0.9019 |
409
+ | 0.448 | 2800 | 0.4514 | 0.4361 | 0.9034 |
410
+ | 0.464 | 2900 | 0.4981 | 0.3958 | 0.9077 |
411
+ | 0.48 | 3000 | 0.4461 | 0.4124 | 0.9066 |
412
+ | 0.496 | 3100 | 0.4662 | 0.4147 | 0.9066 |
413
+ | 0.512 | 3200 | 0.3938 | 0.4122 | 0.9020 |
414
+ | 0.528 | 3300 | 0.4122 | 0.4157 | 0.9001 |
415
+ | 0.544 | 3400 | 0.4387 | 0.4118 | 0.9029 |
416
+ | 0.56 | 3500 | 0.4181 | 0.3876 | 0.9042 |
417
+ | 0.576 | 3600 | 0.3603 | 0.3888 | 0.9048 |
418
+ | 0.592 | 3700 | 0.4182 | 0.3936 | 0.8988 |
419
+ | 0.608 | 3800 | 0.3918 | 0.3996 | 0.9013 |
420
+ | 0.624 | 3900 | 0.4158 | 0.3777 | 0.9074 |
421
+ | 0.64 | 4000 | 0.3861 | 0.3689 | 0.9081 |
422
+ | 0.656 | 4100 | 0.3142 | 0.3842 | 0.9086 |
423
+ | 0.672 | 4200 | 0.3327 | 0.3794 | 0.9090 |
424
+ | 0.688 | 4300 | 0.3784 | 0.3785 | 0.9052 |
425
+ | 0.704 | 4400 | 0.3208 | 0.3849 | 0.9017 |
426
+ | 0.72 | 4500 | 0.3591 | 0.3910 | 0.9070 |
427
+ | 0.736 | 4600 | 0.3331 | 0.3817 | 0.9092 |
428
+ | 0.752 | 4700 | 0.3567 | 0.3762 | 0.9125 |
429
+ | 0.768 | 4800 | 0.3445 | 0.3639 | 0.9108 |
430
+ | 0.784 | 4900 | 0.3472 | 0.3723 | 0.9116 |
431
+ | 0.8 | 5000 | 0.2895 | 0.3685 | 0.9115 |
432
+ | 0.816 | 5100 | 0.3067 | 0.3714 | 0.9121 |
433
+ | 0.832 | 5200 | 0.3139 | 0.3623 | 0.9134 |
434
+ | 0.848 | 5300 | 0.3106 | 0.3635 | 0.9127 |
435
+ | 0.864 | 5400 | 0.2965 | 0.3681 | 0.9136 |
436
+ | 0.88 | 5500 | 0.3154 | 0.3646 | 0.9145 |
437
+ | 0.896 | 5600 | 0.2963 | 0.3548 | 0.9154 |
438
+ | 0.912 | 5700 | 0.296 | 0.3550 | 0.9152 |
439
+ | 0.928 | 5800 | 0.2847 | 0.3535 | 0.9157 |
440
+ | 0.944 | 5900 | 0.2732 | 0.3522 | 0.9162 |
441
+ | 0.96 | 6000 | 0.3154 | 0.3502 | 0.9168 |
442
+ | 0.976 | 6100 | 0.2979 | 0.3510 | 0.9165 |
443
+ | 0.992 | 6200 | 0.1601 | 0.3502 | 0.9163 |
444
+
445
+
446
+ ### Framework Versions
447
+ - Python: 3.11.12
448
+ - Sentence Transformers: 4.1.0
449
+ - Transformers: 4.51.3
450
+ - PyTorch: 2.6.0+cu124
451
+ - Accelerate: 1.6.0
452
+ - Datasets: 3.6.0
453
+ - Tokenizers: 0.21.1
454
+
455
+ ## Citation
456
+
457
+ ### BibTeX
458
+
459
+ #### Sentence Transformers
460
+ ```bibtex
461
+ @inproceedings{reimers-2019-sentence-bert,
462
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
463
+ author = "Reimers, Nils and Gurevych, Iryna",
464
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
465
+ month = "11",
466
+ year = "2019",
467
+ publisher = "Association for Computational Linguistics",
468
+ url = "https://arxiv.org/abs/1908.10084",
469
+ }
470
+ ```
471
+
472
+ #### MultipleNegativesRankingLoss
473
+ ```bibtex
474
+ @misc{henderson2017efficient,
475
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
476
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
477
+ year={2017},
478
+ eprint={1705.00652},
479
+ archivePrefix={arXiv},
480
+ primaryClass={cs.CL}
481
+ }
482
+ ```
483
+
484
+ <!--
485
+ ## Glossary
486
+
487
+ *Clearly define terms in order to be accessible across audiences.*
488
+ -->
489
+
490
+ <!--
491
+ ## Model Card Authors
492
+
493
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
494
+ -->
495
+
496
+ <!--
497
+ ## Model Card Contact
498
+
499
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
500
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992415f00b163a414ded4a868986662005657230b56bc146677ca32707070b5b
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 512,
60
+ "model_max_length": 512,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff